upd
Browse files- eval_alchemist2.py +9 -7
- samples/sample_0.jpg +2 -2
- samples/sample_1.jpg +2 -2
- samples/sample_2.jpg +2 -2
- samples/sample_decoded.jpg +2 -2
- samples/sample_real.jpg +2 -2
- simple_vae/diffusion_pytorch_model.safetensors +1 -1
- simple_vae_nightly/diffusion_pytorch_model.safetensors +1 -1
- train_sdxl_vae_full.py +15 -11
- train_sdxl_vae_wan.py +565 -0
- vaetest/001_all.png +0 -3
- vaetest/001_decoded_FLUX.1_schnell_vae.png +0 -3
- vaetest/001_decoded_simple_vae.png +0 -3
- vaetest/001_decoded_simple_vae2.png +0 -3
- vaetest/001_decoded_simple_vae_nightly.png +0 -3
- vaetest/001_orig.png +0 -3
- vaetest/002_all.png +0 -3
- vaetest/002_decoded_FLUX.1_schnell_vae.png +0 -3
- vaetest/002_decoded_simple_vae.png +0 -3
- vaetest/002_decoded_simple_vae2.png +0 -3
- vaetest/002_decoded_simple_vae_nightly.png +0 -3
- vaetest/002_orig.png +0 -3
eval_alchemist2.py
CHANGED
|
@@ -27,25 +27,27 @@ from scipy.stats import skew, kurtosis
|
|
| 27 |
# ========================== Конфиг ==========================
|
| 28 |
DEVICE = "cuda"
|
| 29 |
DTYPE = torch.float16
|
| 30 |
-
IMAGE_FOLDER = "/
|
| 31 |
MIN_SIZE = 1280
|
| 32 |
CROP_SIZE = 512
|
| 33 |
BATCH_SIZE = 10
|
| 34 |
-
MAX_IMAGES =
|
| 35 |
NUM_WORKERS = 4
|
| 36 |
SAMPLES_DIR = "vaetest"
|
| 37 |
|
| 38 |
VAE_LIST = [
|
| 39 |
# ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
|
| 40 |
# ("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
|
| 41 |
-
("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
| 42 |
-
("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
| 43 |
#("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"),
|
| 44 |
-
#("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"),
|
|
|
|
| 45 |
#("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 46 |
-
|
|
|
|
| 47 |
# ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
| 48 |
-
("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
|
| 49 |
]
|
| 50 |
|
| 51 |
|
|
|
|
| 27 |
# ========================== Конфиг ==========================
|
| 28 |
DEVICE = "cuda"
|
| 29 |
DTYPE = torch.float16
|
| 30 |
+
IMAGE_FOLDER = "/workspace/alchemist"
|
| 31 |
MIN_SIZE = 1280
|
| 32 |
CROP_SIZE = 512
|
| 33 |
BATCH_SIZE = 10
|
| 34 |
+
MAX_IMAGES = 0
|
| 35 |
NUM_WORKERS = 4
|
| 36 |
SAMPLES_DIR = "vaetest"
|
| 37 |
|
| 38 |
VAE_LIST = [
|
| 39 |
# ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
|
| 40 |
# ("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
|
| 41 |
+
#("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
| 42 |
+
#("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
| 43 |
#("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"),
|
| 44 |
+
#("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"),
|
| 45 |
+
#("SimpleVAE ", AutoencoderKL, "AiArtLab/simplevae", None),
|
| 46 |
#("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 47 |
+
("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
|
| 48 |
+
("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 49 |
# ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
| 50 |
+
#("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
|
| 51 |
]
|
| 52 |
|
| 53 |
|
samples/sample_0.jpg
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
samples/sample_1.jpg
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
samples/sample_2.jpg
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
samples/sample_decoded.jpg
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
samples/sample_real.jpg
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
simple_vae/diffusion_pytorch_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 335311892
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ba1d500c4bd376a7c8662a35fa1857c7e577da0635414b524180852143ef2f6
|
| 3 |
size 335311892
|
simple_vae_nightly/diffusion_pytorch_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 335311892
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b39620d0953839362425f03674e6c3e37f03d20be3fbd7f281baea4dfc336a40
|
| 3 |
size 335311892
|
train_sdxl_vae_full.py
CHANGED
|
@@ -26,9 +26,9 @@ from collections import deque
|
|
| 26 |
ds_path = "/workspace/png"
|
| 27 |
project = "simple_vae"
