asymmetric
Browse files- README.md +10 -2
- asymmetric_vae/config.json +45 -0
- asymmetric_vae/diffusion_pytorch_model.safetensors +3 -0
- asymmetric_vae_new/config.json +45 -0
- asymmetric_vae_new/diffusion_pytorch_model.safetensors +3 -0
- convert_a1111.py +117 -0
- convert_a1111_asymm.py +143 -0
- create_asymmetric.ipynb +516 -0
- samples/sample_0_0.jpg +3 -0
- samples/sample_0_1.jpg +3 -0
- samples/sample_0_2.jpg +3 -0
- samples/sample_673_0.jpg +3 -0
- samples/sample_673_1.jpg +3 -0
- samples/sample_673_2.jpg +3 -0
- sdxl_vae_a1111.safetensors +3 -0
- test.png +3 -0
- train_sdxl_vae.py +13 -10
- vae.png +3 -0
- vae/config.json +38 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
README.md
CHANGED
|
@@ -14,12 +14,18 @@ library_name: diffusers
|
|
| 14 |
|----------------------------|-------------|-----------|------------|
|
| 15 |
| madebyollin/sdxl-vae-fp16-fix | 3.680e-03 | 25.2100 | 0.1314 |
|
| 16 |
| KBlueLeaf/EQ-SDXL-VAE | 3.530e-03 | 25.2827 | 0.1298 |
|
| 17 |
-
| **AiArtLab/sdxl_vae** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
### Train status, in progress:
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
## VAE Training Process
|
| 25 |
|
|
@@ -47,6 +53,8 @@ library_name: diffusers
|
|
| 47 |
|
| 48 |
## Compare
|
| 49 |
|
|
|
|
|
|
|
| 50 |
https://imgsli.com/NDA3Njgw/2/3
|
| 51 |
|
| 52 |
## Donations
|
|
|
|
| 14 |
|----------------------------|-------------|-----------|------------|
|
| 15 |
| madebyollin/sdxl-vae-fp16-fix | 3.680e-03 | 25.2100 | 0.1314 |
|
| 16 |
| KBlueLeaf/EQ-SDXL-VAE | 3.530e-03 | 25.2827 | 0.1298 |
|
| 17 |
+
| **AiArtLab/sdxl_vae** | **3.321e-03** | **25.6389** | **0.1251** |
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
[](https://imgsli.com/NDA3OTgz)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+

|
| 24 |
|
| 25 |
|
| 26 |
### Train status, in progress:
|
| 27 |
|
| 28 |
+
We are currently testing the possibility of improving the SDXL VAE decoder by increasing its depth (asymmetric VAE). This will lead to a slight increase in model size (approximately 20 percent), but we expect this will improve reconstruction quality without modifying the encoder (does not require retraining SDXL). Unfortunately, our resources are quite limited (we train models on consumer GPUs, currently training three models: SDXL VAE, Simple Diffusion, and Simple VAE), so please be patient. Model training is a meticulous and time-consuming process.
|
| 29 |
|
| 30 |
## VAE Training Process
|
| 31 |
|
|
|
|
| 53 |
|
| 54 |
## Compare
|
| 55 |
|
| 56 |
+
https://imgsli.com/NDA3OTgz
|
| 57 |
+
|
| 58 |
https://imgsli.com/NDA3Njgw/2/3
|
| 59 |
|
| 60 |
## Donations
|
asymmetric_vae/config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AsymmetricAutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.34.0",
|
| 4 |
+
"_name_or_path": "asymmetric_vae_empty",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_out_channels": [
|
| 13 |
+
128,
|
| 14 |
+
256,
|
| 15 |
+
512,
|
| 16 |
+
512
|
| 17 |
+
],
|
| 18 |
+
"down_block_types": [
|
| 19 |
+
"DownEncoderBlock2D",
|
| 20 |
+
"DownEncoderBlock2D",
|
| 21 |
+
"DownEncoderBlock2D",
|
| 22 |
+
"DownEncoderBlock2D"
|
| 23 |
+
],
|
| 24 |
+
"force_upcast": false,
|
| 25 |
+
"in_channels": 3,
|
| 26 |
+
"latent_channels": 4,
|
| 27 |
+
"layers_per_down_block": 2,
|
| 28 |
+
"layers_per_up_block": 3,
|
| 29 |
+
"norm_num_groups": 32,
|
| 30 |
+
"out_channels": 3,
|
| 31 |
+
"sample_size": 1024,
|
| 32 |
+
"scaling_factor": 0.13025,
|
| 33 |
+
"up_block_out_channels": [
|
| 34 |
+
128,
|
| 35 |
+
256,
|
| 36 |
+
512,
|
| 37 |
+
512
|
| 38 |
+
],
|
| 39 |
+
"up_block_types": [
|
| 40 |
+
"UpDecoderBlock2D",
|
| 41 |
+
"UpDecoderBlock2D",
|
| 42 |
+
"UpDecoderBlock2D",
|
| 43 |
+
"UpDecoderBlock2D"
|
| 44 |
+
]
|
| 45 |
+
}
|
asymmetric_vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8de44e4f21835eb457785a63f7e96c7ddba34b9b812bdeee79012d8bd0dae199
|
| 3 |
+
size 421473052
|
asymmetric_vae_new/config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AsymmetricAutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.34.0",
|
| 4 |
+
"_name_or_path": "asymmetric_vae",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_out_channels": [
|
| 13 |
+
128,
|
| 14 |
+
256,
|
| 15 |
+
512,
|
| 16 |
+
512
|
| 17 |
+
],
|
| 18 |
+
"down_block_types": [
|
| 19 |
+
"DownEncoderBlock2D",
|
| 20 |
+
"DownEncoderBlock2D",
|
| 21 |
+
"DownEncoderBlock2D",
|
| 22 |
+
"DownEncoderBlock2D"
|
| 23 |
+
],
|
| 24 |
+
"force_upcast": false,
|
| 25 |
+
"in_channels": 3,
|
| 26 |
+
"latent_channels": 4,
|
| 27 |
+
"layers_per_down_block": 2,
|
| 28 |
+
"layers_per_up_block": 3,
|
| 29 |
+
"norm_num_groups": 32,
|
| 30 |
+
"out_channels": 3,
|
| 31 |
+
"sample_size": 1024,
|
| 32 |
+
"scaling_factor": 0.13025,
|
| 33 |
+
"up_block_out_channels": [
|
| 34 |
+
128,
|
| 35 |
+
256,
|
| 36 |
+
512,
|
| 37 |
+
512
|
| 38 |
+
],
|
| 39 |
+
"up_block_types": [
|
| 40 |
+
"UpDecoderBlock2D",
|
| 41 |
+
"UpDecoderBlock2D",
|
| 42 |
+
"UpDecoderBlock2D",
|
| 43 |
+
"UpDecoderBlock2D"
|
| 44 |
+
]
|
| 45 |
+
}
|
asymmetric_vae_new/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b0689cd2f3a6f81c14a95e1f2a7c4cee6b97b51f34700c5983ee2f28df17ef6
|
| 3 |
+
size 421473052
|
convert_a1111.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import AutoencoderKL
|
| 3 |
+
from safetensors.torch import save_file
|
| 4 |
+
|
| 5 |
+
# Маппинг ключей Diffusers -> A1111
|
| 6 |
+
KEY_MAP = {
|
| 7 |
+
# Encoder
|
| 8 |
+
"encoder.conv_in": "encoder.conv_in",
