#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import base64 import argparse import os import sys import gzip import math import torch import torch.multiprocessing as mp import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import Levenshtein from typing import List, Callable, Tuple, Optional from concurrent.futures import ThreadPoolExecutor # ========================================== # 0. 环境设置 # ========================================== os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") current_dir = os.getcwd() if current_dir not in sys.path: sys.path.append(current_dir) script_dir = os.path.dirname(os.path.abspath(__file__)) if script_dir not in sys.path: sys.path.append(script_dir) # ========================================== # 1. 依赖导入 # ========================================== try: from transformers import AutoTokenizer except ImportError: print("❌ Error: transformers not installed.") sys.exit(1) try: from m1_compression import utils from m1_compression.compressor import ( load_m1_model_and_tokenizer, ALPHABET_SIZE, ARITHMETIC_CODER_BASE, ARITHMETIC_CODER_PRECISION, ) from m1_compression.hybrid_arithmetic_coder import CPUArithmeticEncoder from m1_compression.batched_arithmetic_coder import _pdf_to_cdf except ImportError as e: print(f"❌ Error: m1_compression not found. {e}") sys.exit(1) # ========================================== # 2. 基础工具函数 # ========================================== def vread(buf: bytes, i: int): shift = val = 0 while True: b = buf[i] i += 1 val |= (b & 0x7F) << shift if b < 0x80: return val, i shift += 7 def unpack_windows(input_bytes: bytes, b64_stream: str) -> List[bytes]: """ 只返回需要压缩的 windows bytes 段(忽略 gap 非压缩区域)。 """ try: if not b64_stream: return [] buf = base64.b64decode(b64_stream) i = 0 cursor = 0 segments: List[bytes] = [] while i < len(buf): gap, i = vread(buf, i) size, i = vread(buf, i) start = cursor + gap end = start + size if end > len(input_bytes): break segments.append(input_bytes[start:end]) cursor = end return segments except Exception: return [] def token_ids_to_str(ids: List[int]) -> str: # token id 可能 >255,因此仍然需要 chr 映射 # 为安全起见 clamp 到 unicode 最大值 return "".join(chr(x if x <= 0x10FFFF else 0x10FFFF) for x in ids) def bytes_to_latin1_str(b: bytes) -> str: # 0~255 一一映射到 unicode,编辑距离结果等价于你之前的 chr(x) return b.decode("latin1") def pad_batch_fast(batch: List[bytes]) -> Tuple[torch.Tensor, torch.Tensor]: """ 将 List[bytes] -> (padded_batch[int64], lengths[int64]) 关键优化:numpy.frombuffer + 一次性拷贝,避免 Python list(data) """ if not batch: return torch.empty((0, 0), dtype=torch.long), torch.empty((0,), dtype=torch.long) lengths_np = np.fromiter((len(x) for x in batch), dtype=np.int32, count=len(batch)) max_len = int(lengths_np.max()) arr = np.zeros((len(batch), max_len), dtype=np.uint8) for i, seg in enumerate(batch): seg_np = np.frombuffer(seg, dtype=np.uint8) if seg_np.size: arr[i, : seg_np.size] = seg_np padded = torch.from_numpy(arr).to(torch.long) # gather 需要 int64 lengths = torch.from_numpy(lengths_np.astype(np.int64)) return padded, lengths def iter_jsonl_shard_bytes(file_path: str, shard_rank: int, shard_world: int): """ 按“字节范围”切分 jsonl 文件:每个 shard 只读自己负责的文件区间。 适合“单文件吃满多 GPU”。 """ file_size = os.path.getsize(file_path) start = (file_size * shard_rank) // shard_world end = (file_size * (shard_rank + 1)) // shard_world with open(file_path, "rb") as f: f.seek(start) if start > 0: f.readline() # 丢掉半行,跳到下一行首 while f.tell() < end: line = f.readline() if not line: break yield line # ========================================== # 3. 