lbourdois commited on
Commit
de0e24d
·
verified ·
1 Parent(s): 974f54a

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +187 -173
README.md CHANGED
@@ -1,174 +1,188 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-0.5B-Instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 671df569-9f2f-4920-860d-737cf337d45c
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-0.5B-Instruct
23
- bf16: auto
24
- chat_template: llama3
25
- cosine_min_lr_ratio: 0.1
26
- data_processes: 4
27
- dataset_prepared_path: null
28
- datasets:
29
- - data_files:
30
- - f483d69758eb04d1_train_data.json
31
- ds_type: json
32
- format: custom
33
- num_proc: 4
34
- path: /workspace/input_data/f483d69758eb04d1_train_data.json
35
- streaming: true
36
- type:
37
- field_instruction: src
38
- field_output: tgt
39
- format: '{instruction}'
40
- no_input_format: '{instruction}'
41
- system_format: '{system}'
42
- system_prompt: ''
43
- debug: null
44
- deepspeed: null
45
- device_map: balanced
46
- do_eval: true
47
- early_stopping_patience: 1
48
- eval_batch_size: 1
49
- eval_sample_packing: false
50
- eval_steps: 25
51
- evaluation_strategy: steps
52
- flash_attention: false
53
- fp16: null
54
- fsdp: null
55
- fsdp_config: null
56
- gradient_accumulation_steps: 16
57
- gradient_checkpointing: true
58
- group_by_length: true
59
- hub_model_id: dsakerkwq/671df569-9f2f-4920-860d-737cf337d45c
60
- hub_strategy: checkpoint
61
- hub_token: null
62
- learning_rate: 0.0001
63
- load_in_4bit: false
64
- load_in_8bit: false
65
- local_rank: null
66
- logging_steps: 1
67
- lora_alpha: 64
68
- lora_dropout: 0.05
69
- lora_fan_in_fan_out: null
70
- lora_model_dir: null
71
- lora_r: 32
72
- lora_target_linear: true
73
- lora_target_modules:
74
- - q_proj
75
- - v_proj
76
- lr_scheduler: cosine
77
- max_grad_norm: 1.0
78
- max_memory:
79
- 0: 75GB
80
- 1: 75GB
81
- 2: 75GB
82
- 3: 75GB
83
- max_steps: 50
84
- micro_batch_size: 2
85
- mixed_precision: bf16
86
- mlflow_experiment_name: /tmp/f483d69758eb04d1_train_data.json
87
- model_type: AutoModelForCausalLM
88
- num_epochs: 3
89
- optim_args:
90
- adam_beta1: 0.9
91
- adam_beta2: 0.95
92
- adam_epsilon: 1e-5
93
- optimizer: adamw_torch
94
- output_dir: miner_id_24
95
- pad_to_sequence_len: true
96
- resume_from_checkpoint: null
97
- s2_attention: null
98
- sample_packing: false
99
- save_steps: 25
100
- save_strategy: steps
101
- sequence_len: 2048
102
- strict: false
103
- tf32: false
104
- tokenizer_type: AutoTokenizer
105
- torch_compile: false
106
- train_on_inputs: false
107
- trust_remote_code: true
108
- val_set_size: 50
109
- wandb_entity: null
110
- wandb_mode: online
111
- wandb_name: 671df569-9f2f-4920-860d-737cf337d45c
112
- wandb_project: Public_TuningSN
113
- wandb_runid: 671df569-9f2f-4920-860d-737cf337d45c
114
- warmup_ratio: 0.04
115
- weight_decay: 0.01
116
- xformers_attention: null
117
-
118
- ```
119
-
120
- </details><br>
121
-
122
- # 671df569-9f2f-4920-860d-737cf337d45c
123
-
124
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
125
- It achieves the following results on the evaluation set:
126
- - Loss: 2.1735
127
-
128
- ## Model description
129
-
130
- More information needed
131
-
132
- ## Intended uses & limitations
133
-
134
- More information needed
135
-
136
- ## Training and evaluation data
137
-
138
- More information needed
139
-
140
- ## Training procedure
141
-
142
- ### Training hyperparameters
143
-
144
- The following hyperparameters were used during training:
145
- - learning_rate: 0.0001
146
- - train_batch_size: 2
147
- - eval_batch_size: 1
148
- - seed: 42
149
- - distributed_type: multi-GPU
150
- - num_devices: 4
151
- - gradient_accumulation_steps: 16
152
- - total_train_batch_size: 128
153
- - total_eval_batch_size: 4
154
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
155
- - lr_scheduler_type: cosine
156
- - lr_scheduler_warmup_steps: 2
157
- - training_steps: 50
158
-
159
- ### Training results
160
-
161
- | Training Loss | Epoch | Step | Validation Loss |
162
- |:-------------:|:------:|:----:|:---------------:|
163
- | 4.1083 | 0.0014 | 1 | 4.2668 |
164
- | 2.0517 | 0.0347 | 25 | 2.2239 |
165
- | 2.0141 | 0.0693 | 50 | 2.1735 |
166
-
167
-
168
- ### Framework versions
169
-
170
- - PEFT 0.13.2