|
| 9 |
+
"encoder.conv_norm_out": "encoder.norm_out",
|
| 10 |
+
"encoder.conv_out": "encoder.conv_out",
|
| 11 |
+
|
| 12 |
+
# Encoder blocks
|
| 13 |
+
"encoder.down_blocks.0.resnets.0": "encoder.down.0.block.0",
|
| 14 |
+
"encoder.down_blocks.0.resnets.1": "encoder.down.0.block.1",
|
| 15 |
+
"encoder.down_blocks.0.downsamplers.0": "encoder.down.0.downsample",
|
| 16 |
+
|
| 17 |
+
"encoder.down_blocks.1.resnets.0": "encoder.down.1.block.0",
|
| 18 |
+
"encoder.down_blocks.1.resnets.1": "encoder.down.1.block.1",
|
| 19 |
+
"encoder.down_blocks.1.downsamplers.0": "encoder.down.1.downsample",
|
| 20 |
+
|
| 21 |
+
"encoder.down_blocks.2.resnets.0": "encoder.down.2.block.0",
|
| 22 |
+
"encoder.down_blocks.2.resnets.1": "encoder.down.2.block.1",
|
| 23 |
+
"encoder.down_blocks.2.downsamplers.0": "encoder.down.2.downsample",
|
| 24 |
+
|
| 25 |
+
"encoder.down_blocks.3.resnets.0": "encoder.down.3.block.0",
|
| 26 |
+
"encoder.down_blocks.3.resnets.1": "encoder.down.3.block.1",
|
| 27 |
+
|
| 28 |
+
# Encoder middle
|
| 29 |
+
"encoder.mid_block.resnets.0": "encoder.mid.block_1",
|
| 30 |
+
"encoder.mid_block.attentions.0": "encoder.mid.attn_1",
|
| 31 |
+
"encoder.mid_block.resnets.1": "encoder.mid.block_2",
|
| 32 |
+
|
| 33 |
+
# Decoder
|
| 34 |
+
"decoder.conv_in": "decoder.conv_in",
|
| 35 |
+
"decoder.conv_norm_out": "decoder.norm_out",
|
| 36 |
+
"decoder.conv_out": "decoder.conv_out",
|
| 37 |
+
|
| 38 |
+
# Decoder middle
|
| 39 |
+
"decoder.mid_block.resnets.0": "decoder.mid.block_1",
|
| 40 |
+
"decoder.mid_block.attentions.0": "decoder.mid.attn_1",
|
| 41 |
+
"decoder.mid_block.resnets.1": "decoder.mid.block_2",
|
| 42 |
+
|
| 43 |
+
# Decoder blocks
|
| 44 |
+
"decoder.up_blocks.0.resnets.0": "decoder.up.3.block.0",
|
| 45 |
+
"decoder.up_blocks.0.resnets.1": "decoder.up.3.block.1",
|
| 46 |
+
"decoder.up_blocks.0.resnets.2": "decoder.up.3.block.2",
|
| 47 |
+
"decoder.up_blocks.0.upsamplers.0": "decoder.up.3.upsample",
|
| 48 |
+
|
| 49 |
+
"decoder.up_blocks.1.resnets.0": "decoder.up.2.block.0",
|
| 50 |
+
"decoder.up_blocks.1.resnets.1": "decoder.up.2.block.1",
|
| 51 |
+
"decoder.up_blocks.1.resnets.2": "decoder.up.2.block.2",
|
| 52 |
+
"decoder.up_blocks.1.upsamplers.0": "decoder.up.2.upsample",
|
| 53 |
+
|
| 54 |
+
"decoder.up_blocks.2.resnets.0": "decoder.up.1.block.0",
|
| 55 |
+
"decoder.up_blocks.2.resnets.1": "decoder.up.1.block.1",
|
| 56 |
+
"decoder.up_blocks.2.resnets.2": "decoder.up.1.block.2",
|
| 57 |
+
"decoder.up_blocks.2.upsamplers.0": "decoder.up.1.upsample",
|
| 58 |
+
|
| 59 |
+
"decoder.up_blocks.3.resnets.0": "decoder.up.0.block.0",
|
| 60 |
+
"decoder.up_blocks.3.resnets.1": "decoder.up.0.block.1",
|
| 61 |
+
"decoder.up_blocks.3.resnets.2": "decoder.up.0.block.2",
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
# Дополнительные замены для конкретных слоев
|
| 65 |
+
LAYER_RENAMES = {
|
| 66 |
+
"conv_shortcut": "nin_shortcut",
|
| 67 |
+
"group_norm": "norm",
|
| 68 |
+
"to_q": "q",
|
| 69 |
+
"to_k": "k",
|
| 70 |
+
"to_v": "v",
|
| 71 |
+
"to_out.0": "proj_out",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def convert_key(key):
|
| 75 |
+
"""Конвертирует ключ из формата Diffusers в формат A1111"""
|
| 76 |
+
# Сначала проверяем прямые маппинги
|
| 77 |
+
for diffusers_prefix, a1111_prefix in KEY_MAP.items():
|
| 78 |
+
if key.startswith(diffusers_prefix):
|
| 79 |
+
new_key = key.replace(diffusers_prefix, a1111_prefix, 1)
|
| 80 |
+
# Применяем дополнительные замены
|
| 81 |
+
for old, new in LAYER_RENAMES.items():
|
| 82 |
+
new_key = new_key.replace(old, new)
|
| 83 |
+
return new_key
|
| 84 |
+
|
| 85 |
+
# Если не нашли в маппинге, возвращаем как есть
|
| 86 |
+
return key
|
| 87 |
+
|
| 88 |
+
# Загружаем VAE
|
| 89 |
+
vae = AutoencoderKL.from_pretrained("./vae")
|
| 90 |
+
state_dict = vae.state_dict()
|
| 91 |
+
|
| 92 |
+
# Конвертируем ключи
|
| 93 |
+
converted_state_dict = {}
|
| 94 |
+
for key, value in state_dict.items():
|
| 95 |
+
new_key = convert_key(key)
|
| 96 |
+
|
| 97 |
+
# Проверяем, нужно ли изменить форму для attention весов
|
| 98 |
+
if "attn_1" in new_key and any(x in new_key for x in ["q.weight", "k.weight", "v.weight", "proj_out.weight"]):
|
| 99 |
+
# Преобразуем из [out_features, in_features] в [out_features, in_features, 1, 1]
|
| 100 |
+
if value.dim() == 2:
|
| 101 |
+
value = value.unsqueeze(-1).unsqueeze(-1)
|
| 102 |
+
|
| 103 |
+
converted_state_dict[new_key] = value
|
| 104 |
+
|
| 105 |
+
# Сохраняем
|
| 106 |
+
save_file(converted_state_dict, "sdxl_vae_a1111.safetensors")
|
| 107 |
+
|
| 108 |
+
print(f"Конвертировано {len(converted_state_dict)} ключей")
|
| 109 |
+
print("\nПримеры конвертированных ключей:")
|
| 110 |
+
for i, (old, new) in enumerate(zip(list(state_dict.keys())[:5], list(converted_state_dict.keys())[:5])):
|
| 111 |
+
print(f"{old} -> {new}")
|
| 112 |
+
|
| 113 |
+
# Проверяем attention веса
|
| 114 |
+
print("\nAttention веса после конвертации:")
|
| 115 |
+
for key, value in converted_state_dict.items():
|
| 116 |
+
if "attn_1" in key and "weight" in key:
|
| 117 |
+
print(f"{key}: {value.shape}")
|
convert_a1111_asymm.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import AsymmetricAutoencoderKL
|
| 3 |
+
from safetensors.torch import save_file
|
| 4 |
+
|
| 5 |
+
# Маппинг ключей Diffusers -> A1111
|
| 6 |
+
KEY_MAP = {
|
| 7 |
+
# Encoder (без изменений)
|
| 8 |
+
"encoder.conv_in": "encoder.conv_in",
|
| 9 |
+
"encoder.conv_norm_out": "encoder.norm_out",
|
| 10 |
+