|
| 28 |
batch_size = 3
|
| 29 |
-
base_learning_rate =
|
| 30 |
-
min_learning_rate =
|
| 31 |
-
num_epochs =
|
| 32 |
sample_interval_share = 10
|
| 33 |
use_wandb = True
|
| 34 |
save_model = True
|
|
@@ -58,20 +58,20 @@ device = None # accelerator задаст устройство
|
|
| 58 |
# CHANGED: добавлен параметр для полного обучения VAE (а не только декодера).
|
| 59 |
# Если False — поведение прежнее: учим только decoder.* (up_blocks + mid_block).
|
| 60 |
# Если True — размораживаем ВСЮ модель и добавляем KL-loss для энкодера.
|
| 61 |
-
full_training =
|
| 62 |
|
| 63 |
# CHANGED: добавлен вес (через долю в нормализаторе) для KL, используется только при full_training=True.
|
| 64 |
-
kl_ratio = 0.
|
| 65 |
|
| 66 |
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
| 67 |
# Итоговые доли в total loss (сумма = 1.0 после нормализации).
|
| 68 |
loss_ratios = {
|
| 69 |
-
"lpips": 0.
|
| 70 |
-
"edge": 0.
|
| 71 |
-
"mse": 0.
|
| 72 |
-
"mae": 0.
|
| 73 |
# CHANGED: заранее добавлен ключ "kl" (по умолчанию 0.0). Если включаем full_training — активируем ниже.
|
| 74 |
-
"kl": 0.
|
| 75 |
}
|
| 76 |
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
| 77 |
|
|
@@ -490,7 +490,11 @@ for epoch in range(num_epochs):
|
|
| 490 |
mean = enc.latent_dist.mean
|
| 491 |
logvar = enc.latent_dist.logvar
|
| 492 |
# стабильное усреднение по батчу и пространству
|
| 493 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
abs_losses["kl"] = kl
|
| 495 |
else:
|
| 496 |
# ключ присутствует в ratios, но при partial-training его доля = 0 и он не влияет
|
|
|
|
| 26 |
ds_path = "/workspace/png"
|
| 27 |
project = "simple_vae"
|
| 28 |
batch_size = 3
|
| 29 |
+
base_learning_rate = 2e-6
|
| 30 |
+
min_learning_rate = 8e-7
|
| 31 |
+
num_epochs = 8
|
| 32 |
sample_interval_share = 10
|
| 33 |
use_wandb = True
|
| 34 |
save_model = True
|
|
|
|
| 58 |
# CHANGED: добавлен параметр для полного обучения VAE (а не только декодера).
|
| 59 |
# Если False — поведение прежнее: учим только decoder.* (up_blocks + mid_block).
|
| 60 |
# Если True — размораживаем ВСЮ модель и добавляем KL-loss для энкодера.
|
| 61 |
+
full_training = False
|
| 62 |
|
| 63 |
# CHANGED: добавлен вес (через долю в нормализаторе) для KL, используется только при full_training=True.
|
| 64 |
+
kl_ratio = 0.00 # простая доля для KL в общей смеси (KISS). Игнорируется, если full_training=False.