171
- - Transformers 4.46.0
172
- - Pytorch 2.5.0+cu124
173
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-0.5B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 671df569-9f2f-4920-860d-737cf337d45c
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-0.5B-Instruct
37
+ bf16: auto
38
+ chat_template: llama3
39
+ cosine_min_lr_ratio: 0.1
40
+ data_processes: 4
41
+ dataset_prepared_path: null
42
+ datasets:
43
+ - data_files:
44
+ - f483d69758eb04d1_train_data.json
45
+ ds_type: json
46
+ format: custom
47
+ num_proc: 4
48
+ path: /workspace/input_data/f483d69758eb04d1_train_data.json
49
+ streaming: true
50
+ type:
51
+ field_instruction: src
52
+ field_output: tgt
53
+ format: '{instruction}'
54
+ no_input_format: '{instruction}'
55
+ system_format: '{system}'
56
+ system_prompt: ''
57
+ debug: null
58
+ deepspeed: null
59
+ device_map: balanced
60
+ do_eval: true
61
+ early_stopping_patience: 1
62
+ eval_batch_size: 1
63
+ eval_sample_packing: false
64
+ eval_steps: 25
65
+ evaluation_strategy: steps
66
+ flash_attention: false
67
+ fp16: null
68
+ fsdp: null
69
+ fsdp_config: null
70
+ gradient_accumulation_steps: 16
71
+ gradient_checkpointing: true
72
+ group_by_length: true
73
+ hub_model_id: dsakerkwq/671df569-9f2f-4920-860d-737cf337d45c
74
+ hub_strategy: checkpoint
75
+ hub_token: null
76
+ learning_rate: 0.0001
77
+ load_in_4bit: false
78
+ load_in_8bit: false
79
+ local_rank: null
80
+ logging_steps: 1
81
+ lora_alpha: 64
82
+ lora_dropout: 0.05
83
+ lora_fan_in_fan_out: null
84
+ lora_model_dir: null
85
+ lora_r: 32
86
+ lora_target_linear: true
87
+ lora_target_modules:
88
+ - q_proj
89
+ - v_proj
90
+ lr_scheduler: cosine
91
+ max_grad_norm: 1.0
92
+ max_memory:
93
+ 0: 75GB
94
+ 1: 75GB
95
+ 2: 75GB
96
+ 3: 75GB
97
+ max_steps: 50
98
+ micro_batch_size: 2
99
+ mixed_precision: bf16
100
+ mlflow_experiment_name: /tmp/f483d69758eb04d1_train_data.json
101
+ model_type: AutoModelForCausalLM
102
+ num_epochs: 3
103
+ optim_args:
104
+ adam_beta1: 0.9
105
+ adam_beta2: 0.95
106
+ adam_epsilon: 1e-5
107
+ optimizer: adamw_torch
108
+ output_dir: miner_id_24
109
+ pad_to_sequence_len: true
110
+ resume_from_checkpoint: null
111
+ s2_attention: null
112
+ sample_packing: false
113
+ save_steps: 25
114
+ save_strategy: steps
115
+ sequence_len: 2048
116
+ strict: false
117
+ tf32: false
118
+ tokenizer_type: AutoTokenizer
119
+ torch_compile: false
120
+ train_on_inputs: false
121
+ trust_remote_code: true
122
+ val_set_size: 50
123
+ wandb_entity: null
124
+ wandb_mode: online
125
+ wandb_name: 671df569-9f2f-4920-860d-737cf337d45c
126
+ wandb_project: Public_TuningSN
127
+ wandb_runid: 671df569-9f2f-4920-860d-737cf337d45c
128
+ warmup_ratio: 0.04
129
+ weight_decay: 0.01
130
+ xformers_attention: null
131
+
132
+ ```
133
+
134
+ </details><br>
135
+
136
+ # 671df569-9f2f-4920-860d-737cf337d45c
137
+
138
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
139
+ It achieves the following results on the evaluation set:
140
+ - Loss: 2.1735
141
+
142
+ ## Model description
143
+
144
+ More information needed
145
+
146
+ ## Intended uses & limitations
147
+
148
+ More information needed
149
+
150
+ ## Training and evaluation data
151
+
152
+ More information needed
153
+
154
+ ## Training procedure
155
+
156
+ ### Training hyperparameters
157
+
158
+ The following hyperparameters were used during training:
159
+ - learning_rate: 0.0001
160
+ - train_batch_size: 2
161
+ - eval_batch_size: 1
162
+ - seed: 42
163
+ - distributed_type: multi-GPU
164
+ - num_devices: 4
165
+ - gradient_accumulation_steps: 16
166
+ - total_train_batch_size: 128
167
+ - total_eval_batch_size: 4
168
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
169
+ - lr_scheduler_type: cosine
170
+ - lr_scheduler_warmup_steps: 2
171
+ - training_steps: 50
172
+
173
+ ### Training results
174
+
175
+ | Training Loss | Epoch | Step | Validation Loss |
176
+ |:-------------:|:------:|:----:|:---------------:|
177
+ | 4.1083 | 0.0014 | 1 | 4.2668 |
178
+ | 2.0517 | 0.0347 | 25 | 2.2239 |
179
+ | 2.0141 | 0.0693 | 50 | 2.1735 |
180
+
181
+
182
+ ### Framework versions
183
+
184
+ - PEFT 0.13.2
185
+ - Transformers 4.46.0
186
+ - Pytorch 2.5.0+cu124
187
+ - Datasets 3.0.1
188
  - Tokenizers 0.20.1