高性能 AC 压缩核心 (Smart Batching + bytes output) # ========================================== def batched_m1_compress_predict_fn(model): def predict_fn(input_tensor: torch.Tensor, **kwargs) -> torch.Tensor: if input_tensor.dim() == 1: input_tensor = input_tensor.unsqueeze(0) with torch.inference_mode(): logits = model(input_tensor, **kwargs) logits = logits[..., :256].float() probs = torch.softmax(logits, dim=-1) return probs return predict_fn def compress_segments_smart_batch_bytes( all_segments: List[bytes], batched_predict_fn: Callable, first_byte_prob: torch.Tensor, device: torch.device, encoder: CPUArithmeticEncoder, gpu_batch_size: int = 256, bit_threshold: int = 64, ) -> List[bytes]: """ 高性能 AC 压缩: 1) 先按长度排序,降低 padding 浪费 2) 推理在 GPU,编码在 CPU 3) 输出每个 segment 的压缩 bytes(不转 List[int]) """ M = len(all_segments) if M == 0: return [] lengths = np.fromiter((len(s) for s in all_segments), dtype=np.int32, count=M) sorted_indices = np.argsort(lengths, kind="stable") sorted_segments = [all_segments[i] for i in sorted_indices] out: List[Optional[bytes]] = [None] * M for i in range(0, M, gpu_batch_size): batch_slice = sorted_segments[i : i + gpu_batch_size] batch_orig_indices = sorted_indices[i : i + gpu_batch_size] try: padded_batch_cpu, lengths_cpu = pad_batch_fast(batch_slice) # pin + non_blocking H2D padded_batch = padded_batch_cpu.pin_memory().to(device, non_blocking=True) # --- GPU 推理 --- prompt_probs = batched_predict_fn(padded_batch) final_probs = torch.cat( [ first_byte_prob.expand(prompt_probs.shape[0], -1, -1), prompt_probs[:, :-1, ...], ], dim=1, ) # --- CDF 计算 --- final_probs = utils.batched_normalize_pdf_for_arithmetic_coding(final_probs) cdfs_gpu = _pdf_to_cdf(final_probs) cdf_low = cdfs_gpu.gather(2, padded_batch.unsqueeze(-1)).squeeze(-1) cdf_high = cdfs_gpu.gather(2, (padded_batch + 1).unsqueeze(-1)).squeeze(-1) cdf_ends = torch.stack([cdf_low, cdf_high], dim=-1) # --- CPU 编码 --- enc_out = encoder.incremental_batched_encode( cdf_ends.cpu(), ALPHABET_SIZE, lengths_cpu, # CPU bit_threshold=bit_threshold, force_padding_to_threshold=False, return_num_padded_bits=False, ) if isinstance(enc_out, tuple): chunked_compressed_bytes = enc_out[0] else: chunked_compressed_bytes = enc_out for idx, code in zip(batch_orig_indices, chunked_compressed_bytes): out[int(idx)] = bytes(code) except Exception: # 容错:降级为原始 bytes for idx, seg in zip(batch_orig_indices, batch_slice): out[int(idx)] = seg return [x if x is not None else b"" for x in out] class M1ACManager: def __init__(self, model_path: str, first_prob_path: str, device_id: int, gpu_batch_size: int = 256, bit_threshold: int = 64): self.device = torch.device(f"cuda:{device_id}") self.gpu_batch_size = gpu_batch_size self.bit_threshold = bit_threshold self.model, _, _ = load_m1_model_and_tokenizer(model_path) self.model.to(self.device) self.model.eval() self.predict_fn = batched_m1_compress_predict_fn(self.model) if first_prob_path and os.path.exists(first_prob_path): with open(first_prob_path, "r") as f: prob_data = json.load(f) self.first_byte_prob = torch.tensor(prob_data, dtype=torch.float32, device=self.device) if self.first_byte_prob.dim() == 1: self.first_byte_prob = self.first_byte_prob.unsqueeze(0).unsqueeze(0) else: self.first_byte_prob = torch.ones((1, 1, ALPHABET_SIZE), dtype=torch.float32, device=self.device) / ALPHABET_SIZE # 全局 encoder(避免重复创建) self.encoder = CPUArithmeticEncoder(base=ARITHMETIC_CODER_BASE, precision=ARITHMETIC_CODER_PRECISION) def compress_batch_smart_bytes(self, inputs: List[Tuple[str, Optional[str]]]) -> List[bytes]: """ inputs: List[(text, windows_b64_or_None)] Return: List[bytes] 每个 sample 对应拼接后的 AC bitstream(bytes) """ all_segments_flat: List[bytes] = [] sample_map: List[Tuple[int, int]] = [] current_idx = 0 for text, windows_b64 in inputs: raw_bytes = text.encode("utf-8") sample_segs: List[bytes] = [] if windows_b64: sample_segs = unpack_windows(raw_bytes, windows_b64) else: CHUNK = 512 for j in range(0, len(raw_bytes), CHUNK): sample_segs.append(raw_bytes[j : j + CHUNK]) count = len(sample_segs) sample_map.append((current_idx, current_idx + count)) all_segments_flat.extend(sample_segs) current_idx += count if not all_segments_flat: return [b"" for _ in inputs] compressed_chunks_flat = compress_segments_smart_batch_bytes( all_segments_flat, self.predict_fn, self.first_byte_prob, self.device, self.encoder, gpu_batch_size=self.gpu_batch_size, bit_threshold=self.bit_threshold, ) results: List[bytes] = [] for start, end in sample_map: results.append(b"".join(compressed_chunks_flat[start:end])) return results # ========================================== # 4. Worker Process # ========================================== def run_gzip_task(text_pair: Tuple[str, str]) -> float: t1, t2 = text_pair b1 = t1.encode("utf-8") b2 = t2.encode("utf-8") g1 = gzip.compress(b1) g2 = gzip.compress(b2) if not g1: return 0.0 d = Levenshtein.distance(bytes_to_latin1_str(g1), bytes_to_latin1_str(g2)) return d / len(g1) def process_one_file( gpu_id: int, file_path: str, tokenizer: AutoTokenizer, ac_manager: M1ACManager, max_lines: int, worker_batch_size: int, gzip_threads: int, shard_rank: int, shard_world: int, ) -> dict: """ 处理单个 jsonl 文件,返回 results dict """ results = {"Gzip": [], "Tokenizer": [], "AC_M1": []} # 为了让“单文件多 shard”时总样本量≈max_lines,给每个 shard 分摊行数上限 if shard_world > 1 and max_lines > 0: shard_max_lines = int(math.ceil(max_lines / shard_world)) else: shard_max_lines = max_lines raw_texts: List[str] = [] pert_texts: List[str] = [] metas: List[Optional[str]] = [] processed_total = 0 # 线程池用于 gzip(gzip.compress 是 C 实现,通常能释放 GIL,线程能并行) thread_pool = ThreadPoolExecutor(max_workers=gzip_threads) def flush(): nonlocal raw_texts, pert_texts, metas if not raw_texts: return curr_batch_size = len(raw_texts) # 1) Gzip 并行 gz_vals = list(thread_pool.map(run_gzip_task, zip(raw_texts, pert_texts))) results["Gzip"].extend(gz_vals) # 2) Tokenizer batched(fast tokenizer) try: tok1 = tokenizer(raw_texts, add_special_tokens=False)["input_ids"] tok2 = tokenizer(pert_texts, add_special_tokens=False)["input_ids"] for a, b in zip(tok1, tok2): if a: d = Levenshtein.distance(token_ids_to_str(a), token_ids_to_str(b)) results["Tokenizer"].append(d / len(a)) except Exception: # tokenizer 出问题时不影响 AC 结果 pass # 3) AC:orig + pert 合并一次调用 orig_inputs = list(zip(raw_texts, metas)) pert_inputs = list(zip(pert_texts, [None] * curr_batch_size)) both_inputs = orig_inputs + pert_inputs try: both_streams = ac_manager.compress_batch_smart_bytes(both_inputs) ac1_list = both_streams[:curr_batch_size] ac2_list = both_streams[curr_batch_size:] for a1, a2 in zip(ac1_list, ac2_list): if a1: d = Levenshtein.distance(bytes_to_latin1_str(a1), bytes_to_latin1_str(a2)) results["AC_M1"].append(d / len(a1)) except Exception as e: print(f"[GPU {gpu_id}] AC Batch Error: {e}") raw_texts, pert_texts, metas = [], [], [] # 文件读取:支持 shard line_iter = iter_jsonl_shard_bytes(file_path, shard_rank, shard_world) for i, line in enumerate(line_iter): if shard_max_lines > 0 and i >= shard_max_lines: break try: if not line or len(line) < 100: continue data = json.loads(line) text = data.get("text", "") if not isinstance(text, str) or len(text) < 50: continue windows = data.get("windows_starts_lens_b64") cut_idx = max(1, int(len(text) * 0.2)) # cut_idx = 2 text_p = text[cut_idx:] raw_texts.append(text) pert_texts.append(text_p) metas.append(windows) processed_total += 1 if len(raw_texts) >= worker_batch_size: flush() if processed_total % 2000 == 0: print(f"[GPU {gpu_id}] processed {processed_total} lines (file={os.path.basename(file_path)}, shard={shard_rank}/{shard_world})") except Exception: continue flush() thread_pool.shutdown(wait=True) print(f"[GPU {gpu_id}] done file={os.path.basename(file_path)} shard={shard_rank}/{shard_world} total={processed_total}") return results def process_files_worker( rank: int, gpu_id: int, file_paths: List[str], output_dir: str, model_path: str, prob_path: str, max_lines: int, worker_batch_size: int, gzip_threads: int, shard_mode: bool, gpu_batch_size: int, bit_threshold: int, ): """ 一个 GPU 进程:加载一次 tokenizer + M1 模型,然后顺序处理分配给它的文件(或单文件 shard) """ try: torch.cuda.set_device(gpu_id) # tokenizer try: tokenizer = AutoTokenizer.from_pretrained( "infly/OpenCoder-1.5B-Base", trust_remote_code=True, use_fast=True, ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token except Exception: tokenizer = AutoTokenizer.from_pretrained("gpt2", use_fast=True) # AC manager ac_manager = M1ACManager( model_path=model_path, first_prob_path=prob_path, device_id=gpu_id, gpu_batch_size=gpu_batch_size, bit_threshold=bit_threshold, ) for fp in file_paths: base = os.path.basename(fp) # 单文件 shard:rank 对应 shard_rank if shard_mode: shard_rank = rank shard_world = torch.cuda.device_count() else: shard_rank = 0 shard_world = 1 print(f"[GPU {gpu_id}] start file={base} shard={shard_rank}/{shard_world}") res = process_one_file( gpu_id=gpu_id, file_path=fp, tokenizer=tokenizer, ac_manager=ac_manager, max_lines=max_lines, worker_batch_size=worker_batch_size, gzip_threads=gzip_threads, shard_rank=shard_rank, shard_world=shard_world, ) out_name = f"res_gpu{gpu_id}_rank{rank}_shard{shard_rank}of{shard_world}_{base}.json" out_path = os.path.join(output_dir, out_name) with open(out_path, "w") as f: json.dump(res, f) except Exception as e: print(f"❌ [GPU {gpu_id}] Worker Error: {e}") import traceback traceback.print_exc() # ========================================== # 5. 主程序 # ========================================== def main(): parser = argparse.ArgumentParser() parser.add_argument("--input_dir", type=str, required=True) parser.add_argument("--m1_model", type=str, required=True) parser.add_argument("--first_prob_path", type=str, required=True) parser.add_argument("-o", "--output_dir", type=str, default="analysis_output_fast_opt") parser.add_argument("--max_lines", type=int, default=10000) # 可选调参(不给也能跑) parser.add_argument("--max_files", type=int, default=8, help="只取前 N 个 jsonl 文件;0 表示不限制") parser.add_argument("--worker_batch_size", type=int, default=500, help="flush 的行数 batch") parser.add_argument("--gzip_threads", type=int, default=8, help="每个 GPU 进程内用于 gzip 的线程数") parser.add_argument("--ac_gpu_batch_size", type=int, default=256, help="AC 推理的 GPU mini-batch size") parser.add_argument("--ac_bit_threshold", type=int, default=64, help="Arithmetic