Initial commit of PPO model from HuggingFace RL Course Session #1
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- metrics:
|
| 12 |
+
- type: mean_reward
|
| 13 |
+
value: 280.92 +/- 14.67
|
| 14 |
+
name: mean_reward
|
| 15 |
+
task:
|
| 16 |
+
type: reinforcement-learning
|
| 17 |
+
name: reinforcement-learning
|
| 18 |
+
dataset:
|
| 19 |
+
name: LunarLander-v2
|
| 20 |
+
type: LunarLander-v2
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 25 |
+
|
| 26 |
+
## Usage (with Stable-baselines3)
|
| 27 |
+
TODO: Add your code
|
| 28 |
+
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f624537bc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f624537bcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f624537bd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f624537bdd0>", "_build": "<function ActorCriticPolicy._build at 0x7f624537be60>", "forward": "<function ActorCriticPolicy.forward at 0x7f624537bef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f624537bf80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6245384050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62453840e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6245384170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6245384200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f62453c9840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652736195.3774443, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzSL4PVh0/sT5JPEmVvr6cxhO+05mKPQAAAAAAAAAApuEtvnGZnj8YL+m+hyIjv4kOWL6Dt6O9AAAAAAAAAAAzNBY+3AE/vKD3VTuXihy89EKrvUJiAL0AAIA/AACAP80P3Tx/W8Q+LLrIvaWkpL6/cMa8ZxcCvQAAAAAAAAAAGmpGvQURlzyetFS9hisOvoaV3bzWzUA8AAAAAAAAAADmNls9hSPfuZCz9rJ0WdywKTDIuoYqvTMAAIA/AACAP+bvdL17DNm6kKjyOwSAkjzjMda7Rsl9PQAAgD8AAIA/bV9oPlOQpj7y5zm+wiqhvmH/YD2yNHa9AAAAAAAAAABalAk+3DdDPja6Db0aQXW+enAXPRYj5rwAAAAAAAAAAO0fKr5BpIa8k87tOkMSQjlB3vY9lrojugAAgD8AAIA/s7+NvXvchLrodp26d9b3tCWwaLsiu7c5AACAPwAAgD/mqZE9PSEJu35e+b3R7eO9ZNjnPN0wOj8AAIA/AACAPzPT4Dsqoq8/gsgDPrqSy74TDl47Uoo4PQAAAAAAAAAAAPxwvDarMLwIHek85q3FvGx10zyoDLU9AACAPwAAgD9z7gI+HAMivKHlt72bhUG+w3EAva0RZD0AAIA/AACAP41g2b0aq28+CcEqPu3Kfr5ZZhA9yJIxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ/D3ixkPcECUhpRSlIwBbJRL6IwBdJRHQKhoHPacqe91fZQoaAZoCWgPQwh8KTxoNs1xQJSGlFKUaBVL12gWR0CoaHLCvX9SdX2UKGgGaAloD0MI97AXChiLckCUhpRSlGgVS9VoFkdAqGiVLSNOunV9lChoBmgJaA9DCA5MbhQZQXFAlIaUUpRoFUvYaBZHQKhpG2jO9nN1fZQoaAZoCWgPQwjA7J487NdwQJSGlFKUaBVL8mgWR0CoaVR6v7m/dX2UKGgGaAloD0MIdO0L6IXIcECUhpRSlGgVS85oFkdAqGlsWl/H53V9lChoBmgJaA9DCGe1wB6TOnFAlIaUUpRoFUvsaBZHQKhpuuh9LHx1fZQoaAZoCWgPQwhx5eydkcRxQJSGlFKUaBVL8mgWR0CoadUEX+ERdX2UKGgGaAloD0MIwCMqVPchc0CUhpRSlGgVS9FoFkdAqGnr127nPnV9lChoBmgJaA9DCOOmBprPk3FAlIaUUpRoFUvgaBZHQKhqFe4TbnJ1fZQoaAZoCWgPQwjjUL8LG/VwQJSGlFKUaBVLy2gWR0Coaw7j94u9dX2UKGgGaAloD0MIbHnlepuXcECUhpRSlGgVS/loFkdAqGsWxwAEMnV9lChoBmgJaA9DCBlwlpKlBHNAlIaUUpRoFUv8aBZHQKhrNyTY/V11fZQoaAZoCWgPQwg3je21IKZxQJSGlFKUaBVL3mgWR0Coa39OymhudX2UKGgGaAloD0MIoiqm0o/cckCUhpRSlGgVTQoBaBZHQKhrhjoZAIJ1fZQoaAZoCWgPQwhSZRh3Q/FyQJSGlFKUaBVL5GgWR0Coa8ic5Ke1dX2UKGgGaAloD0MIL8A+OrWSckCUhpRSlGgVS+1oFkdAqGxGPq9oOHV9lChoBmgJaA9DCChiEcPOCXBAlIaUUpRoFUvjaBZHQKhs2JiRW911fZQoaAZoCWgPQwjjNa/qbIBwQJSGlFKUaBVL3mgWR0CobRgCwKSgdX2UKGgGaAloD0MIPlqcMcxab0CUhpRSlGgVS9doFkdAqG1szEaVEHV9lChoBmgJaA9DCAcoDTVKNHFAlIaUUpRoFU0EAWgWR0CobalY2bXpdX2UKGgGaAloD0MIrVEP0ei3bkCUhpRSlGgVS9poFkdAqG3KrPt2LnV9lChoBmgJaA9DCISDvYnhS3JAlIaUUpRoFUv1aBZHQKht3Kifxtp1fZQoaAZoCWgPQwhi9NxClz5xQJSGlFKUaBVL8mgWR0CobgVLJ0W/dX2UKGgGaAloD0MITN4AM19ycUCUhpRSlGgVS9JoFkdAqG6s4Nqgy3V9lChoBmgJaA9DCKfqHtkcOXJAlIaUUpRoFUvWaBZHQKhu5tw71Zl1fZQoaAZoCWgPQwhDN/sD5YdxQJSGlFKUaBVL7WgWR0CobykO7QLNdX2UKGgGaAloD0MIVpkprX9Oc0CUhpRSlGgVS99oFkdAqG9mvbGm13V9lChoBmgJaA9DCPrVHCBYT3BAlIaUUpRoFUvgaBZHQKhvtshPj4p1fZQoaAZoCWgPQwh81F+vsJhyQJSGlFKUaBVNDQFoFkdAqHAu8TSLInV9lChoBmgJaA9DCJRNucK7DXBAlIaUUpRoFUvlaBZHQKhwWQFLWZt1fZQoaAZoCWgPQwi4O2u33QtuQJSGlFKUaBVL0WgWR0CocI1Aqur7dX2UKGgGaAloD0MID7QCQxYtcECUhpRSlGgVS99oFkdAqHElUsFt9HV9lChoBmgJaA9DCIKQLGAC5m9AlIaUUpRoFUvKaBZHQKhxWspXp4d1fZQoaAZoCWgPQwhQNXo1wAZxQJSGlFKUaBVL32gWR0CocYAqEvkBdX2UKGgGaAloD0MIOKClK9jhckCUhpRSlGgVS9xoFkdAqHHlYQrc03V9lChoBmgJaA9DCCh9IeT85HFAlIaUUpRoFUvkaBZHQKhx+NutOmB1fZQoaAZoCWgPQwhOYhBYuXJwQJSGlFKUaBVL2GgWR0Cocf6CcwxndX2UKGgGaAloD0MIaeOItfh8b0CUhpRSlGgVS+BoFkdAqHLU3fhuO3V9lChoBmgJaA9DCNNLjGV6EHFAlIaUUpRoFUvoaBZHQKhzNEkSmIl1fZQoaAZoCWgPQwhaRuo9VfxwQJSGlFKUaBVL02gWR0Coc1K4YrJ9dX2UKGgGaAloD0MIGvhRDbs3cUCUhpRSlGgVTQwBaBZHQKh0KjwhGH51fZQoaAZoCWgPQwi1xTU+E35wQJSGlFKUaBVL3mgWR0CodGh6Skj5dX2UKGgGaAloD0MI3V897ltjckCUhpRSlGgVS+loFkdAqHUT7Kq4pnV9lChoBmgJaA9DCKlQ3Vy8IXNAlIaUUpRoFUv6aBZHQKh1MiwB5op1fZQoaAZoCWgPQwgbhSSzOndxQJSGlFKUaBVL1GgWR0CodXJRO1v3dX2UKGgGaAloD0MIHtydtdtockCUhpRSlGgVS85oFkdAqHV8Z75VO3V9lChoBmgJaA9DCFd72AuFcXNAlIaUUpRoFUv6aBZHQKh18HD76551fZQoaAZoCWgPQwgEritmhH9xQJSGlFKUaBVL6GgWR0CodmqbjLjhdX2UKGgGaAloD0MICOV9HM0pcUCUhpRSlGgVS+poFkdAqHZ6OktVaXV9lChoBmgJaA9DCDXPEfnuTXJAlIaUUpRoFUv4aBZHQKh2pX5FgD11fZQoaAZoCWgPQwjLg/QUueNxQJSGlFKUaBVL5mgWR0Cod6r39JjEdX2UKGgGaAloD0MIZ/FiYUg9ckCUhpRSlGgVS/poFkdAqHeuoUBXCHV9lChoBmgJaA9DCMuCiT8KSHJAlIaUUpRoFUv4aBZHQKh4KHh0heR1fZQoaAZoCWgPQwgk8l1K3atwQJSGlFKUaBVL6WgWR0CoeLewcHW0dX2UKGgGaAloD0MICvfKvFXacECUhpRSlGgVS+toFkdAqHkJguyu6nV9lChoBmgJaA9DCAVsByN2iHBAlIaUUpRoFUvQaBZHQKh5P4O+ZgJ1fZQoaAZoCWgPQwgc8PlhhEZjQJSGlFKUaBVN6ANoFkdAqHl6wUxmCnV9lChoBmgJaA9DCMU8K2kFwXBAlIaUUpRoFUvwaBZHQKh6KQyRB/t1fZQoaAZoCWgPQwgJwap6uQtyQJSGlFKUaBVL8mgWR0Coeilpfx+bdX2UKGgGaAloD0MIy9qmeFwickCUhpRSlGgVTQcBaBZHQKh6N1W8yvd1fZQoaAZoCWgPQwhz843ongdyQJSGlFKUaBVL6mgWR0CoeoQdbPhRdX2UKGgGaAloD0MIDLH6I8zCcECUhpRSlGgVS89oFkdAqHq1EkSmInV9lChoBmgJaA9DCNL8Ma1NG2NAlIaUUpRoFU3oA2gWR0Coetp4B3iadX2UKGgGaAloD0MIMsozL0chcECUhpRSlGgVS+poFkdAqHr2yHEdenV9lChoBmgJaA9DCFjGhm52BXBAlIaUUpRoFUvLaBZHQKh7jwl0HQh1fZQoaAZoCWgPQwiBd/Lp8WhzQJSGlFKUaBVNEgFoFkdAqHu0Aiml7HV9lChoBmgJaA9DCBIz+zzGQm5AlIaUUpRoFUvhaBZHQKh763vx6OZ1fZQoaAZoCWgPQwi5qBYRBVhwQJSGlFKUaBVLxWgWR0CofFILXtjTdX2UKGgGaAloD0MIYk1lUVjAbUCUhpRSlGgVS8poFkdAqHzUcyWRinV9lChoBmgJaA9DCPaWcr6YO3FAlIaUUpRoFUviaBZHQKh9F+H8CPp1fZQoaAZoCWgPQwjX+bfLfrpwQJSGlFKUaBVL3WgWR0CofWq7ROUMdX2UKGgGaAloD0MI1skZirvQcECUhpRSlGgVS+ZoFkdAqH5CwY+B6XV9lChoBmgJaA9DCA6GOqxwr25AlIaUUpRoFUvtaBZHQKh+Zt+kP+Z1fZQoaAZoCWgPQwiqglFJ3bRxQJSGlFKUaBVL92gWR0CofqbY02tMdX2UKGgGaAloD0MIO/4LBMFhckCUhpRSlGgVS9ZoFkdAqH7W74BV/HV9lChoBmgJaA9DCNhK6C4JpXBAlIaUUpRoFUvqaBZHQKh+8udwvQF1fZQoaAZoCWgPQwiezhWlROVzQJSGlFKUaBVL82gWR0Cof1Y/3WWhdX2UKGgGaAloD0MI/wkuVhSVcUCUhpRSlGgVS8VoFkdAqH+toSL613V9lChoBmgJaA9DCKa5FcIqnXBAlIaUUpRoFUvXaBZHQKh/w4Ajps51fZQoaAZoCWgPQwj4wmSqYAtxQJSGlFKUaBVNJgFoFkdAqH/xmTTvzHV9lChoBmgJaA9DCB+g+3KmD3BAlIaUUpRoFUvQaBZHQKiAUqnWJ791fZQoaAZoCWgPQwgvNNdpZMNxQJSGlFKUaBVNCQFoFkdAqICEB6rvLHV9lChoBmgJaA9DCF8JpMTuDnFAlIaUUpRoFUvYaBZHQKiBBFa0Qbx1fZQoaAZoCWgPQwhEigESTRRxQJSGlFKUaBVL12gWR0CogUaiTMaCdX2UKGgGaAloD0MIQG1UpwNDb0CUhpRSlGgVS9hoFkdAqIGYlUp/gHV9lChoBmgJaA9DCAXB49u7vW1AlIaUUpRoFUvUaBZHQKiCY09hZyN1fZQoaAZoCWgPQwgZAoBjTy1vQJSGlFKUaBVL2mgWR0CogqchTwUhdX2UKGgGaAloD0MIxVVl3xWrcECUhpRSlGgVS8BoFkdAqIKr/6wdKnV9lChoBmgJaA9DCBsuck/XKGRAlIaUUpRoFU3oA2gWR0CogsA1m8NAdX2UKGgGaAloD0MIxR1v8lusckCUhpRSlGgVS+FoFkdAqIMzsMRYinV9lChoBmgJaA9DCNQQVfhzIHNAlIaUUpRoFUv6aBZHQKiDgR+SbH91fZQoaAZoCWgPQwjMtWgBmrFxQJSGlFKUaBVL4mgWR0Cog6OTJQtSdX2UKGgGaAloD0MINnUeFT/ocECUhpRSlGgVS89oFkdAqIPeOuJUHnV9lChoBmgJaA9DCAQ8aeHyknJAlIaUUpRoFUvGaBZHQKiER4yGi6B1fZQoaAZoCWgPQwh0RSkh2ONxQJSGlFKUaBVL9WgWR0CohGBMzuWsdX2UKGgGaAloD0MIboeGxWgdcECUhpRSlGgVS+poFkdAqIS7TtsvZnV9lChoBmgJaA9DCG5uTE9Y0XBAlIaUUpRoFUvWaBZHQKiFE/Glyip1fZQoaAZoCWgPQwgpzlFHR8ZwQJSGlFKUaBVL6WgWR0CohbK3VkMDdX2UKGgGaAloD0MIZ0Y/Gg4scECUhpRSlGgVS/ZoFkdAqIZI/FBIF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 330, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2733dc3bfbec471056197f5985e570926a5e30c7a60e4926be1e1e0361d78fa9
|
| 3 |
+
size 143994
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f624537bc20>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f624537bcb0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f624537bd40>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f624537bdd0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f624537be60>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f624537bef0>",
|
| 13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f624537bf80>",
|
| 14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6245384050>",
|
| 15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62453840e0>",
|
| 16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6245384170>",
|
| 17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6245384200>",
|
| 18 |
+
"__abstractmethods__": "frozenset()",
|
| 19 |
+
"_abc_impl": "<_abc_data object at 0x7f62453c9840>"
|
| 20 |
+
},
|
| 21 |
+
"verbose": 1,
|
| 22 |
+
"policy_kwargs": {},
|
| 23 |
+
"observation_space": {
|
| 24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 26 |
+
"dtype": "float32",
|
| 27 |
+
"_shape": [
|
| 28 |
+
8
|
| 29 |
+
],
|
| 30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
| 32 |
+
"bounded_below": "[False False False False False False False False]",