|
| 65 |
|
| 66 |
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
| 67 |
# Итоговые доли в total loss (сумма = 1.0 после нормализации).
|
| 68 |
loss_ratios = {
|
| 69 |
+
"lpips": 0.60,
|
| 70 |
+
"edge": 0.10,
|
| 71 |
+
"mse": 0.15,
|
| 72 |
+
"mae": 0.15,
|
| 73 |
# CHANGED: заранее добавлен ключ "kl" (по умолчанию 0.0). Если включаем full_training — активируем ниже.
|
| 74 |
+
"kl": 0.00,
|
| 75 |
}
|
| 76 |
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
| 77 |
|
|
|
|
| 490 |
mean = enc.latent_dist.mean
|
| 491 |
logvar = enc.latent_dist.logvar
|
| 492 |
# стабильное усреднение по батчу и пространству
|
| 493 |
+
# СТАРОЕ (неправильное):
|
| 494 |
+
#kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
| 495 |
+
# НОВОЕ (правильное):
|
| 496 |
+
kl_per_sample = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp(), dim=[1, 2, 3])
|
| 497 |
+
kl = torch.mean(kl_per_sample)
|
| 498 |
abs_losses["kl"] = kl
|
| 499 |
else:
|
| 500 |
# ключ присутствует в ratios, но при partial-training его доля = 0 и он не влияет
|
train_sdxl_vae_wan.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import math
|
| 4 |
+
import re
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import random
|
| 8 |
+
import gc
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch.utils.data import DataLoader, Dataset
|
| 15 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
+
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
+
# QWEN: импорт класса
|
| 18 |
+
from diffusers import AutoencoderKLQwenImage
|
| 19 |
+
from diffusers import AutoencoderKLWan
|
| 20 |
+
|
| 21 |
+
from accelerate import Accelerator
|
| 22 |
+
from PIL import Image, UnidentifiedImageError
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
import bitsandbytes as bnb
|
| 25 |
+
import wandb
|
| 26 |
+
import lpips # pip install lpips
|
| 27 |
+
from collections import deque
|
| 28 |
+
|
| 29 |
+
# --------------------------- Параметры ---------------------------
|
| 30 |
+
ds_path = "/workspace/png"
|
| 31 |
+
project = "wan16x_vae"
|
| 32 |
+
batch_size = 4
|
| 33 |
+
base_learning_rate = 6e-6
|
| 34 |
+
min_learning_rate = 9e-7
|
| 35 |
+
num_epochs = 8
|
| 36 |
+
sample_interval_share = 10
|
| 37 |
+
use_wandb = True
|
| 38 |
+
save_model = True
|
| 39 |
+
use_decay = True
|
| 40 |
+
optimizer_type = "adam8bit"
|
| 41 |
+
dtype = torch.float32
|
| 42 |
+
|
| 43 |
+
model_resolution = 512
|
| 44 |
+
high_resolution = 512
|
| 45 |
+
limit = 0
|
| 46 |
+
save_barrier = 1.03
|
| 47 |
+
warmup_percent = 0.01
|
| 48 |
+
percentile_clipping = 95
|
| 49 |
+
beta2 = 0.97
|
| 50 |
+
eps = 1e-6
|
| 51 |
+
clip_grad_norm = 1.0
|
| 52 |
+
mixed_precision = "no"
|
| 53 |
+
gradient_accumulation_steps = 4
|
| 54 |
+
generated_folder = "samples"
|
| 55 |
+
save_as = "wan16x_vae_nightly"
|
| 56 |
+
num_workers = 0
|
| 57 |
+
device = None
|
| 58 |
+
|
| 59 |
+
# --- Режимы обучения ---
|
| 60 |
+
# QWEN: учим только декодер
|
| 61 |
+
train_decoder_only = True
|
| 62 |
+
full_training = False # если True — учим весь VAE и добавляем KL (ниже)
|
| 63 |
+
kl_ratio = 0.05
|
| 64 |
+
|
| 65 |
+
# Доли лоссов
|
| 66 |
+
loss_ratios = {
|
| 67 |
+
"lpips": 0.75,
|
| 68 |
+
"edge": 0.05,
|
| 69 |
+
"mse": 0.10,
|
| 70 |
+
"mae": 0.10,
|
| 71 |
+
"kl": 0.00, # активируем при full_training=True
|
| 72 |
+
}
|
| 73 |
+
median_coeff_steps = 256
|
| 74 |
+
|
| 75 |
+
resize_long_side = 1280 # ресайз длинной стороны исходных картинок
|
| 76 |
+
|
| 77 |
+
# QWEN: конфиг загрузки модели
|
| 78 |
+
vae_kind = "wan" # "qwen" или "kl" (обычный)
|
| 79 |
+
|
| 80 |
+
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 81 |
+
|
| 82 |
+
accelerator = Accelerator(
|
| 83 |
+
mixed_precision=mixed_precision,
|
| 84 |
+
gradient_accumulation_steps=gradient_accumulation_steps
|
| 85 |
+
)
|
| 86 |
+
device = accelerator.device
|
| 87 |
+
|
| 88 |
+
# reproducibility
|
| 89 |
+
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 90 |
+
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
|
| 91 |
+
torch.backends.cudnn.benchmark = False
|
| 92 |
+
|
| 93 |