"encoder.conv_out": "encoder.conv_out",
|
| 11 |
+
|
| 12 |
+
# Encoder blocks (без изменений)
|
| 13 |
+
"encoder.down_blocks.0.resnets.0": "encoder.down.0.block.0",
|
| 14 |
+
"encoder.down_blocks.0.resnets.1": "encoder.down.0.block.1",
|
| 15 |
+
"encoder.down_blocks.0.downsamplers.0": "encoder.down.0.downsample",
|
| 16 |
+
|
| 17 |
+
"encoder.down_blocks.1.resnets.0": "encoder.down.1.block.0",
|
| 18 |
+
"encoder.down_blocks.1.resnets.1": "encoder.down.1.block.1",
|
| 19 |
+
"encoder.down_blocks.1.downsamplers.0": "encoder.down.1.downsample",
|
| 20 |
+
|
| 21 |
+
"encoder.down_blocks.2.resnets.0": "encoder.down.2.block.0",
|
| 22 |
+
"encoder.down_blocks.2.resnets.1": "encoder.down.2.block.1",
|
| 23 |
+
"encoder.down_blocks.2.downsamplers.0": "encoder.down.2.downsample",
|
| 24 |
+
|
| 25 |
+
"encoder.down_blocks.3.resnets.0": "encoder.down.3.block.0",
|
| 26 |
+
"encoder.down_blocks.3.resnets.1": "encoder.down.3.block.1",
|
| 27 |
+
|
| 28 |
+
# Encoder middle
|
| 29 |
+
"encoder.mid_block.resnets.0": "encoder.mid.block_1",
|
| 30 |
+
"encoder.mid_block.attentions.0": "encoder.mid.attn_1",
|
| 31 |
+
"encoder.mid_block.resnets.1": "encoder.mid.block_2",
|
| 32 |
+
|
| 33 |
+
# Decoder
|
| 34 |
+
"decoder.conv_in": "decoder.conv_in",
|
| 35 |
+
"decoder.conv_norm_out": "decoder.norm_out",
|
| 36 |
+
"decoder.conv_out": "decoder.conv_out",
|
| 37 |
+
|
| 38 |
+
# Decoder middle
|
| 39 |
+
"decoder.mid_block.resnets.0": "decoder.mid.block_1",
|
| 40 |
+
"decoder.mid_block.attentions.0": "decoder.mid.attn_1",
|
| 41 |
+
"decoder.mid_block.resnets.1": "decoder.mid.block_2",
|
| 42 |
+
|
| 43 |
+
# Decoder blocks - ИСПРАВЛЕНО для 4 блоков
|
| 44 |
+
# up_blocks.0 -> up.3 (самый глубокий)
|
| 45 |
+
"decoder.up_blocks.0.resnets.0": "decoder.up.3.block.0",
|
| 46 |
+
"decoder.up_blocks.0.resnets.1": "decoder.up.3.block.1",
|
| 47 |
+
"decoder.up_blocks.0.resnets.2": "decoder.up.3.block.2",
|
| 48 |
+
"decoder.up_blocks.0.resnets.3": "decoder.up.3.block.3",
|
| 49 |
+
"decoder.up_blocks.0.upsamplers.0": "decoder.up.3.upsample",
|
| 50 |
+
|
| 51 |
+
# up_blocks.1 -> up.2
|
| 52 |
+
"decoder.up_blocks.1.resnets.0": "decoder.up.2.block.0",
|
| 53 |
+
"decoder.up_blocks.1.resnets.1": "decoder.up.2.block.1",
|
| 54 |
+
"decoder.up_blocks.1.resnets.2": "decoder.up.2.block.2",
|
| 55 |
+
"decoder.up_blocks.1.resnets.3": "decoder.up.2.block.3",
|
| 56 |
+
"decoder.up_blocks.1.upsamplers.0": "decoder.up.2.upsample",
|
| 57 |
+
|
| 58 |
+
# up_blocks.2 -> up.1
|
| 59 |
+
"decoder.up_blocks.2.resnets.0": "decoder.up.1.block.0",
|
| 60 |
+
"decoder.up_blocks.2.resnets.1": "decoder.up.1.block.1",
|
| 61 |
+
"decoder.up_blocks.2.resnets.2": "decoder.up.1.block.2",
|
| 62 |
+
"decoder.up_blocks.2.resnets.3": "decoder.up.1.block.3",
|
| 63 |
+
"decoder.up_blocks.2.upsamplers.0": "decoder.up.1.upsample",
|
| 64 |
+
|
| 65 |
+
# up_blocks.3 -> up.0 (самый верхний)
|
| 66 |
+
"decoder.up_blocks.3.resnets.0": "decoder.up.0.block.0",
|
| 67 |
+
"decoder.up_blocks.3.resnets.1": "decoder.up.0.block.1",
|
| 68 |
+
"decoder.up_blocks.3.resnets.2": "decoder.up.0.block.2",
|
| 69 |
+
"decoder.up_blocks.3.resnets.3": "decoder.up.0.block.3",
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Дополнительные замены для конкретных слоев
|
| 73 |
+
LAYER_RENAMES = {
|
| 74 |
+
"conv_shortcut": "nin_shortcut",
|
| 75 |
+
"group_norm": "norm",
|
| 76 |
+
"to_q": "q",
|
| 77 |
+
"to_k": "k",
|
| 78 |
+
"to_v": "v",
|
| 79 |
+
"to_out.0": "proj_out",
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
def convert_key(key):
|
| 83 |
+
"""Конвертирует ключ из формата Diffusers в формат A1111"""
|
| 84 |
+
# Пропускаем специфичные для AsymmetricVAE компоненты
|
| 85 |
+
if "condition_encoder" in key:
|
| 86 |
+
return None # A1111 не поддерживает condition_encoder
|
| 87 |
+
|
| 88 |
+
# Сначала проверяем прямые маппинги
|
| 89 |
+
for diffusers_prefix, a1111_prefix in KEY_MAP.items():
|
| 90 |
+
if key.startswith(diffusers_prefix):
|
| 91 |
+
new_key = key.replace(diffusers_prefix, a1111_prefix, 1)
|
| 92 |
+
# Применяем дополнительные замены
|
| 93 |
+
for old, new in LAYER_RENAMES.items():
|
| 94 |
+
new_key = new_key.replace(old, new)
|
| 95 |
+
return new_key
|
| 96 |
+
|
| 97 |
+
# Если не нашли в маппинге, возвращаем как есть
|
| 98 |
+
return key
|
| 99 |
+
|
| 100 |
+
# Загружаем VAE
|
| 101 |
+
vae = AsymmetricAutoencoderKL.from_pretrained("./asymmetric_vae")
|
| 102 |
+
state_dict = vae.state_dict()
|
| 103 |
+
|
| 104 |
+
# Конвертируем ключи
|
| 105 |
+
converted_state_dict = {}
|
| 106 |
+
skipped_keys = []
|
| 107 |
+
|
| 108 |
+
for key, value in state_dict.items():
|
| 109 |
+
new_key = convert_key(key)
|
| 110 |
+
|
| 111 |
+
if new_key is None:
|
| 112 |
+
skipped_keys.append(key)
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
# Проверяем, нужно ли изменить форму для attention весов
|
| 116 |
+
if "attn_1" in new_key and any(x in new_key for x in ["q.weight", "k.weight", "v.weight", "proj_out.weight"]):
|
| 117 |
+
# Преобразуем из [out_features, in_features] в [out_features, in_features, 1, 1]
|
| 118 |
+
if value.dim() == 2:
|
| 119 |
+
value = value.unsqueeze(-1).unsqueeze(-1)
|
| 120 |
+
|
| 121 |
+
converted_state_dict[new_key] = value
|
| 122 |
+
|
| 123 |
+
# Сохраняем
|
| 124 |
+
save_file(converted_state_dict, "sdxl_vae_asymm_a1111.safetensors")
|
| 125 |
+
|
| 126 |
+
print(f"Конвертировано {len(converted_state_dict)} ключей")
|
| 127 |
+
print(f"Пропущено {len(skipped_keys)} ключей (condition_encoder и др.)")