|
| 33 |
+
"bounded_above": "[False False False False False False False False]",
|
| 34 |
+
"_np_random": null
|
| 35 |
+
},
|
| 36 |
+
"action_space": {
|
| 37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
| 38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 39 |
+
"n": 4,
|
| 40 |
+
"_shape": [],
|
| 41 |
+
"dtype": "int64",
|
| 42 |
+
"_np_random": null
|
| 43 |
+
},
|
| 44 |
+
"n_envs": 16,
|
| 45 |
+
"num_timesteps": 524288,
|
| 46 |
+
"_total_timesteps": 500000,
|
| 47 |
+
"_num_timesteps_at_start": 0,
|
| 48 |
+
"seed": null,
|
| 49 |
+
"action_noise": null,
|
| 50 |
+
"start_time": 1652736195.3774443,
|
| 51 |
+
"learning_rate": 0.0003,
|
| 52 |
+
"tensorboard_log": null,
|
| 53 |
+
"lr_schedule": {
|
| 54 |
+
":type:": "<class 'function'>",
|
| 55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 56 |
+
},
|
| 57 |
+
"_last_obs": {
|
| 58 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzSL4PVh0/sT5JPEmVvr6cxhO+05mKPQAAAAAAAAAApuEtvnGZnj8YL+m+hyIjv4kOWL6Dt6O9AAAAAAAAAAAzNBY+3AE/vKD3VTuXihy89EKrvUJiAL0AAIA/AACAP80P3Tx/W8Q+LLrIvaWkpL6/cMa8ZxcCvQAAAAAAAAAAGmpGvQURlzyetFS9hisOvoaV3bzWzUA8AAAAAAAAAADmNls9hSPfuZCz9rJ0WdywKTDIuoYqvTMAAIA/AACAP+bvdL17DNm6kKjyOwSAkjzjMda7Rsl9PQAAgD8AAIA/bV9oPlOQpj7y5zm+wiqhvmH/YD2yNHa9AAAAAAAAAABalAk+3DdDPja6Db0aQXW+enAXPRYj5rwAAAAAAAAAAO0fKr5BpIa8k87tOkMSQjlB3vY9lrojugAAgD8AAIA/s7+NvXvchLrodp26d9b3tCWwaLsiu7c5AACAPwAAgD/mqZE9PSEJu35e+b3R7eO9ZNjnPN0wOj8AAIA/AACAPzPT4Dsqoq8/gsgDPrqSy74TDl47Uoo4PQAAAAAAAAAAAPxwvDarMLwIHek85q3FvGx10zyoDLU9AACAPwAAgD9z7gI+HAMivKHlt72bhUG+w3EAva0RZD0AAIA/AACAP41g2b0aq28+CcEqPu3Kfr5ZZhA9yJIxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 60 |
+
},
|
| 61 |
+
"_last_episode_starts": {
|
| 62 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 64 |
+
},
|
| 65 |
+
"_last_original_obs": null,
|
| 66 |
+
"_episode_num": 0,
|
| 67 |
+
"use_sde": false,
|
| 68 |
+
"sde_sample_freq": -1,
|
| 69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
| 70 |
+
"ep_info_buffer": {
|
| 71 |
+
":type:": "<class 'collections.deque'>",
|
| 72 |
+