+
# --------------------------- WandB ---------------------------
|
| 94 |
+
if use_wandb and accelerator.is_main_process:
|
| 95 |
+
wandb.init(project=project, config={
|
| 96 |
+
"batch_size": batch_size,
|
| 97 |
+
"base_learning_rate": base_learning_rate,
|
| 98 |
+
"num_epochs": num_epochs,
|
| 99 |
+
"optimizer_type": optimizer_type,
|
| 100 |
+
"model_resolution": model_resolution,
|
| 101 |
+
"high_resolution": high_resolution,
|
| 102 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 103 |
+
"train_decoder_only": train_decoder_only,
|
| 104 |
+
"full_training": full_training,
|
| 105 |
+
"kl_ratio": kl_ratio,
|
| 106 |
+
"vae_kind": vae_kind,
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
# --------------------------- VAE ---------------------------
|
| 110 |
+
def get_core_model(model):
|
| 111 |
+
m = model
|
| 112 |
+
# если модель уже обёрнута torch.compile
|
| 113 |
+
if hasattr(m, "_orig_mod"):
|
| 114 |
+
m = m._orig_mod
|
| 115 |
+
return m
|
| 116 |
+
|
| 117 |
+
def is_video_vae(model) -> bool:
|
| 118 |
+
# WAN/Qwen — это видео-VAEs
|
| 119 |
+
if vae_kind in ("wan", "qwen"):
|
| 120 |
+
return True
|
| 121 |
+
# fallback по структуре (если понадобится)
|
| 122 |
+
try:
|
| 123 |
+
core = get_core_model(model)
|
| 124 |
+
enc = getattr(core, "encoder", None)
|
| 125 |
+
conv_in = getattr(enc, "conv_in", None)
|
| 126 |
+
w = getattr(conv_in, "weight", None)
|
| 127 |
+
if isinstance(w, torch.nn.Parameter):
|
| 128 |
+
return w.ndim == 5
|
| 129 |
+
except Exception:
|
| 130 |
+
pass
|
| 131 |
+
return False
|
| 132 |
+
|
| 133 |
+
# загрузка
|
| 134 |
+
if vae_kind == "qwen":
|
| 135 |
+
vae = AutoencoderKLQwenImage.from_pretrained("Qwen/Qwen-Image", subfolder="vae")
|
| 136 |
+
else:
|
| 137 |
+
if vae_kind == "wan":
|
| 138 |
+
vae = AutoencoderKLWan.from_pretrained(project)
|
| 139 |
+
else:
|
| 140 |
+
# старое поведение (пример)
|
| 141 |
+
if model_resolution==high_resolution:
|
| 142 |
+
vae = AutoencoderKL.from_pretrained(project)
|
| 143 |
+
else:
|
| 144 |
+
vae = AsymmetricAutoencoderKL.from_pretrained(project)
|
| 145 |
+
|
| 146 |
+
vae = vae.to(dtype)
|
| 147 |
+
|
| 148 |
+
# torch.compile (опционально)
|
| 149 |
+
if hasattr(torch, "compile"):
|
| 150 |
+
try:
|
| 151 |
+
vae = torch.compile(vae)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"[WARN] torch.compile failed: {e}")
|
| 154 |
+
|
| 155 |
+
# --------------------------- Freeze/Unfreeze ---------------------------
|
| 156 |
+
core = get_core_model(vae)
|
| 157 |
+
|
| 158 |
+
for p in core.parameters():
|
| 159 |
+
p.requires_grad = False
|
| 160 |
+
|
| 161 |
+
unfrozen_param_names = []
|
| 162 |
+
|
| 163 |
+
if full_training and not train_decoder_only:
|
| 164 |
+
for name, p in core.named_parameters():
|
| 165 |
+
p.requires_grad = True
|
| 166 |
+
unfrozen_param_names.append(name)
|
| 167 |
+
loss_ratios["kl"] = float(kl_ratio)
|
| 168 |
+
trainable_module = core
|
| 169 |
+
else:
|
| 170 |
+
# учим только декодер + post_quant_conv на "ядре" модели
|
| 171 |
+
if hasattr(core, "decoder"):
|
| 172 |
+
for name, p in core.decoder.named_parameters():
|
| 173 |
+
p.requires_grad = True
|
| 174 |
+
unfrozen_param_names.append(f"decoder.{name}")
|
| 175 |
+
if hasattr(core, "post_quant_conv"):
|
| 176 |
+
for name, p in core.post_quant_conv.named_parameters():
|
| 177 |
+
p.requires_grad = True
|
| 178 |
+
unfrozen_param_names.append(f"post_quant_conv.{name}")
|
| 179 |
+
trainable_module = core.decoder if hasattr(core, "decoder") else core
|
| 180 |
+
|
| 181 |
+
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 182 |
+
for nm in unfrozen_param_names[:200]:
|
| 183 |
+
print(" ", nm)
|
| 184 |
+
|
| 185 |
+
# --------------------------- Датасет ---------------------------
|
| 186 |
+
class PngFolderDataset(Dataset):
|
| 187 |
+
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 188 |
+
self.root_dir = root_dir
|
| 189 |
+
self.resolution = resolution
|
| 190 |
+
self.paths = []
|
| 191 |
+
for root, _, files in os.walk(root_dir):
|
| 192 |
+
for fname in files:
|
| 193 |
+