|
| 128 |
+
|
| 129 |
+
if skipped_keys:
|
| 130 |
+
print("\nПропущенные ключи:")
|
| 131 |
+
for key in skipped_keys[:10]: # Показываем первые 10
|
| 132 |
+
print(f" - {key}")
|
| 133 |
+
|
| 134 |
+
print("\nПримеры конвертированных ключей:")
|
| 135 |
+
for i, (old, new) in enumerate(zip(list(state_dict.keys())[:5], list(converted_state_dict.keys())[:5])):
|
| 136 |
+
if old not in skipped_keys:
|
| 137 |
+
print(f"{old} -> {new}")
|
| 138 |
+
|
| 139 |
+
# Проверяем attention веса
|
| 140 |
+
print("\nAttention веса после конвертации:")
|
| 141 |
+
for key, value in converted_state_dict.items():
|
| 142 |
+
if "attn_1" in key and "weight" in key:
|
| 143 |
+
print(f"{key}: {value.shape}")
|
create_asymmetric.ipynb
ADDED
|
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "407171be-ab46-442b-a0bd-83ca75173eba",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"AsymmetricAutoencoderKL(\n",
|
| 14 |
+
" (encoder): Encoder(\n",
|
| 15 |
+
" (conv_in): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 16 |
+
" (down_blocks): ModuleList(\n",
|
| 17 |
+
" (0): DownEncoderBlock2D(\n",
|
| 18 |
+
" (resnets): ModuleList(\n",
|
| 19 |
+
" (0-1): 2 x ResnetBlock2D(\n",
|
| 20 |
+
" (norm1): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 21 |
+
" (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 22 |
+
" (norm2): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 23 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 24 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 25 |
+
" (nonlinearity): SiLU()\n",
|
| 26 |
+
" )\n",
|
| 27 |
+
" )\n",
|
| 28 |
+
" (downsamplers): ModuleList(\n",
|
| 29 |
+
" (0): Downsample2D(\n",
|
| 30 |
+
" (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2))\n",
|
| 31 |
+
" )\n",
|
| 32 |
+
" )\n",
|
| 33 |
+
" )\n",
|
| 34 |
+
" (1): DownEncoderBlock2D(\n",
|
| 35 |
+
" (resnets): ModuleList(\n",
|
| 36 |
+
" (0): ResnetBlock2D(\n",
|
| 37 |
+
" (norm1): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 38 |
+
" (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 39 |
+
" (norm2): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 40 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 41 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 42 |
+
" (nonlinearity): SiLU()\n",
|
| 43 |
+
" (conv_shortcut): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 44 |
+
" )\n",
|
| 45 |
+
" (1): ResnetBlock2D(\n",
|
| 46 |
+
" (norm1): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 47 |
+
" (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 48 |
+
" (norm2): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 49 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 50 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 51 |
+
" (nonlinearity): SiLU()\n",
|
| 52 |
+
" )\n",
|
| 53 |
+
" )\n",
|
| 54 |
+
" (downsamplers): ModuleList(\n",
|
| 55 |
+
" (0): Downsample2D(\n",
|
| 56 |
+
" (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2))\n",
|
| 57 |
+
" )\n",
|
| 58 |
+
" )\n",
|
| 59 |
+
" )\n",
|
| 60 |
+
" (2): DownEncoderBlock2D(\n",
|
| 61 |
+
" (resnets): ModuleList(\n",
|
| 62 |
+
" (0): ResnetBlock2D(\n",
|
| 63 |
+
" (norm1): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 64 |
+
" (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 65 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 66 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 67 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 68 |
+
" (nonlinearity): SiLU()\n",
|
| 69 |
+
" (conv_shortcut): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 70 |
+
" )\n",
|
| 71 |
+
" (1): ResnetBlock2D(\n",
|
| 72 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 73 |
+
" (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 74 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 75 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 76 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 77 |
+
" (nonlinearity): SiLU()\n",
|
| 78 |
+
" )\n",
|
| 79 |
+
" )\n",
|
| 80 |
+
" (downsamplers): ModuleList(\n",
|
| 81 |
+
" (0): Downsample2D(\n",
|
| 82 |
+
" (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2))\n",
|
| 83 |
+
" )\n",
|
| 84 |
+
" )\n",
|
| 85 |
+
" )\n",
|
| 86 |
+
" (3): DownEncoderBlock2D(\n",
|
| 87 |
+
" (resnets): ModuleList(\n",
|
| 88 |
+
" (0-1): 2 x ResnetBlock2D(\n",
|
| 89 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 90 |
+
" (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 91 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 92 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 93 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 94 |
+
" (nonlinearity): SiLU()\n",
|
| 95 |
+
" )\n",
|
| 96 |
+
" )\n",
|
| 97 |
+
" )\n",
|
| 98 |
+
" )\n",
|
| 99 |
+
" (mid_block): UNetMidBlock2D(\n",
|
| 100 |
+
" (attentions): ModuleList(\n",
|
| 101 |
+
" (0): Attention(\n",
|
| 102 |
+
" (group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 103 |
+
" (to_q): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 104 |
+
" (to_k): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 105 |
+
" (to_v): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 106 |
+
" (to_out): ModuleList(\n",
|
| 107 |
+
" (0): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 108 |
+
" (1): Dropout(p=0.0, inplace=False)\n",
|
| 109 |
+
" )\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" )\n",
|
| 112 |
+
" (resnets): ModuleList(\n",
|
| 113 |
+
" (0-1): 2 x ResnetBlock2D(\n",
|
| 114 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 115 |
+
" (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 116 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 117 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 118 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 119 |
+
" (nonlinearity): SiLU()\n",
|
