Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- AISE-TUDelft/Capybara
|
| 5 |
+
tags:
|
| 6 |
+
- code
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# BinT5
|
| 10 |
+
|
| 11 |
+
- **Repository: https://github.com/AISE-TUDelft/Capybara-BinT5**
|
| 12 |
+
- **Paper: https://huggingface.co/papers/2301.01701**
|
| 13 |
+
- **Point of Contact: https://huggingface.co/aalkaswan**
|
| 14 |
+
- **Raw Data: https://zenodo.org/records/7229913**
|
| 15 |
+
|
| 16 |
+
BinT5 is a Binary Code Summarization model, the base models are [CodeT5]() and fine-tuned with [Capybara]().
|
| 17 |
+
|
| 18 |
+
We offer 5 variations of the model:
|
| 19 |
+
|
| 20 |
+
| Name | Training Data |
|
| 21 |
+
|-----------------------------------------------------|------------------------------------------------------|
|
| 22 |
+
| [BinT5-C](https://huggingface.co/AISE-TUDelft/BinT5-C) | C Source |
|
| 23 |
+
| [BinT5-Decom](https://huggingface.co/AISE-TUDelft/BinT5-Decom) | Decompiled C Binaries |
|
| 24 |
+
| [BinT5-Stripped](https://huggingface.co/AISE-TUDelft/BinT5-Stripped) | Stripped Decompiled C Binaries |
|
| 25 |
+
| [BinT5-Demi](https://huggingface.co/AISE-TUDelft/BinT5-Demi) | Demi-stripped Decompiled C Binaries |
|
| 26 |
+
| [BinT5-NoFunName](https://huggingface.co/AISE-TUDelft/BinT5-NoFunName) | Decompiled C Binaries with the Function Name removed |
|
| 27 |
+
|
| 28 |
+
### Citation Information
|
| 29 |
+
|
| 30 |
+
```
|
| 31 |
+
@inproceedings{alkaswan2023extending,
|
| 32 |
+
title={Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binaries},
|
| 33 |
+
author={Al-Kaswan, Ali and Ahmed, Toufique and Izadi, Maliheh and Sawant, Anand Ashok and Devanbu, Premkumar and van Deursen, Arie},
|
| 34 |
+
booktitle={2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)},
|
| 35 |
+
pages={260--271},
|
| 36 |
+
year={2023},
|
| 37 |
+
organization={IEEE}
|
| 38 |
+
}
|
| 39 |
+
```
|