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 194 |
+
self.paths.append(os.path.join(root, fname))
|
| 195 |
+
if limit:
|
| 196 |
+
self.paths = self.paths[:limit]
|
| 197 |
+
valid = []
|
| 198 |
+
for p in self.paths:
|
| 199 |
+
try:
|
| 200 |
+
with Image.open(p) as im:
|
| 201 |
+
im.verify()
|
| 202 |
+
valid.append(p)
|
| 203 |
+
except (OSError, UnidentifiedImageError):
|
| 204 |
+
continue
|
| 205 |
+
self.paths = valid
|
| 206 |
+
if len(self.paths) == 0:
|
| 207 |
+
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 208 |
+
random.shuffle(self.paths)
|
| 209 |
+
|
| 210 |
+
def __len__(self):
|
| 211 |
+
return len(self.paths)
|
| 212 |
+
|
| 213 |
+
def __getitem__(self, idx):
|
| 214 |
+
p = self.paths[idx % len(self.paths)]
|
| 215 |
+
with Image.open(p) as img:
|
| 216 |
+
img = img.convert("RGB")
|
| 217 |
+
if not resize_long_side or resize_long_side <= 0:
|
| 218 |
+
return img
|
| 219 |
+
w, h = img.size
|
| 220 |
+
long = max(w, h)
|
| 221 |
+
if long <= resize_long_side:
|
| 222 |
+
return img
|
| 223 |
+
scale = resize_long_side / float(long)
|
| 224 |
+
new_w = int(round(w * scale))
|
| 225 |
+
new_h = int(round(h * scale))
|
| 226 |
+
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 227 |
+
|
| 228 |
+
def random_crop(img, sz):
|
| 229 |
+
w, h = img.size
|
| 230 |
+
if w < sz or h < sz:
|
| 231 |
+
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 232 |
+
x = random.randint(0, max(1, img.width - sz))
|
| 233 |
+
y = random.randint(0, max(1, img.height - sz))
|
| 234 |
+
return img.crop((x, y, x + sz, y + sz))
|
| 235 |
+
|
| 236 |
+
tfm = transforms.Compose([
|
| 237 |
+
transforms.ToTensor(),
|
| 238 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 239 |
+
])
|
| 240 |
+
|
| 241 |
+
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 242 |
+
if len(dataset) < batch_size:
|
| 243 |
+
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 244 |
+
|
| 245 |
+
def collate_fn(batch):
|
| 246 |
+
imgs = []
|
| 247 |
+
for img in batch:
|
| 248 |
+
img = random_crop(img, high_resolution)
|
| 249 |
+
imgs.append(tfm(img))
|
| 250 |
+
return torch.stack(imgs)
|
| 251 |
+
|
| 252 |
+
dataloader = DataLoader(
|
| 253 |
+
dataset,
|
| 254 |
+
batch_size=batch_size,
|
| 255 |
+
shuffle=True,
|
| 256 |
+
collate_fn=collate_fn,
|
| 257 |
+
num_workers=num_workers,
|
| 258 |
+
pin_memory=True,
|
| 259 |
+
drop_last=True
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# --------------------------- Оптимизатор ---------------------------
|
| 263 |
+
def get_param_groups(module, weight_decay=0.001):
|
| 264 |
+
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 265 |
+
decay_params, no_decay_params = [], []
|
| 266 |
+
for n, p in vae.named_parameters(): # глобально по vae, с фильтром requires_grad
|
| 267 |
+
if not p.requires_grad:
|
| 268 |
+
continue
|
| 269 |
+
if any(nd in n for nd in no_decay):
|
| 270 |
+
no_decay_params.append(p)
|
| 271 |
+
else:
|
| 272 |
+
decay_params.append(p)
|
| 273 |
+
return [
|
| 274 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
| 275 |
+
{"params": no_decay_params, "weight_decay": 0.0},
|
| 276 |
+
]
|
| 277 |
+
|
| 278 |
+
def get_param_groups(module, weight_decay=0.001):
|
| 279 |
+
no_decay_tokens = ("bias", "norm", "rms", "layernorm")
|
| 280 |
+
decay_params, no_decay_params = [], []
|
| 281 |
+
for n, p in module.named_parameters():
|
| 282 |
+
if not p.requires_grad:
|
| 283 |
+
continue
|
| 284 |
+
n_l = n.lower()
|
| 285 |
+
if any(t in n_l for t in no_decay_tokens):
|
| 286 |
+
no_decay_params.append(p)
|
| 287 |
+
else:
|
| 288 |
+
decay_params.append(p)
|
| 289 |
+
return [
|
| 290 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
| 291 |
+
{"params": no_decay_params, "weight_decay": 0.0},
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
def create_optimizer(name, param_groups):
|
| 295 |
+
if name == "adam8bit":
|
| 296 |
+
return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
|
| 297 |
+
raise ValueError(name)
|
| 298 |
+
|
| 299 |
+
param_groups = get_param_groups(get_core_model(vae), weight_decay=0.001)