| 120 |
+
" )\n",
|
| 121 |
+
" )\n",
|
| 122 |
+
" )\n",
|
| 123 |
+
" (conv_norm_out): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 124 |
+
" (conv_act): SiLU()\n",
|
| 125 |
+
" (conv_out): Conv2d(512, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 126 |
+
" )\n",
|
| 127 |
+
" (decoder): MaskConditionDecoder(\n",
|
| 128 |
+
" (conv_in): Conv2d(4, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 129 |
+
" (up_blocks): ModuleList(\n",
|
| 130 |
+
" (0-1): 2 x UpDecoderBlock2D(\n",
|
| 131 |
+
" (resnets): ModuleList(\n",
|
| 132 |
+
" (0-3): 4 x ResnetBlock2D(\n",
|
| 133 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 134 |
+
" (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 135 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 136 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 137 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 138 |
+
" (nonlinearity): SiLU()\n",
|
| 139 |
+
" )\n",
|
| 140 |
+
" )\n",
|
| 141 |
+
" (upsamplers): ModuleList(\n",
|
| 142 |
+
" (0): Upsample2D(\n",
|
| 143 |
+
" (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 144 |
+
" )\n",
|
| 145 |
+
" )\n",
|
| 146 |
+
" )\n",
|
| 147 |
+
" (2): UpDecoderBlock2D(\n",
|
| 148 |
+
" (resnets): ModuleList(\n",
|
| 149 |
+
" (0): ResnetBlock2D(\n",
|
| 150 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 151 |
+
" (conv1): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 152 |
+
" (norm2): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 153 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 154 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 155 |
+
" (nonlinearity): SiLU()\n",
|
| 156 |
+
" (conv_shortcut): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" (1-3): 3 x ResnetBlock2D(\n",
|
| 159 |
+
" (norm1): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 160 |
+
" (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 161 |
+
" (norm2): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 162 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 163 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 164 |
+
" (nonlinearity): SiLU()\n",
|
| 165 |
+
" )\n",
|
| 166 |
+
" )\n",
|
| 167 |
+
" (upsamplers): ModuleList(\n",
|
| 168 |
+
" (0): Upsample2D(\n",
|
| 169 |
+
" (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 170 |
+
" )\n",
|
| 171 |
+
" )\n",
|
| 172 |
+
" )\n",
|
| 173 |
+
" (3): UpDecoderBlock2D(\n",
|
| 174 |
+
" (resnets): ModuleList(\n",
|
| 175 |
+
" (0): ResnetBlock2D(\n",
|
| 176 |
+
" (norm1): GroupNorm(32, 256, eps=1e-06, affine=True)\n",
|
| 177 |
+
" (conv1): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 178 |
+
" (norm2): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 179 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 180 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 181 |
+
" (nonlinearity): SiLU()\n",
|
| 182 |
+
" (conv_shortcut): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 183 |
+
" )\n",
|
| 184 |
+
" (1-3): 3 x ResnetBlock2D(\n",
|
| 185 |
+
" (norm1): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 186 |
+
" (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 187 |
+
" (norm2): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 188 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 189 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 190 |
+
" (nonlinearity): SiLU()\n",
|
| 191 |
+
" )\n",
|
| 192 |
+
" )\n",
|
| 193 |
+
" )\n",
|
| 194 |
+
" )\n",
|
| 195 |
+
" (mid_block): UNetMidBlock2D(\n",
|
| 196 |
+
" (attentions): ModuleList(\n",
|
| 197 |
+
" (0): Attention(\n",
|
| 198 |
+
" (group_norm): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 199 |
+
" (to_q): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 200 |
+
" (to_k): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 201 |
+
" (to_v): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 202 |
+
" (to_out): ModuleList(\n",
|
| 203 |
+
" (0): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 204 |
+
" (1): Dropout(p=0.0, inplace=False)\n",
|
| 205 |
+
" )\n",
|
| 206 |
+
" )\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
" (resnets): ModuleList(\n",
|
| 209 |
+
" (0-1): 2 x ResnetBlock2D(\n",
|
| 210 |
+
" (norm1): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 211 |
+
" (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 212 |
+
" (norm2): GroupNorm(32, 512, eps=1e-06, affine=True)\n",
|
| 213 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 214 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 215 |
+
" (nonlinearity): SiLU()\n",
|
| 216 |
+
" )\n",
|
| 217 |
+
" )\n",
|
| 218 |
+
" )\n",
|
| 219 |
+
" (condition_encoder): MaskConditionEncoder(\n",
|
| 220 |
+
" (layers): Sequential(\n",
|
| 221 |
+
" (0): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 222 |
+
" (1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 223 |
+
" (2): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n",
|
| 224 |
+
" (3): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n",
|
| 225 |
+
" (4): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" )\n",
|
| 228 |
+
" (conv_norm_out): GroupNorm(32, 128, eps=1e-06, affine=True)\n",
|
| 229 |
+
" (conv_act): SiLU()\n",
|
| 230 |
+
" (conv_out): Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
| 231 |
+
" )\n",
|
| 232 |
+
" (quant_conv): Conv2d(8, 8, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 233 |
+
" (post_quant_conv): Conv2d(4, 4, kernel_size=(1, 1), stride=(1, 1))\n",
|
| 234 |
+
")\n"
|
| 235 |
+
]
|
| 236 |
+
}
|
| 237 |
+
],
|
| 238 |
+
"source": [
|
| 239 |
+
"from diffusers.models import AsymmetricAutoencoderKL\n",
|
| 240 |
+
"import torch\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"config = {\n",
|
| 243 |
+
" \"_class_name\": \"AsymmetricAutoencoderKL\",\n",
|
| 244 |
+
" \"act_fn\": \"silu\",\n",