":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ/D3ixkPcECUhpRSlIwBbJRL6IwBdJRHQKhoHPacqe91fZQoaAZoCWgPQwh8KTxoNs1xQJSGlFKUaBVL12gWR0CoaHLCvX9SdX2UKGgGaAloD0MI97AXChiLckCUhpRSlGgVS9VoFkdAqGiVLSNOunV9lChoBmgJaA9DCA5MbhQZQXFAlIaUUpRoFUvYaBZHQKhpG2jO9nN1fZQoaAZoCWgPQwjA7J487NdwQJSGlFKUaBVL8mgWR0CoaVR6v7m/dX2UKGgGaAloD0MIdO0L6IXIcECUhpRSlGgVS85oFkdAqGlsWl/H53V9lChoBmgJaA9DCGe1wB6TOnFAlIaUUpRoFUvsaBZHQKhpuuh9LHx1fZQoaAZoCWgPQwhx5eydkcRxQJSGlFKUaBVL8mgWR0CoadUEX+ERdX2UKGgGaAloD0MIwCMqVPchc0CUhpRSlGgVS9FoFkdAqGnr127nPnV9lChoBmgJaA9DCOOmBprPk3FAlIaUUpRoFUvgaBZHQKhqFe4TbnJ1fZQoaAZoCWgPQwjjUL8LG/VwQJSGlFKUaBVLy2gWR0Coaw7j94u9dX2UKGgGaAloD0MIbHnlepuXcECUhpRSlGgVS/loFkdAqGsWxwAEMnV9lChoBmgJaA9DCBlwlpKlBHNAlIaUUpRoFUv8aBZHQKhrNyTY/V11fZQoaAZoCWgPQwg3je21IKZxQJSGlFKUaBVL3mgWR0Coa39OymhudX2UKGgGaAloD0MIoiqm0o/cckCUhpRSlGgVTQoBaBZHQKhrhjoZAIJ1fZQoaAZoCWgPQwhSZRh3Q/FyQJSGlFKUaBVL5GgWR0Coa8ic5Ke1dX2UKGgGaAloD0MIL8A+OrWSckCUhpRSlGgVS+1oFkdAqGxGPq9oOHV9lChoBmgJaA9DCChiEcPOCXBAlIaUUpRoFUvjaBZHQKhs2JiRW911fZQoaAZoCWgPQwjjNa/qbIBwQJSGlFKUaBVL3mgWR0CobRgCwKSgdX2UKGgGaAloD0MIPlqcMcxab0CUhpRSlGgVS9doFkdAqG1szEaVEHV9lChoBmgJaA9DCAcoDTVKNHFAlIaUUpRoFU0EAWgWR0CobalY2bXpdX2UKGgGaAloD0MIrVEP0ei3bkCUhpRSlGgVS9poFkdAqG3KrPt2LnV9lChoBmgJaA9DCISDvYnhS3JAlIaUUpRoFUv1aBZHQKht3Kifxtp1fZQoaAZoCWgPQwhi9NxClz5xQJSGlFKUaBVL8mgWR0CobgVLJ0W/dX2UKGgGaAloD0MITN4AM19ycUCUhpRSlGgVS9JoFkdAqG6s4Nqgy3V9lChoBmgJaA9DCKfqHtkcOXJAlIaUUpRoFUvWaBZHQKhu5tw71Zl1fZQoaAZoCWgPQwhDN/sD5YdxQJSGlFKUaBVL7WgWR0CobykO7QLNdX2UKGgGaAloD0MIVpkprX9Oc0CUhpRSlGgVS99oFkdAqG9mvbGm13V9lChoBmgJaA9DCPrVHCBYT3BAlIaUUpRoFUvgaBZHQKhvtshPj4p1fZQoaAZoCWgPQwh81F+vsJhyQJSGlFKUaBVNDQFoFkdAqHAu8TSLInV9lChoBmgJaA9DCJRNucK7DXBAlIaUUpRoFUvlaBZHQKhwWQFLWZt1fZQoaAZoCWgPQwi4O2u33QtuQJSGlFKUaBVL0WgWR0CocI1Aqur7dX2UKGgGaAloD0MID7QCQxYtcECUhpRSlGgVS99oFkdAqHElUsFt9HV9lChoBmgJaA9DCIKQLGAC5m9AlIaUUpRoFUvKaBZHQKhxWspXp4d1fZQoaAZoCWgPQwhQNXo1wAZxQJSGlFKUaBVL32gWR0CocYAqEvkBdX2UKGgGaAloD0MIOKClK9jhckCUhpRSlGgVS9xoFkdAqHHlYQrc03V9lChoBmgJaA9DCCh9IeT85HFAlIaUUpRoFUvkaBZHQKhx+NutOmB1fZQoaAZoCWgPQwhOYhBYuXJwQJSGlFKUaBVL2GgWR0Cocf6CcwxndX2UKGgGaAloD0MIaeOItfh8b0CUhpRSlGgVS+BoFkdAqHLU3fhuO3V9lChoBmgJaA9DCNNLjGV6EHFAlIaUUpRoFUvoaBZHQKhzNEkSmIl1fZQoaAZoCWgPQwhaRuo9VfxwQJSGlFKUaBVL02gWR0Coc1K4YrJ9dX2UKGgGaAloD0MIGvhRDbs3cUCUhpRSlGgVTQwBaBZHQKh0KjwhGH51fZQoaAZoCWgPQwi1xTU+E35wQJSGlFKUaBVL3mgWR0CodGh6Skj5dX2UKGgGaAloD0MI3V897ltjckCUhpRSlGgVS+loFkdAqHUT7Kq4pnV9lChoBmgJaA9DCKlQ3Vy8IXNAlIaUUpRoFUv6aBZHQKh1MiwB5op1fZQoaAZoCWgPQwgbhSSzOndxQJSGlFKUaBVL1GgWR0CodXJRO1v3dX2UKGgGaAloD0MIHtydtdtockCUhpRSlGgVS85oFkdAqHV8Z75VO3V9lChoBmgJaA9DCFd72AuFcXNAlIaUUpRoFUv6aBZHQKh18HD76551fZQoaAZoCWgPQwgEritmhH9xQJSGlFKUaBVL6GgWR0CodmqbjLjhdX2UKGgGaAloD0MICOV9HM0pcUCUhpRSlGgVS+poFkdAqHZ6OktVaXV9lChoBmgJaA9DCDXPEfnuTXJAlIaUUpRoFUv4aBZHQKh2pX5FgD11fZQoaAZoCWgPQwjLg/QUueNxQJSGlFKUaBVL5mgWR0Cod6r39JjEdX2UKGgGaAloD0MIZ/FiYUg9ckCUhpRSlGgVS/poFkdAqHeuoUBXCHV9lChoBmgJaA9DCMuCiT8KSHJAlIaUUpRoFUv4aBZHQKh4KHh0heR1fZQoaAZoCWgPQwgk8l1K3atwQJSGlFKUaBVL6WgWR0CoeLewcHW0dX2UKGgGaAloD0MICvfKvFXacECUhpRSlGgVS+toFkdAqHkJguyu6nV9lChoBmgJaA9DCAVsByN2iHBAlIaUUpRoFUvQaBZHQKh5P4O+ZgJ1fZQoaAZoCWgPQwgc8PlhhEZjQJSGlFKUaBVN6ANoFkdAqHl6wUxmCnV9lChoBmgJaA9DCMU8K2kFwXBAlIaUUpRoFUvwaBZHQKh6KQyRB/t1fZQoaAZoCWgPQwgJwap6uQtyQJSGlFKUaBVL8mgWR0Coeilpfx+bdX2UKGgGaAloD0MIy9qmeFwickCUhpRSlGgVTQcBaBZHQKh6N1W8yvd1fZQoaAZoCWgPQwhz843ongdyQJSGlFKUaBVL6mgWR0CoeoQdbPhRdX2UKGgGaAloD0MIDLH6I8zCcECUhpRSlGgVS89oFkdAqHq1EkSmInV9lChoBmgJaA9DCNL8Ma1NG2NAlIaUUpRoFU3oA2gWR0Coetp4B3iadX2UKGgGaAloD0MIMsozL0chcECUhpRSlGgVS+poFkdAqHr2yHEdenV9lChoBmgJaA9DCFjGhm52BXBAlIaUUpRoFUvLaBZHQKh7jwl0HQh1fZQoaAZoCWgPQwiBd/Lp8WhzQJSGlFKUaBVNEgFoFkdAqHu0Aiml7HV9lChoBmgJaA9DCBIz+zzGQm5AlIaUUpRoFUvhaBZHQKh763vx6OZ1fZQoaAZoCWgPQwi5qBYRBVhwQJSGlFKUaBVLxWgWR0CofFILXtjTdX2UKGgGaAloD0MIYk1lUVjAbUCUhpRSlGgVS8poFkdAqHzUcyWRinV9lChoBmgJaA9DCPaWcr6YO3FAlIaUUpRoFUviaBZHQKh9F+H8CPp1fZQoaAZoCWgPQwjX+bfLfrpwQJSGlFKUaBVL3WgWR0CofWq7ROUMdX2UKGgGaAloD0MI1skZirvQcECUhpRSlGgVS+ZoFkdAqH5CwY+B6XV9lChoBmgJaA9DCA6GOqxwr25AlIaUUpRoFUvtaBZHQKh+Zt+kP+Z1fZQoaAZoCWgPQwiqglFJ3bRxQJSGlFKUaBVL92gWR0CofqbY02tMdX2UKGgGaAloD0MIO/4LBMFhckCUhpRSlGgVS9ZoFkdAqH7W74BV/HV9lChoBmgJaA9DCNhK6C4JpXBAlIaUUpRoFUvqaBZHQKh+8udwvQF1fZQoaAZoCWgPQwiezhWlROVzQJSGlFKUaBVL82gWR0Cof1Y/3WWhdX2UKGgGaAloD0MI/wkuVhSVcUCUhpRSlGgVS8VoFkdAqH+toSL613V9lChoBmgJaA9DCKa5FcIqnXBAlIaUUpRoFUvXaBZHQKh/w4Ajps51fZQoaAZoCWgPQwj4wmSqYAtxQJSGlFKUaBVNJgFoFkdAqH/xmTTvzHV9lChoBmgJaA9DCB+g+3KmD3BAlIaUUpRoFUvQaBZHQKiAUqnWJ791fZQoaAZoCWgPQwgvNNdpZMNxQJSGlFKUaBVNCQFoFkdAqICEB6rvLHV9lChoBmgJaA9DCF8JpMTuDnFAlIaUUpRoFUvYaBZHQKiBBFa0Qbx1fZQoaAZoCWgPQwhEigESTRRxQJSGlFKUaBVL12gWR0CogUaiTMaCdX2UKGgGaAloD0MIQG1UpwNDb0CUhpRSlGgVS9hoFkdAqIGYlUp/gHV9lChoBmgJaA9DCAXB49u7vW1AlIaUUpRoFUvUaBZHQKiCY09hZyN1fZQoaAZoCWgPQwgZAoBjTy1vQJSGlFKUaBVL2mgWR0CogqchTwUhdX2UKGgGaAloD0MIxVVl3xWrcECUhpRSlGgVS8BoFkdAqIKr/6wdKnV9lChoBmgJaA9DCBsuck/XKGRAlIaUUpRoFU3oA2gWR0CogsA1m8NAdX2UKGgGaAloD0MIxR1v8lusckCUhpRSlGgVS+FoFkdAqIMzsMRYinV9lChoBmgJaA9DCNQQVfhzIHNAlIaUUpRoFUv6aBZHQKiDgR+SbH91fZQoaAZoCWgPQwjMtWgBmrFxQJSGlFKUaBVL4mgWR0Cog6OTJQtSdX2UKGgGaAloD0MINnUeFT/ocECUhpRSlGgVS89oFkdAqIPeOuJUHnV9lChoBmgJaA9DCAQ8aeHyknJAlIaUUpRoFUvGaBZHQKiER4yGi6B1fZQoaAZoCWgPQwh0RSkh2ONxQJSGlFKUaBVL9WgWR0CohGBMzuWsdX2UKGgGaAloD0MIboeGxWgdcECUhpRSlGgVS+poFkdAqIS7TtsvZnV9lChoBmgJaA9DCG5uTE9Y0XBAlIaUUpRoFUvWaBZHQKiFE/Glyip1fZQoaAZoCWgPQwgpzlFHR8ZwQJSGlFKUaBVL6WgWR0CohbK3VkMDdX2UKGgGaAloD0MIZ0Y/Gg4scECUhpRSlGgVS/ZoFkdAqIZI/FBIF3VlLg=="
|
| 73 |
+
},
|
| 74 |
+
"ep_success_buffer": {
|
| 75 |
+
":type:": "<class 'collections.deque'>",
|
| 76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 77 |
+
},
|
| 78 |
+
"_n_updates": 330,
|
| 79 |
+
"n_steps": 2048,
|
| 80 |
+
"gamma": 0.99,
|
| 81 |
+
"gae_lambda": 0.95,
|
| 82 |
+
"ent_coef": 0.0,
|
| 83 |
+
"vf_coef": 0.5,
|
| 84 |
+
"max_grad_norm": 0.5,
|
| 85 |
+
"batch_size": 64,
|
| 86 |
+
"n_epochs": 10,
|
| 87 |
+
"clip_range": {
|
| 88 |
+
":type:": "<class 'function'>",
|
| 89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 90 |
+
},
|
| 91 |
+
"clip_range_vf": null,
|
| 92 |
+
"normalize_advantage": true,
|
| 93 |
+
"target_kl": null
|
| 94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9beb72dad5d10ca2723c884d642c9e9e90a939c8b948d4f4f4506471fff86256
|
| 3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1cde64f700dbb45283d26ddca3075e7eff9d42df0b3f7546c68f12a8fb43725c
|
| 3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
| 2 |
+
Python: 3.7.13
|
| 3 |
+
Stable-Baselines3: 1.5.0
|
| 4 |
+
PyTorch: 1.11.0+cu113
|
| 5 |
+
GPU Enabled: True
|
| 6 |
+
Numpy: 1.21.6
|
| 7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9ef82f5ea385ba607e996d06b710b38f6fcf6cba6f15e79081dbb414a923893
|
| 3 |
+
size 197053
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 280.92381109833093, "std_reward": 14.669317772995363, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T21:43:22.330029"}
|