|
| 300 |
+
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 301 |
+
|
| 302 |
+
# --------------------------- LR schedule ---------------------------
|
| 303 |
+
batches_per_epoch = len(dataloader)
|
| 304 |
+
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
|
| 305 |
+
total_steps = steps_per_epoch * num_epochs
|
| 306 |
+
|
| 307 |
+
def lr_lambda(step):
|
| 308 |
+
if not use_decay:
|
| 309 |
+
return 1.0
|
| 310 |
+
x = float(step) / float(max(1, total_steps))
|
| 311 |
+
warmup = float(warmup_percent)
|
| 312 |
+
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 313 |
+
if x < warmup:
|
| 314 |
+
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 315 |
+
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 316 |
+
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 317 |
+
|
| 318 |
+
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 319 |
+
|
| 320 |
+
# Подготовка
|
| 321 |
+
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 322 |
+
trainable_params = [p for p in vae.parameters() if p.requires_grad]
|
| 323 |
+
|
| 324 |
+
# --------------------------- LPIPS и вспомогательные ---------------------------
|
| 325 |
+
_lpips_net = None
|
| 326 |
+
def _get_lpips():
|
| 327 |
+
global _lpips_net
|
| 328 |
+
if _lpips_net is None:
|
| 329 |
+
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 330 |
+
return _lpips_net
|
| 331 |
+
|
| 332 |
+
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 333 |
+
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 334 |
+
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 335 |
+
C = x.shape[1]
|
| 336 |
+
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 337 |
+
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 338 |
+
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 339 |
+
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 340 |
+
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 341 |
+
|
| 342 |
+
class MedianLossNormalizer:
|
| 343 |
+
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 344 |
+
s = sum(desired_ratios.values())
|
| 345 |
+
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
|
| 346 |
+
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 347 |
+
self.window = window_steps
|
| 348 |
+
|
| 349 |
+
def update_and_total(self, abs_losses: dict):
|
| 350 |
+
for k, v in abs_losses.items():
|
| 351 |
+
if k in self.buffers:
|
| 352 |
+
self.buffers[k].append(float(v.detach().abs().cpu()))
|
| 353 |
+
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 354 |
+
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 355 |
+
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
|
| 356 |
+
return total, coeffs, meds
|
| 357 |
+
|
| 358 |
+
if full_training and not train_decoder_only:
|
| 359 |
+
loss_ratios["kl"] = float(kl_ratio)
|
| 360 |
+
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 361 |
+
|
| 362 |
+
# --------------------------- Сэмплы ---------------------------
|
| 363 |
+
@torch.no_grad()
|
| 364 |
+
def get_fixed_samples(n=3):
|
| 365 |
+
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 366 |
+
pil_imgs = [dataset[i] for i in idx]
|
| 367 |
+
tensors = []
|
| 368 |
+
for img in pil_imgs:
|
| 369 |
+
img = random_crop(img, high_resolution)
|
| 370 |
+
tensors.append(tfm(img))
|
| 371 |
+
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 372 |
+
|
| 373 |
+
fixed_samples = get_fixed_samples()
|
| 374 |
+
|
| 375 |
+
@torch.no_grad()
|
| 376 |
+
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 377 |
+
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 378 |
+
return Image.fromarray(arr)
|
| 379 |
+
|
| 380 |
+
@torch.no_grad()
|
| 381 |
+
def generate_and_save_samples(step=None):
|
| 382 |
+
try:
|
| 383 |
+
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 384 |
+
lpips_net = _get_lpips()
|
| 385 |
+
with torch.no_grad():
|
| 386 |
+
orig_high = fixed_samples
|
| 387 |
+
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 388 |
+
model_dtype = next(temp_vae.parameters()).dtype
|
| 389 |
+
orig_low = orig_low.to(dtype=model_dtype)
|
| 390 |