|
| 245 |
+
" \"down_block_out_channels\": [128, 256, 512, 512],\n",
|
| 246 |
+
" \"down_block_types\": [\n",
|
| 247 |
+
" \"DownEncoderBlock2D\",\n",
|
| 248 |
+
" \"DownEncoderBlock2D\",\n",
|
| 249 |
+
" \"DownEncoderBlock2D\",\n",
|
| 250 |
+
" \"DownEncoderBlock2D\",\n",
|
| 251 |
+
" ],\n",
|
| 252 |
+
" \"in_channels\": 3,\n",
|
| 253 |
+
" \"latent_channels\": 4,\n",
|
| 254 |
+
" \"norm_num_groups\": 32,\n",
|
| 255 |
+
" \"out_channels\": 3,\n",
|
| 256 |
+
" \"sample_size\": 1024,\n",
|
| 257 |
+
" \"scaling_factor\": 0.13025,\n",
|
| 258 |
+
" \"shift_factor\": 0,\n",
|
| 259 |
+
" \"up_block_out_channels\": [128, 256, 512, 512],\n",
|
| 260 |
+
" \"up_block_types\": [\n",
|
| 261 |
+
" \"UpDecoderBlock2D\",\n",
|
| 262 |
+
" \"UpDecoderBlock2D\",\n",
|
| 263 |
+
" \"UpDecoderBlock2D\",\n",
|
| 264 |
+
" \"UpDecoderBlock2D\",\n",
|
| 265 |
+
" ],\n",
|
| 266 |
+
"}\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"# Создаем модель\n",
|
| 269 |
+
"vae = AsymmetricAutoencoderKL(\n",
|
| 270 |
+
" act_fn=config[\"act_fn\"],\n",
|
| 271 |
+
" down_block_out_channels=config[\"down_block_out_channels\"],\n",
|
| 272 |
+
" down_block_types=config[\"down_block_types\"],\n",
|
| 273 |
+
" in_channels=config[\"in_channels\"],\n",
|
| 274 |
+
" latent_channels=config[\"latent_channels\"],\n",
|
| 275 |
+
" norm_num_groups=config[\"norm_num_groups\"],\n",
|
| 276 |
+
" out_channels=config[\"out_channels\"],\n",
|
| 277 |
+
" sample_size=config[\"sample_size\"],\n",
|
| 278 |
+
" scaling_factor=config[\"scaling_factor\"],\n",
|
| 279 |
+
" up_block_out_channels=config[\"up_block_out_channels\"],\n",
|
| 280 |
+
" up_block_types=config[\"up_block_types\"],\n",
|
| 281 |
+
" layers_per_down_block = 2,\n",
|
| 282 |
+
" layers_per_up_block = 3\n",
|
| 283 |
+
")\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"vae.save_pretrained(\"asymmetric_vae_empty\")\n",
|
| 287 |
+
"print(vae)"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 3,
|
| 293 |
+
"id": "a2950158-5203-42b9-8791-e231ddbf1063",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [
|
| 296 |
+
{
|
| 297 |
+
"name": "stderr",
|
| 298 |
+
"output_type": "stream",
|
| 299 |
+
"text": [
|
| 300 |
+
"The config attributes {'block_out_channels': [128, 256, 512, 512], 'force_upcast': False} were passed to AsymmetricAutoencoderKL, but are not expected and will be ignored. Please verify your config.json configuration file.\n",
|
| 301 |
+
"Перенос весов: 100%|██████████| 248/248 [00:00<00:00, 30427.29it/s]\n"
|
| 302 |
+
]
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"name": "stdout",
|
| 306 |
+
"output_type": "stream",
|
| 307 |
+
"text": [
|
| 308 |
+
"Статистика переноса: {'перенесено': 248, 'несовпадение_размеров': 0, 'пропущено': 0}\n",
|
| 309 |
+
"Неперенесенные ключи в новой модели:\n",
|
| 310 |
+
"decoder.condition_encoder.layers.0.bias\n",
|
| 311 |
+
"decoder.condition_encoder.layers.0.weight\n",
|
| 312 |
+
"decoder.condition_encoder.layers.1.bias\n",
|
| 313 |
+
"decoder.condition_encoder.layers.1.weight\n",
|
| 314 |
+
"decoder.condition_encoder.layers.2.bias\n",
|
| 315 |
+
"decoder.condition_encoder.layers.2.weight\n",
|
| 316 |
+
"decoder.condition_encoder.layers.3.bias\n",
|
| 317 |
+
"decoder.condition_encoder.layers.3.weight\n",
|
| 318 |
+
"decoder.condition_encoder.layers.4.bias\n",
|
| 319 |
+
"decoder.condition_encoder.layers.4.weight\n",
|
| 320 |
+
"decoder.up_blocks.0.resnets.3.conv1.bias\n",
|
| 321 |
+
"decoder.up_blocks.0.resnets.3.conv1.weight\n",
|
| 322 |
+
"decoder.up_blocks.0.resnets.3.conv2.bias\n",
|
| 323 |
+
"decoder.up_blocks.0.resnets.3.conv2.weight\n",
|
| 324 |
+
"decoder.up_blocks.0.resnets.3.norm1.bias\n",
|
| 325 |
+
"decoder.up_blocks.0.resnets.3.norm1.weight\n",
|
| 326 |
+
"decoder.up_blocks.0.resnets.3.norm2.bias\n",
|
| 327 |
+
"decoder.up_blocks.0.resnets.3.norm2.weight\n",
|
| 328 |
+
"decoder.up_blocks.1.resnets.3.conv1.bias\n",
|
| 329 |
+
"decoder.up_blocks.1.resnets.3.conv1.weight\n",
|
| 330 |
+
"decoder.up_blocks.1.resnets.3.conv2.bias\n",
|
| 331 |
+
"decoder.up_blocks.1.resnets.3.conv2.weight\n",
|
| 332 |
+
"decoder.up_blocks.1.resnets.3.norm1.bias\n",
|
| 333 |
+
"decoder.up_blocks.1.resnets.3.norm1.weight\n",
|
| 334 |
+
"decoder.up_blocks.1.resnets.3.norm2.bias\n",
|
| 335 |
+
"decoder.up_blocks.1.resnets.3.norm2.weight\n",
|
| 336 |
+
"decoder.up_blocks.2.resnets.3.conv1.bias\n",
|
| 337 |
+
"decoder.up_blocks.2.resnets.3.conv1.weight\n",
|
| 338 |
+
"decoder.up_blocks.2.resnets.3.conv2.bias\n",
|
| 339 |
+
"decoder.up_blocks.2.resnets.3.conv2.weight\n",
|
| 340 |
+
"decoder.up_blocks.2.resnets.3.norm1.bias\n",
|
| 341 |
+
"decoder.up_blocks.2.resnets.3.norm1.weight\n",
|
| 342 |
+
"decoder.up_blocks.2.resnets.3.norm2.bias\n",
|
| 343 |
+
"decoder.up_blocks.2.resnets.3.norm2.weight\n",
|
| 344 |
+
"decoder.up_blocks.3.resnets.3.conv1.bias\n",
|
| 345 |
+
"decoder.up_blocks.3.resnets.3.conv1.weight\n",
|
| 346 |
+
"decoder.up_blocks.3.resnets.3.conv2.bias\n",
|
| 347 |
+
"decoder.up_blocks.3.resnets.3.conv2.weight\n",
|
| 348 |
+
"decoder.up_blocks.3.resnets.3.norm1.bias\n",
|
| 349 |
+
"decoder.up_blocks.3.resnets.3.norm1.weight\n",
|
| 350 |
+
"decoder.up_blocks.3.resnets.3.norm2.bias\n",
|
| 351 |
+
"decoder.up_blocks.3.resnets.3.norm2.weight\n"
|
| 352 |
+
]
|
| 353 |
+
}
|
| 354 |
+
],
|
| 355 |
+
"source": [
|
| 356 |
+
"import torch\n",
|
| 357 |
+
"from diffusers import AsymmetricAutoencoderKL,AutoencoderKL\n",
|
| 358 |
+
"from tqdm import tqdm\n",
|
| 359 |
+
"import torch.nn.init as init\n",
|
| 360 |
+
"\n",
|
| 361 |
+
"def log(message):\n",
|
| 362 |
+
" print(message)\n",
|
| 363 |
+
"\n",
|
| 364 |
+
"def main():\n",
|
| 365 |
+
" checkpoint_path_old = \"vae\"\n",
|
| 366 |
+
" checkpoint_path_new = \"asymmetric_vae_empty\"\n",
|
| 367 |