coder bit_threshold(16->64/128 往往更快)") args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if f.endswith(".jsonl") and "writer" not in f ] files.sort() if args.max_files and args.max_files > 0: files = files[: args.max_files] num_gpus = torch.cuda.device_count() if num_gpus == 0: print("❌ No GPU detected.") return if not files: print("❌ No jsonl files found.") return # 任务分配: # - 如果只有 1 个文件且 GPU>1:开启 shard_mode,让每张卡读同一个文件的不同字节段 # - 否则:按文件 idx % num_gpus 分配给各 GPU 进程(每个进程处理多个文件) shard_mode = (len(files) == 1 and num_gpus > 1) assignments: List[List[str]] = [[] for _ in range(num_gpus)] if shard_mode: for r in range(num_gpus): assignments[r] = [files[0]] print(f"🚀 Single-file shard mode enabled: {files[0]} -> {num_gpus} shards") else: for idx, fp in enumerate(files): assignments[idx % num_gpus].append(fp) non_empty = sum(1 for a in assignments if a) print(f"🚀 Multi-file mode: {len(files)} files assigned across {non_empty}/{num_gpus} GPU workers") print(f" worker_batch_size={args.worker_batch_size}, gzip_threads={args.gzip_threads}, ac_gpu_batch_size={args.ac_gpu_batch_size}, ac_bit_threshold={args.ac_bit_threshold}") mp.set_start_method("spawn", force=True) procs = [] for rank in range(num_gpus): if not assignments[rank]: continue gpu_id = rank % num_gpus p = mp.Process( target=process_files_worker, args=( rank, gpu_id, assignments[rank], args.output_dir, args.m1_model, args.first_prob_path, args.max_lines, args.worker_batch_size, args.gzip_threads, shard_mode, args.ac_gpu_batch_size, args.ac_bit_threshold, ), ) p.start() procs.append(p) for p in procs: p.join() # 合并结果 print("✅ Merging results...") final_results = {"Gzip": [], "Tokenizer": [], "AC_M1": []} for fn in os.listdir(args.output_dir): if fn.startswith("res_") and fn.endswith(".json"): try: with open(os.path.join(args.output_dir, fn), "r") as f: d = json.load(f) for k in final_results: final_results[k].extend(d.get(k, [])) except Exception: pass for k, v in final_results.items(): print(f" {k}: {len(v)} samples") # 统计 + 保存 stats = {} for k, v in final_results.items(): if v: stats[k] = {"count": int(len(v)), "mean": float(np.mean(v)), "p50": float(np.median(v))} with open(os.path.join(args.output_dir, "final_stats.json"), "w") as f: json.dump(stats, f, indent=2) print(f"📄 Saved stats -> {os.path.join(args.output_dir, 'final_stats.json')}") # 绘图 plot_data = [] for algo, vals in final_results.items(): for val in vals: if val < 2.0: plot_data.append({"Algorithm": algo, "NED": val}) if plot_data: df = pd.DataFrame(plot_data) plt.figure(figsize=(10, 6)) sns.kdeplot(data=df, x="NED", hue="Algorithm", fill=True, common_norm=False) plt.title("Compression Stability (Optimized)") plt.xlabel("Normalized Levenshtein Distance") plt.xlim(0, 1.2) out_img = os.path.join(args.output_dir, "stability_fast_opt.png") plt.savefig(out_img, dpi=200) print(f"📊 Saved plot -> {out_img}") print("🎉 Done.") if __name__ == "__main__": main() """ python fast_compare.py \ --input_dir /mnt/hdfs/user/linzheng/data/ocpython_subsampled_50G_entropy90_splits_chunk512_ow20_iterative-true_forcepadding-true_merged_ac \ --m1_model /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/m1_checkpoints/m1_40M_lr1e-3_steps200k_bs8_seqlen2048_python/checkpoints/0000200000 \ --first_prob_path /mnt/bn/tiktok-mm-5/aiic/users/linzheng/artifacts/ac_unigram_probs/python500k_unigram_prob.json \ --max_lines 10000 \ -o analysis_output_fast_opt \ --max_files 8 """