Initial version.
Browse files- README.md +61 -0
- adapter_config.json +23 -0
- head_config.json +16 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- roberta
|
| 4 |
+
- adapterhub:sts/sts-b
|
| 5 |
+
- adapter-transformers
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Adapter `AdapterHub/roberta-base-pf-stsb` for roberta-base
|
| 11 |
+
|
| 12 |
+
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification.
|
| 13 |
+
|
| 14 |
+
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
| 15 |
+
|
| 16 |
+
## Usage
|
| 17 |
+
|
| 18 |
+
First, install `adapter-transformers`:
|
| 19 |
+
|
| 20 |
+
```
|
| 21 |
+
pip install -U adapter-transformers
|
| 22 |
+
```
|
| 23 |
+
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
|
| 24 |
+
|
| 25 |
+
Now, the adapter can be loaded and activated like this:
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
from transformers import AutoModelWithHeads
|
| 29 |
+
|
| 30 |
+
model = AutoModelWithHeads.from_pretrained("roberta-base")
|
| 31 |
+
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-stsb", source="hf")
|
| 32 |
+
model.active_adapters = adapter_name
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Architecture & Training
|
| 36 |
+
|
| 37 |
+
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
|
| 38 |
+
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## Evaluation results
|
| 42 |
+
|
| 43 |
+
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
|
| 44 |
+
|
| 45 |
+
## Citation
|
| 46 |
+
|
| 47 |
+
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
|
| 48 |
+
|
| 49 |
+
```bibtex
|
| 50 |
+
@inproceedings{poth-etal-2021-what-to-pre-train-on,
|
| 51 |
+
title={What to Pre-Train on? Efficient Intermediate Task Selection},
|
| 52 |
+
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
|
| 53 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
| 54 |
+
month = nov,
|
| 55 |
+
year = "2021",
|
| 56 |
+
address = "Online",
|
| 57 |
+
publisher = "Association for Computational Linguistics",
|
| 58 |
+
url = "https://arxiv.org/abs/2104.08247",
|
| 59 |
+
pages = "to appear",
|
| 60 |
+
}
|
| 61 |
+
```
|
adapter_config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"config": {
|
| 3 |
+
"adapter_residual_before_ln": false,
|
| 4 |
+
"cross_adapter": false,
|
| 5 |
+
"inv_adapter": null,
|
| 6 |
+
"inv_adapter_reduction_factor": null,
|
| 7 |
+
"leave_out": [],
|
| 8 |
+
"ln_after": false,
|
| 9 |
+
"ln_before": false,
|
| 10 |
+
"mh_adapter": false,
|
| 11 |
+
"non_linearity": "relu",
|
| 12 |
+
"original_ln_after": true,
|
| 13 |
+
"original_ln_before": true,
|
| 14 |
+
"output_adapter": true,
|
| 15 |
+
"reduction_factor": 16,
|
| 16 |
+
"residual_before_ln": true
|
| 17 |
+
},
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"model_class": "RobertaModelWithHeads",
|
| 20 |
+
"model_name": "roberta-base",
|
| 21 |
+
"model_type": "roberta",
|
| 22 |
+
"name": "glue_stsb"
|
| 23 |
+
}
|
head_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"config": {
|
| 3 |
+
"activation_function": "tanh",
|
| 4 |
+
"bias": true,
|
| 5 |
+
"head_type": "classification",
|
| 6 |
+
"label2id": {},
|
| 7 |
+
"layers": 2,
|
| 8 |
+
"num_labels": 1,
|
| 9 |
+
"use_pooler": false
|
| 10 |
+
},
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"model_class": "RobertaModelWithHeads",
|
| 13 |
+
"model_name": "roberta-base",
|
| 14 |
+
"model_type": "roberta",
|
| 15 |
+
"name": "glue_stsb"
|
| 16 |
+
}
|
pytorch_adapter.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5220518ef551708356577b96309a0eb52f53850260a3e0ee2c810d557ca461eb
|
| 3 |
+
size 3594927
|
pytorch_model_head.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbafea5774b5743ad78e34cdc9ee8a138b238c57ac478eced28a608173de3981
|
| 3 |
+
size 2367103
|