+
" device = \"cuda\"\n",
|
| 368 |
+
" dtype = torch.float32\n",
|
| 369 |
+
"\n",
|
| 370 |
+
" # Загрузка моделей\n",
|
| 371 |
+
" old_unet = AutoencoderKL.from_pretrained(checkpoint_path_old).to(device, dtype=dtype)\n",
|
| 372 |
+
" new_unet = AsymmetricAutoencoderKL.from_pretrained(checkpoint_path_new).to(device, dtype=dtype)\n",
|
| 373 |
+
"\n",
|
| 374 |
+
" old_state_dict = old_unet.state_dict()\n",
|
| 375 |
+
" new_state_dict = new_unet.state_dict()\n",
|
| 376 |
+
"\n",
|
| 377 |
+
" transferred_state_dict = {}\n",
|
| 378 |
+
" transfer_stats = {\n",
|
| 379 |
+
" \"перенесено\": 0,\n",
|
| 380 |
+
" \"несовпадение_размеров\": 0,\n",
|
| 381 |
+
" \"пропущено\": 0\n",
|
| 382 |
+
" }\n",
|
| 383 |
+
"\n",
|
| 384 |
+
" transferred_keys = set()\n",
|
| 385 |
+
"\n",
|
| 386 |
+
" # Обрабатываем каждый ключ старой модели\n",
|
| 387 |
+
" for old_key in tqdm(old_state_dict.keys(), desc=\"Перенос весов\"):\n",
|
| 388 |
+
" new_key = old_key\n",
|
| 389 |
+
"\n",
|
| 390 |
+
" if new_key in new_state_dict:\n",
|
| 391 |
+
" if old_state_dict[old_key].shape == new_state_dict[new_key].shape:\n",
|
| 392 |
+
" transferred_state_dict[new_key] = old_state_dict[old_key].clone()\n",
|
| 393 |
+
" transferred_keys.add(new_key)\n",
|
| 394 |
+
" transfer_stats[\"перенесено\"] += 1\n",
|
| 395 |
+
" else:\n",
|
| 396 |
+
" log(f\"✗ Несовпадение размеров: {old_key} ({old_state_dict[old_key].shape}) -> {new_key} ({new_state_dict[new_key].shape})\")\n",
|
| 397 |
+
" transfer_stats[\"несовпадение_размеров\"] += 1\n",
|
| 398 |
+
" else:\n",
|
| 399 |
+
" log(f\"? Ключ не найден в новой модели: {old_key} -> {old_state_dict[old_key].shape}\")\n",
|
| 400 |
+
" transfer_stats[\"пропущено\"] += 1\n",
|
| 401 |
+
"\n",
|
| 402 |
+
" # Обновляем состояние новой модели перенесенными весами\n",
|
| 403 |
+
" new_state_dict.update(transferred_state_dict)\n",
|
| 404 |
+
" \n",
|
| 405 |
+
" # Инициализируем веса для нового mid блока\n",
|
| 406 |
+
" #new_state_dict = initialize_mid_block_weights(new_state_dict, device, dtype)\n",
|
| 407 |
+
" \n",
|
| 408 |
+
" new_unet.load_state_dict(new_state_dict)\n",
|
| 409 |
+
" new_unet.save_pretrained(\"asymmetric_vae\")\n",
|
| 410 |
+
"\n",
|
| 411 |
+
" # Получаем список неперенесенных ключей\n",
|
| 412 |
+
" non_transferred_keys = sorted(set(new_state_dict.keys()) - transferred_keys)\n",
|
| 413 |
+
"\n",
|
| 414 |
+
" print(\"Статистика переноса:\", transfer_stats)\n",
|
| 415 |
+
" print(\"Неперенесенные ключи в новой модели:\")\n",
|
| 416 |
+
" for key in non_transferred_keys:\n",
|
| 417 |
+
" print(key)\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"if __name__ == \"__main__\":\n",
|
| 420 |
+
" main()"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"cell_type": "code",
|
| 425 |
+
"execution_count": 1,
|
| 426 |
+
"id": "b316ee6c-d295-4396-9177-78e39a53055b",
|
| 427 |
+
"metadata": {},
|
| 428 |
+
"outputs": [
|
| 429 |
+
{
|
| 430 |
+
"name": "stderr",
|
| 431 |
+
"output_type": "stream",
|
| 432 |
+
"text": [
|
| 433 |
+
"The config attributes {'block_out_channels': [128, 256, 512, 512], 'force_upcast': False} were passed to AsymmetricAutoencoderKL, but are not expected and will be ignored. Please verify your config.json configuration file.\n"
|
| 434 |
+
]
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"name": "stdout",
|
| 438 |
+
"output_type": "stream",
|
| 439 |
+
"text": [
|
| 440 |
+
"ok\n"
|
| 441 |
+
]
|
| 442 |
+
}
|
| 443 |
+
],
|
| 444 |
+
"source": [
|
| 445 |
+
"import torch\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"from torchvision import transforms, utils\n",
|
| 448 |
+
"\n",
|
| 449 |
+
"import diffusers\n",
|
| 450 |
+
"from diffusers import AsymmetricAutoencoderKL\n",
|
| 451 |
+
"\n",
|
| 452 |
+
"from diffusers.utils import load_image\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"def crop_image_to_nearest_divisible_by_8(img):\n",
|
| 455 |
+
" # Check if the image height and width are divisible by 8\n",
|
| 456 |
+
" if img.shape[1] % 8 == 0 and img.shape[2] % 8 == 0:\n",
|
| 457 |
+
" return img\n",
|
| 458 |
+
" else:\n",
|
| 459 |
+
" # Calculate the closest lower resolution divisible by 8\n",
|
| 460 |
+
" new_height = img.shape[1] - (img.shape[1] % 8)\n",
|
| 461 |
+
" new_width = img.shape[2] - (img.shape[2] % 8)\n",
|
| 462 |
+
" \n",
|
| 463 |
+
" # Use CenterCrop to crop the image\n",
|
| 464 |
+
" transform = transforms.CenterCrop((new_height, new_width), interpolation=transforms.InterpolationMode.BILINEAR)\n",
|
| 465 |
+
" img = transform(img).to(torch.float32).clamp(-1, 1)\n",
|
| 466 |
+
" \n",
|
| 467 |
+
" return img\n",
|
| 468 |
+
" \n",
|
| 469 |
+
"to_tensor = transforms.ToTensor()\n",
|
| 470 |
+
"\n",
|
| 471 |
+
"device = \"cuda\"\n",
|
| 472 |
+
"dtype=torch.float16\n",
|
| 473 |
+
"vae = AsymmetricAutoencoderKL.from_pretrained(\"asymmetric_vae\",torch_dtype=dtype).to(device).eval()\n",
|
| 474 |
+
"\n",
|
| 475 |
+
"image = load_image(\"123456789.jpg\")\n",
|
| 476 |
+
"\n",
|
| 477 |
+
"image = crop_image_to_nearest_divisible_by_8(to_tensor(image)).unsqueeze(0).to(device,dtype=dtype)\n",
|
| 478 |
+
"\n",
|
| 479 |
+
"upscaled_image = vae(image).sample\n",
|
| 480 |
+
"#vae.config.scaled_factor\n",
|
| 481 |
+
"# Save the reconstructed image\n",
|
| 482 |
+
"utils.save_image(upscaled_image, \"test.png\")\n",
|
| 483 |
+
"print('ok')"
|
| 484 |
+
]
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"cell_type": "code",
|
| 488 |
+
"execution_count": null,
|
| 489 |
+
"id": "5a01b8e9-73c9-4da7-a097-e334019bd8e9",
|
| 490 |
+
"metadata": {},
|
| 491 |
+
"outputs": [],
|
| 492 |
+
"source": []
|
| 493 |
+
}
|
| 494 |
+
],
|
| 495 |
+
"metadata": {
|
| 496 |
+
"kernelspec": {
|
| 497 |
+
"display_name": "Python 3 (ipykernel)",
|
| 498 |
+
"language": "python",
|
| 499 |
+
