Upload folder using huggingface_hub (#2)
Browse files- 4ac9bedb0325b520d19477f3e32e5cbf7c8780f8d6da0e0085583ffee876e117 (7b941dc5102455df77df118fc22410840c4f79ab)
- handler.py +7 -3
handler.py
CHANGED
|
@@ -2,7 +2,6 @@ from typing import Dict, List, Any
|
|
| 2 |
import torch
|
| 3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import logging
|
| 5 |
-
logger = logging.getLogger(__name__)
|
| 6 |
|
| 7 |
|
| 8 |
class EndpointHandler:
|
|
@@ -11,9 +10,14 @@ class EndpointHandler:
|
|
| 11 |
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
|
| 12 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 13 |
self.pipe = pipeline("text-generation", self.model, self.tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
| 16 |
-
logger.info("CALL DATA:", data)
|
| 17 |
|
| 18 |
# process input
|
| 19 |
inputs = data.pop("inputs", data)
|
|
@@ -25,6 +29,6 @@ class EndpointHandler:
|
|
| 25 |
output = self.pipe(inputs)
|
| 26 |
|
| 27 |
response = output[0]['generated_text'][-1]
|
| 28 |
-
logger.info("RESPONSE:", response)
|
| 29 |
|
| 30 |
return {"generated_text": response}
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import logging
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class EndpointHandler:
|
|
|
|
| 10 |
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
|
| 11 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 12 |
self.pipe = pipeline("text-generation", self.model, self.tokenizer)
|
| 13 |
+
logging.basicConfig(
|
| 14 |
+
level=logging.INFO,
|
| 15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 16 |
+
)
|
| 17 |
+
self.logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
| 20 |
+
self.logger.info("CALL DATA:", data)
|
| 21 |
|
| 22 |
# process input
|
| 23 |
inputs = data.pop("inputs", data)
|
|
|
|
| 29 |
output = self.pipe(inputs)
|
| 30 |
|
| 31 |
response = output[0]['generated_text'][-1]
|
| 32 |
+
self.logger.info("RESPONSE:", response)
|
| 33 |
|
| 34 |
return {"generated_text": response}
|