+
|
| 391 |
+
# QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
|
| 392 |
+
if is_video_vae(temp_vae):
|
| 393 |
+
x_in = orig_low.unsqueeze(2) # [B,3,1,H,W]
|
| 394 |
+
enc = temp_vae.encode(x_in)
|
| 395 |
+
latents_mean = enc.latent_dist.mean
|
| 396 |
+
dec = temp_vae.decode(latents_mean).sample # [B,3,1,H,W]
|
| 397 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
| 398 |
+
else:
|
| 399 |
+
enc = temp_vae.encode(orig_low)
|
| 400 |
+
latents_mean = enc.latent_dist.mean
|
| 401 |
+
rec = temp_vae.decode(latents_mean).sample
|
| 402 |
+
|
| 403 |
+
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 404 |
+
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 405 |
+
|
| 406 |
+
first_real = _to_pil_uint8(orig_high[0])
|
| 407 |
+
first_dec = _to_pil_uint8(rec[0])
|
| 408 |
+
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 409 |
+
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 410 |
+
|
| 411 |
+
for i in range(rec.shape[0]):
|
| 412 |
+
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 413 |
+
|
| 414 |
+
lpips_scores = []
|
| 415 |
+
for i in range(rec.shape[0]):
|
| 416 |
+
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 417 |
+
rec_full = rec[i:i+1].to(torch.float32)
|
| 418 |
+
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 419 |
+
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 420 |
+
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 421 |
+
lpips_scores.append(lpips_val)
|
| 422 |
+
avg_lpips = float(np.mean(lpips_scores))
|
| 423 |
+
|
| 424 |
+
if use_wandb and accelerator.is_main_process:
|
| 425 |
+
wandb.log({"lpips_mean": avg_lpips}, step=step)
|
| 426 |
+
finally:
|
| 427 |
+
gc.collect()
|
| 428 |
+
torch.cuda.empty_cache()
|
| 429 |
+
|
| 430 |
+
if accelerator.is_main_process and save_model:
|
| 431 |
+
print("Генерация сэмплов до старта обучения...")
|
| 432 |
+
generate_and_save_samples(0)
|
| 433 |
+
|
| 434 |
+
accelerator.wait_for_everyone()
|
| 435 |
+
|
| 436 |
+
# --------------------------- Тренировка ---------------------------
|
| 437 |
+
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 438 |
+
global_step = 0
|
| 439 |
+
min_loss = float("inf")
|
| 440 |
+
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 441 |
+
|
| 442 |
+
for epoch in range(num_epochs):
|
| 443 |
+
vae.train()
|
| 444 |
+
batch_losses, batch_grads = [], []
|
| 445 |
+
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 446 |
+
|
| 447 |
+
for imgs in dataloader:
|
| 448 |
+
with accelerator.accumulate(vae):
|
| 449 |
+
imgs = imgs.to(accelerator.device)
|
| 450 |
+
|
| 451 |
+
if high_resolution != model_resolution:
|
| 452 |
+
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 453 |
+
else:
|
| 454 |
+
imgs_low = imgs
|
| 455 |
+
|
| 456 |
+
model_dtype = next(vae.parameters()).dtype
|
| 457 |
+
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
|
| 458 |
+
|
| 459 |
+
# QWEN: encode/decode с T=1
|
| 460 |
+
if is_video_vae(vae):
|
| 461 |
+
x_in = imgs_low_model.unsqueeze(2) # [B,3,1,H,W]
|
| 462 |
+
enc = vae.encode(x_in)
|
| 463 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 464 |
+
dec = vae.decode(latents).sample # [B,3,1,H,W]
|
| 465 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
| 466 |
+
else:
|
| 467 |
+
enc = vae.encode(imgs_low_model)
|
| 468 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 469 |
+
rec = vae.decode(latents).sample
|
| 470 |
+
|
| 471 |
+
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 472 |
+
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 473 |
+
|
| 474 |
+
rec_f32 = rec.to(torch.float32)
|
| 475 |
+
imgs_f32 = imgs.to(torch.float32)
|
| 476 |
+
|
| 477 |
+
abs_losses = {
|
| 478 |
+
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 479 |
+
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 480 |
+
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 481 |
+
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 482 |
+
}
|
| 483 |
+
|
| 484 |
+
if full_training and not train_decoder_only:
|
| 485 |
+
mean = enc.latent_dist.mean
|
| 486 |
+
logvar = enc.latent_dist.logvar
