Restaurant Search NER with DistilBERT

Fine-tuned DistilBERT for Named Entity Recognition in restaurant search queries.

Performance

  • F1 Score: 79.85%
  • Precision: 78.30%
  • Recall: 81.46%
  • Accuracy: 91.96%

Training Results

Epoch Training Loss Validation Loss Precision Recall F1 Accuracy
1 0.633 0.306 0.731 0.794 0.762 0.909
2 0.249 0.286 0.770 0.809 0.789 0.916
3 0.203 0.284 0.783 0.815 0.799 0.920

Entity Types

Rating, Location, Amenity, Cuisine, Dish, Hours, Price, Restaurant_Name

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained('Aakash22134/Aakash22134Restarant-Search-Distaled_Bert')
model = AutoModelForTokenClassification.from_pretrained('Aakash22134/Aakash22134Restarant-Search-Distaled_Bert')
Downloads last month
-
Safetensors
Model size
66.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support