"name": "python3"
|
| 500 |
+
},
|
| 501 |
+
"language_info": {
|
| 502 |
+
"codemirror_mode": {
|
| 503 |
+
"name": "ipython",
|
| 504 |
+
"version": 3
|
| 505 |
+
},
|
| 506 |
+
"file_extension": ".py",
|
| 507 |
+
"mimetype": "text/x-python",
|
| 508 |
+
"name": "python",
|
| 509 |
+
"nbconvert_exporter": "python",
|
| 510 |
+
"pygments_lexer": "ipython3",
|
| 511 |
+
"version": "3.11.10"
|
| 512 |
+
}
|
| 513 |
+
},
|
| 514 |
+
"nbformat": 4,
|
| 515 |
+
"nbformat_minor": 5
|
| 516 |
+
}
|
samples/sample_0_0.jpg
ADDED
|
Git LFS Details
|
samples/sample_0_1.jpg
ADDED
|
Git LFS Details
|
samples/sample_0_2.jpg
ADDED
|
Git LFS Details
|
samples/sample_673_0.jpg
ADDED
|
Git LFS Details
|
samples/sample_673_1.jpg
ADDED
|
Git LFS Details
|
samples/sample_673_2.jpg
ADDED
|
Git LFS Details
|
sdxl_vae_a1111.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebe642d26e14851e98eb3d06575009e0d1a669704a1c9c8dcf06573d82233a21
|
| 3 |
+
size 334640988
|
test.png
ADDED
|
Git LFS Details
|
train_sdxl_vae.py
CHANGED
|
@@ -23,21 +23,22 @@ import lpips # pip install lpips
|
|
| 23 |
|
| 24 |
# --------------------------- Параметры ---------------------------
|
| 25 |
ds_path = "/workspace/png"
|
| 26 |
-
project = "
|
| 27 |
-
batch_size =
|
| 28 |
base_learning_rate = 1e-6
|
| 29 |
min_learning_rate = 8e-7
|
| 30 |
num_epochs = 8
|
| 31 |
-
sample_interval_share =
|
| 32 |
use_wandb = True
|
| 33 |
save_model = True
|
| 34 |
use_decay = True
|
|
|
|
| 35 |
optimizer_type = "adam8bit"
|
| 36 |
dtype = torch.float32
|
| 37 |
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 38 |
-
model_resolution =
|
| 39 |
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 40 |
-
high_resolution =
|
| 41 |
limit = 0
|
| 42 |
save_barrier = 1.03
|
| 43 |
warmup_percent = 0.01
|
|
@@ -46,9 +47,9 @@ beta2 = 0.97
|
|
| 46 |
eps = 1e-6
|
| 47 |
clip_grad_norm = 1.0
|
| 48 |
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 49 |
-
gradient_accumulation_steps =
|
| 50 |
generated_folder = "samples"
|
| 51 |
-
save_as = "
|
| 52 |
perceptual_loss_weight = 0.03 # начальное значение веса (будет перезаписываться каждый шаг)
|
| 53 |
num_workers = 0
|
| 54 |
device = None # accelerator задаст устройство
|
|
@@ -91,8 +92,10 @@ if use_wandb and accelerator.is_main_process:
|
|
| 91 |
})
|
| 92 |
|
| 93 |
# --------------------------- VAE ---------------------------
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
|
| 98 |
for p in vae.parameters():
|
|
@@ -109,7 +112,7 @@ if not hasattr(decoder, "up_blocks"):
|
|
| 109 |
|
| 110 |
# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
|
| 111 |
n_up = len(decoder.up_blocks)
|
| 112 |
-
start_idx = 0 #max(0, n_up - 2)
|
| 113 |
for idx in range(start_idx, n_up):
|
| 114 |
block = decoder.up_blocks[idx]
|
| 115 |
for name, p in block.named_parameters():
|
|
|
|
| 23 |
|
| 24 |
# --------------------------- Параметры ---------------------------
|
| 25 |
ds_path = "/workspace/png"
|
| 26 |
+
project = "asymmetric_vae"
|
| 27 |
+
batch_size = 2
|
| 28 |
base_learning_rate = 1e-6
|
| 29 |
min_learning_rate = 8e-7
|
| 30 |
num_epochs = 8
|
| 31 |
+
sample_interval_share = 10
|
| 32 |
use_wandb = True
|
| 33 |
save_model = True
|
| 34 |
use_decay = True
|
| 35 |
+
asymmetric = True
|
| 36 |
optimizer_type = "adam8bit"
|
| 37 |
dtype = torch.float32
|
| 38 |
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 39 |
+
model_resolution = 512 # бывший `resolution`
|
| 40 |
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 41 |
+
high_resolution = 512 # >>> CHANGED: обучаемся на входах 1024 -> даунсемплим до 512 для модели
|
| 42 |
limit = 0
|
| 43 |
save_barrier = 1.03
|
| 44 |
warmup_percent = 0.01
|
|
|
|
| 47 |
eps = 1e-6
|
| 48 |
clip_grad_norm = 1.0
|
| 49 |
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 50 |
+
gradient_accumulation_steps = 8
|
| 51 |
generated_folder = "samples"
|
| 52 |
+
save_as = "asymmetric_vae_new"
|
| 53 |
perceptual_loss_weight = 0.03 # начальное значение веса (будет перезаписываться каждый шаг)
|
| 54 |
num_workers = 0
|
| 55 |
device = None # accelerator задаст устройство
|
|
|
|
| 92 |
})
|
| 93 |
|
| 94 |
# --------------------------- VAE ---------------------------
|
| 95 |
+
if model_resolution==high_resolution and not asymmetric:
|
| 96 |
+
vae = AutoencoderKL.from_pretrained(project).to(dtype)
|
| 97 |
+
else:
|
| 98 |
+
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
|
| 99 |
|
| 100 |
# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
|
| 101 |
for p in vae.parameters():
|
|
|
|
| 112 |
|
| 113 |
# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
|
| 114 |
n_up = len(decoder.up_blocks)
|
| 115 |
+
start_idx = 0 #max(0, n_up - 2) # all
|
| 116 |
for idx in range(start_idx, n_up):
|
| 117 |
block = decoder.up_blocks[idx]
|
| 118 |
for name, p in block.named_parameters():
|
vae.png
ADDED
|
Git LFS Details
|
vae/config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.34.0",
|
| 4 |
+
"_name_or_path": "sdxl_vae",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"force_upcast": false,
|
| 19 |
+
"in_channels": 3,
|
| 20 |
+
"latent_channels": 4,
|
| 21 |
+
"latents_mean": null,
|
| 22 |
+
"latents_std": null,
|
| 23 |
+
"layers_per_block": 2,
|
| 24 |
+
"mid_block_add_attention": true,
|
| 25 |
+
"norm_num_groups": 32,
|
| 26 |
+
"out_channels": 3,
|
| 27 |
+
"sample_size": 512,
|
| 28 |
+
"scaling_factor": 0.13025,
|
| 29 |
+
"shift_factor": null,
|
| 30 |
+
"up_block_types": [
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D",
|
| 33 |
+
"UpDecoderBlock2D",
|
| 34 |
+
"UpDecoderBlock2D"
|
| 35 |
+
],
|
| 36 |
+
"use_post_quant_conv": true,
|
| 37 |
+
"use_quant_conv": true
|
| 38 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f17d5c9503862b25a273b8874851a99de817dbfae6094432f51381bb1cdd60c8
|
| 3 |
+
size 334643268
|