|
| 487 |
+
kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
| 488 |
+
abs_losses["kl"] = kl
|
| 489 |
+
else:
|
| 490 |
+
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
|
| 491 |
+
|
| 492 |
+
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 493 |
+
|
| 494 |
+
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 495 |
+
raise RuntimeError("NaN/Inf loss")
|
| 496 |
+
|
| 497 |
+
accelerator.backward(total_loss)
|
| 498 |
+
|
| 499 |
+
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 500 |
+
if accelerator.sync_gradients:
|
| 501 |
+
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 502 |
+
optimizer.step()
|
| 503 |
+
scheduler.step()
|
| 504 |
+
optimizer.zero_grad(set_to_none=True)
|
| 505 |
+
global_step += 1
|
| 506 |
+
progress.update(1)
|
| 507 |
+
|
| 508 |
+
if accelerator.is_main_process:
|
| 509 |
+
try:
|
| 510 |
+
current_lr = optimizer.param_groups[0]["lr"]
|
| 511 |
+
except Exception:
|
| 512 |
+
current_lr = scheduler.get_last_lr()[0]
|
| 513 |
+
|
| 514 |
+
batch_losses.append(total_loss.detach().item())
|
| 515 |
+
batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
|
| 516 |
+
for k, v in abs_losses.items():
|
| 517 |
+
track_losses[k].append(float(v.detach().item()))
|
| 518 |
+
|
| 519 |
+
if use_wandb and accelerator.sync_gradients:
|
| 520 |
+
log_dict = {
|
| 521 |
+
"total_loss": float(total_loss.detach().item()),
|
| 522 |
+
"learning_rate": current_lr,
|
| 523 |
+
"epoch": epoch,
|
| 524 |
+
"grad_norm": batch_grads[-1],
|
| 525 |
+
}
|
| 526 |
+
for k, v in abs_losses.items():
|
| 527 |
+
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 528 |
+
for k in coeffs:
|
| 529 |
+
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 530 |
+
log_dict[f"median_{k}"] = float(meds[k])
|
| 531 |
+
wandb.log(log_dict, step=global_step)
|
| 532 |
+
|
| 533 |
+
if global_step > 0 and global_step % sample_interval == 0:
|
| 534 |
+
if accelerator.is_main_process:
|
| 535 |
+
generate_and_save_samples(global_step)
|
| 536 |
+
accelerator.wait_for_everyone()
|
| 537 |
+
|
| 538 |
+
n_micro = sample_interval * gradient_accumulation_steps
|
| 539 |
+
avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 540 |
+
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 541 |
+
|
| 542 |
+
if accelerator.is_main_process:
|
| 543 |
+
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 544 |
+
if save_model and avg_loss < min_loss * save_barrier:
|
| 545 |
+
min_loss = avg_loss
|
| 546 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 547 |
+
if use_wandb:
|
| 548 |
+
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 549 |
+
|
| 550 |
+
if accelerator.is_main_process:
|
| 551 |
+
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 552 |
+
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 553 |
+
if use_wandb:
|
| 554 |
+
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 555 |
+
|
| 556 |
+
# --------------------------- Финальное сохранение ---------------------------
|
| 557 |
+
if accelerator.is_main_process:
|
| 558 |
+
print("Training finished – saving final model")
|
| 559 |
+
if save_model:
|
| 560 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 561 |
+
|
| 562 |
+
accelerator.free_memory()
|
| 563 |
+
if torch.distributed.is_initialized():
|
| 564 |
+
torch.distributed.destroy_process_group()
|
| 565 |
+
print("Готово!")
|
vaetest/001_all.png
DELETED
Git LFS Details
|
vaetest/001_decoded_FLUX.1_schnell_vae.png
DELETED
Git LFS Details
|
vaetest/001_decoded_simple_vae.png
DELETED
Git LFS Details
|
vaetest/001_decoded_simple_vae2.png
DELETED
Git LFS Details
|
vaetest/001_decoded_simple_vae_nightly.png
DELETED
Git LFS Details
|
vaetest/001_orig.png
DELETED
Git LFS Details
|
vaetest/002_all.png
DELETED
Git LFS Details
|
vaetest/002_decoded_FLUX.1_schnell_vae.png
DELETED
Git LFS Details
|
vaetest/002_decoded_simple_vae.png
DELETED
Git LFS Details
|
vaetest/002_decoded_simple_vae2.png
DELETED
Git LFS Details
|
vaetest/002_decoded_simple_vae_nightly.png
DELETED
Git LFS Details
|
vaetest/002_orig.png
DELETED
Git LFS Details
|