import torch import numpy as np from torch import nn, einsum from torch.nn import functional as F from einops.layers.torch import Rearrange from einops import rearrange, reduce from math import ceil from mamba import Mamba, MambaConfig class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class COBRAGatingUnit(nn.Module): def __init__(self,d_model,d_ffn,dropout): super().__init__() self.config = MambaConfig(d_model=d_model, n_layers=1) self.COB_1 = Mamba(self.config) self.COB_2 = Mamba(self.config) def forward(self, x): u, v = x, x u = self.COB_1(u) v = self.COB_2(v) out = u * v return out class COBRABlock(nn.Module): def __init__(self, d_model, d_ffn,dropout): super().__init__() self.norm = nn.LayerNorm(d_model) self.cobgu = COBRAGatingUnit(d_model,d_ffn,dropout) self.ffn = FeedForward(d_model,d_ffn,dropout) def forward(self, x): residual = x x = self.norm(x) x = self.cobgu(x) x = x + residual residual = x x = self.norm(x) x = self.ffn(x) out = x + residual return out class COBRA(nn.Module): def __init__(self, d_model, d_ffn, num_layers,dropout): super().__init__() self.model = nn.Sequential( *[COBRABlock(d_model,d_ffn,dropout) for _ in range(num_layers)], ) def forward(self, x): x = self.model(x) return x