Akriel commited on
Commit
dccbfc2
·
1 Parent(s): 7eaa41d

Upload PPO LunarLander-v2 trained agent

Browse files
Aky-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efc36beee3de8a5f87b86f15dcdaee437e782dfc6f57b160bee42dc947b3e5b7
3
+ size 146398
Aky-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
Aky-LunarLander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f71c22c9430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f71c22c94c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f71c22c9550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f71c22c95e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f71c22c9670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f71c22c9700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f71c22c9790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f71c22c9820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f71c22c98b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f71c22c9940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f71c22c99d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f71c22c9a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f71c23419c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675603371839984628,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2FrcmllbC9hbmFjb25kYTMvZW52cy9yZWluZm9yY2VtZW50X2xlYXJuaW5nX2hmL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9ha3JpZWwvYW5hY29uZGEzL2VudnMvcmVpbmZvcmNlbWVudF9sZWFybmluZ19oZi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbOKjzv6Qk/ntn6vWsGeL6rg4C9v+KXOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzxCOWXaTcECUhpRSlIwBbJRNogGMAXSUR0Chk71nuiN9dX2UKGgGaAloD0MIqb2ItqPEcUCUhpRSlGgVTVsBaBZHQKGVFX6InBt1fZQoaAZoCWgPQwjhuIybmihuQJSGlFKUaBVNdQFoFkdAoZagjB2wFHV9lChoBmgJaA9DCCKJXkYxY21AlIaUUpRoFU2VAWgWR0ChmXjTjNpudX2UKGgGaAloD0MI1ESfj3IscUCUhpRSlGgVTdQBaBZHQKGbe+MZP2x1fZQoaAZoCWgPQwguOIO/3wRlQJSGlFKUaBVN6ANoFkdAoaDV1IRRM3V9lChoBmgJaA9DCAgddAnH6XFAlIaUUpRoFU1UAmgWR0Cho3UR3/xUdX2UKGgGaAloD0MIlQ1rKoubYUCUhpRSlGgVTegDaBZHQKGoLm7rcCZ1fZQoaAZoCWgPQwhKtOTxNMpuQJSGlFKUaBVNDwNoFkdAoars5CF9KHV9lChoBmgJaA9DCJj4o6izsGBAlIaUUpRoFU3oA2gWR0ChrxUu+RHPdX2UKGgGaAloD0MI3Xu45HhYcECUhpRSlGgVTcgBaBZHQKGxM/QjUut1fZQoaAZoCWgPQwh0RL5LqQtHQJSGlFKUaBVL1WgWR0ChsfKpcX3ydX2UKGgGaAloD0MIigESTaDabkCUhpRSlGgVTUgDaBZHQKG2Wrxy4nZ1fZQoaAZoCWgPQwjFqkGY2+FuQJSGlFKUaBVNeQFoFkdAobf6xZ+x4nV9lChoBmgJaA9DCK/rF+yGwmVAlIaUUpRoFU3oA2gWR0ChvLwuuievdX2UKGgGaAloD0MI/z9OmDBGY0CUhpRSlGgVTegDaBZHQKHBbJmNBGB1fZQoaAZoCWgPQwijdyrgnnlxQJSGlFKUaBVN5wFoFkdAocNsMy8BdXV9lChoBmgJaA9DCD9xAP3+U3FAlIaUUpRoFU1MAWgWR0ChxGE2Hck/dX2UKGgGaAloD0MI1dAGYMMJcUCUhpRSlGgVTZMBaBZHQKHFqKJl8PZ1fZQoaAZoCWgPQwggtYmT+whlQJSGlFKUaBVN6ANoFkdAocpI6wMYuXV9lChoBmgJaA9DCJNuS+QCN2xAlIaUUpRoFU30AWgWR0ChzK+/gzgudX2UKGgGaAloD0MIYFeTp6zKa0CUhpRSlGgVTWoBaBZHQKHN0+/QBxR1fZQoaAZoCWgPQwj+JhQiYOdiQJSGlFKUaBVN6ANoFkdAodNjtAs053V9lChoBmgJaA9DCFW+ZyRCuW9AlIaUUpRoFU19AWgWR0Ch1fr9/BnBdX2UKGgGaAloD0MITtGRXH4ObUCUhpRSlGgVTVwBaBZHQKHXeG47Rv51fZQoaAZoCWgPQwiEm4wqQ1VvQJSGlFKUaBVNlwFoFkdAodjnze40/HV9lChoBmgJaA9DCK65o/9lFW5AlIaUUpRoFU1yAWgWR0Ch2p2bPQfIdX2UKGgGaAloD0MI63Hfah1pcECUhpRSlGgVTbcBaBZHQKHcDH5Jsft1fZQoaAZoCWgPQwg9Qzhm2UFBQJSGlFKUaBVLzGgWR0Ch3JT0QK8ddX2UKGgGaAloD0MIe0s5X+yZcECUhpRSlGgVTbUBaBZHQKHehKlHjId1fZQoaAZoCWgPQwjac5maBK8FQJSGlFKUaBVNKgFoFkdAod9VI3BHkXV9lChoBmgJaA9DCF+3CIw1BXFAlIaUUpRoFU0OAmgWR0Ch4ZFwDNhWdX2UKGgGaAloD0MI+OC1S5sObUCUhpRSlGgVTdwBaBZHQKHjFLRrrPd1fZQoaAZoCWgPQwgsms5OBj5vQJSGlFKUaBVNSAFoFkdAoeQJYoy9EnV9lChoBmgJaA9DCKPJxRhYT2xAlIaUUpRoFU2aAWgWR0Ch5eWJSBK+dX2UKGgGaAloD0MIwVd06/UycECUhpRSlGgVTTMBaBZHQKHmxosZpBZ1fZQoaAZoCWgPQwgR/dr66bltQJSGlFKUaBVNUQFoFkdAoefNTYNAknV9lChoBmgJaA9DCJVjsrj/Bm9AlIaUUpRoFU3MAWgWR0Ch6g5MDfWMdX2UKGgGaAloD0MIUdhF0QNQYUCUhpRSlGgVTegDaBZHQKHvI4vN/vx1fZQoaAZoCWgPQwiH4SNiymttQJSGlFKUaBVNkQFoFkdAofD9at9x63V9lChoBmgJaA9DCBu62R+ocHBAlIaUUpRoFU2lAWgWR0Ch86sEA5q/dX2UKGgGaAloD0MImwKZnUX3bkCUhpRSlGgVTfsBaBZHQKH17wxWT5h1fZQoaAZoCWgPQwi9xFimX9NqQJSGlFKUaBVNcQFoFkdAofcP5Lytm3V9lChoBmgJaA9DCJD3qpWJqHFAlIaUUpRoFU0oAWgWR0Ch+IMNMGordX2UKGgGaAloD0MITz49tuXqbUCUhpRSlGgVTXkBaBZHQKH5ozAN5MV1fZQoaAZoCWgPQwj2evfH+99wQJSGlFKUaBVNRgFoFkdAofqCy+pOvnV9lChoBmgJaA9DCLtgcM0dM29AlIaUUpRoFU2xAWgWR0Ch/HGXgLqmdX2UKGgGaAloD0MIZ7rXSX0scECUhpRSlGgVTVcBaBZHQKH9h5ULlV91fZQoaAZoCWgPQwjvx+2XT3YiQJSGlFKUaBVL/GgWR0Ch/jYq5LAYdX2UKGgGaAloD0MI9WbUfBWrbkCUhpRSlGgVTT8BaBZHQKH/wnl4keJ1fZQoaAZoCWgPQwjcgTrl0UFwQJSGlFKUaBVNQwFoFkdAogC1e0G/vnV9lChoBmgJaA9DCJROJJjqLm9AlIaUUpRoFU2RAWgWR0CiAfOSW7e3dX2UKGgGaAloD0MITS1b64v/bkCUhpRSlGgVTbUBaBZHQKID3NKRMex1fZQoaAZoCWgPQwjp1QClIQdvQJSGlFKUaBVNewFoFkdAogUTltCRfXV9lChoBmgJaA9DCDbmdcShbW5AlIaUUpRoFU29AWgWR0CiBwiH6/IsdX2UKGgGaAloD0MIpKgz9xBFbkCUhpRSlGgVTYQBaBZHQKIIKFW4mTl1fZQoaAZoCWgPQwgUP8bcNdtsQJSGlFKUaBVNogFoFkdAogl4V2zOX3V9lChoBmgJaA9DCPJCOjzEMnBAlIaUUpRoFU2bAWgWR0CiC88Kw6hhdX2UKGgGaAloD0MIdVq3QW1cbECUhpRSlGgVTUkBaBZHQKINIPuG9Ht1fZQoaAZoCWgPQwhMNh5ssVxxQJSGlFKUaBVNfAFoFkdAog+jKgZjx3V9lChoBmgJaA9DCP/QzJNrmWBAlIaUUpRoFU3oA2gWR0CiFFkgfU4JdX2UKGgGaAloD0MIYf2fw3xvcECUhpRSlGgVTY4BaBZHQKIVlzmOlwd1fZQoaAZoCWgPQwhcAvBPKe1uQJSGlFKUaBVNYAFoFkdAohaue+VTrHV9lChoBmgJaA9DCEkvavfrxHBAlIaUUpRoFU1hAWgWR0CiGGIsI3R5dX2UKGgGaAloD0MIf05BfraCbUCUhpRSlGgVTWsBaBZHQKIZlqveP7x1fZQoaAZoCWgPQwiNuAA0SltuQJSGlFKUaBVNeAFoFkdAohrLFOwgT3V9lChoBmgJaA9DCPs/h/lyy2tAlIaUUpRoFU1QAWgWR0CiHG16E8JVdX2UKGgGaAloD0MIz7wcdl/Wb0CUhpRSlGgVTWEBaBZHQKIdd3HJcPh1fZQoaAZoCWgPQwiOdtzwOy5sQJSGlFKUaBVNfAFoFkdAoh6mmtQsPXV9lChoBmgJaA9DCGsotRfRynBAlIaUUpRoFU1/AWgWR0CiIFWjXWe6dX2UKGgGaAloD0MIX7adtsYacECUhpRSlGgVTVYBaBZHQKIhS6IWP911fZQoaAZoCWgPQwjo2hfQi5pwQJSGlFKUaBVNbgFoFkdAoiJLmGM4tHV9lChoBmgJaA9DCIRnQpPEUk5AlIaUUpRoFUvraBZHQKIjhaJQ+EB1fZQoaAZoCWgPQwgBofXwJWBwQJSGlFKUaBVNiwFoFkdAoiSuXAuZkXV9lChoBmgJaA9DCP4nf/eOpGtAlIaUUpRoFU1nAWgWR0CiJdvtMPBjdX2UKGgGaAloD0MI1JrmHad+cUCUhpRSlGgVTXoBaBZHQKIoDIFvAGl1fZQoaAZoCWgPQwil9iLajlNDQJSGlFKUaBVNCgFoFkdAoikEqWkadnV9lChoBmgJaA9DCKeVQiCXRnBAlIaUUpRoFU18AWgWR0CiKpMkIHC5dX2UKGgGaAloD0MIbXL4pBMdNECUhpRSlGgVTTMBaBZHQKIsyXkYGdJ1fZQoaAZoCWgPQwgWw9UB0PhwQJSGlFKUaBVNfgFoFkdAoi6Et5D7ZXV9lChoBmgJaA9DCNuGURC8bW1AlIaUUpRoFU1QAWgWR0CiL/pb+tKadX2UKGgGaAloD0MID9B9ObP/TUCUhpRSlGgVS/1oFkdAojFCg2606nV9lChoBmgJaA9DCOYHrvLENnJAlIaUUpRoFU00AWgWR0CiMhpfICEIdX2UKGgGaAloD0MIUoGTbaB/cECUhpRSlGgVTVsBaBZHQKIzHgm7aqV1fZQoaAZoCWgPQwjIlXoWxMJwQJSGlFKUaBVNQgFoFkdAojSlsenyeHV9lChoBmgJaA9DCIZVvJG5JnBAlIaUUpRoFU1FAWgWR0CiNZe7cwg1dX2UKGgGaAloD0MIJa5jXPEQbkCUhpRSlGgVTWYBaBZHQKI2ranJkoZ1fZQoaAZoCWgPQwhcjexKyyJsQJSGlFKUaBVNdgFoFkdAojh7O7g883V9lChoBmgJaA9DCDF9ryE4knFAlIaUUpRoFU1KAWgWR0CiOXIGIKtxdX2UKGgGaAloD0MI44xhTtDqb0CUhpRSlGgVTTUBaBZHQKI6Vuy/sVt1fZQoaAZoCWgPQwhLPnYXqL1wQJSGlFKUaBVNwAFoFkdAojw7vVmSQ3V9lChoBmgJaA9DCNDsurfiCXJAlIaUUpRoFU2DAWgWR0CiPVNZvDP4dX2UKGgGaAloD0MIDTM0noiCbUCUhpRSlGgVTWsBaBZHQKI+UrOJLuh1fZQoaAZoCWgPQwgYeO493AJvQJSGlFKUaBVNJQFoFkdAoj/JGx2SuHV9lChoBmgJaA9DCNqPFJGhBnBAlIaUUpRoFU1oAWgWR0CiQNcBU70WdX2UKGgGaAloD0MISG5Nui32Y0CUhpRSlGgVTegDaBZHQKJE83y7PIJ1fZQoaAZoCWgPQwhkIToEji9vQJSGlFKUaBVNdQFoFkdAokaKTdLxqnV9lChoBmgJaA9DCPGdmPViZm9AlIaUUpRoFU1RAWgWR0CiSMjU/fO2dX2UKGgGaAloD0MIsFdYcD+0M8CUhpRSlGgVS8NoFkdAokmGNtIkJXV9lChoBmgJaA9DCNXOMLWlBnBAlIaUUpRoFU2RAWgWR0CiS0ob4rSWdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3908,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
Aky-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a4e739df1e97c21e57d6c0cb513c3326d75848842228356816b33dd500e9dbe
3
+ size 87545
Aky-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:059d0ec78a1dccbde9fe610b712dcb098cc2d04b0aba08b42d3f03d7b039d8bd
3
+ size 43265
Aky-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Aky-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO-MLP
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.78 +/- 15.02
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO-MLP** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f71c22c9430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f71c22c94c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f71c22c9550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f71c22c95e0>", "_build": "<function ActorCriticPolicy._build at 0x7f71c22c9670>", "forward": "<function ActorCriticPolicy.forward at 0x7f71c22c9700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f71c22c9790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f71c22c9820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f71c22c98b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f71c22c9940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f71c22c99d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f71c22c9a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f71c23419c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675603371839984628, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2FrcmllbC9hbmFjb25kYTMvZW52cy9yZWluZm9yY2VtZW50X2xlYXJuaW5nX2hmL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9ha3JpZWwvYW5hY29uZGEzL2VudnMvcmVpbmZvcmNlbWVudF9sZWFybmluZ19oZi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbOKjzv6Qk/ntn6vWsGeL6rg4C9v+KXOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzxCOWXaTcECUhpRSlIwBbJRNogGMAXSUR0Chk71nuiN9dX2UKGgGaAloD0MIqb2ItqPEcUCUhpRSlGgVTVsBaBZHQKGVFX6InBt1fZQoaAZoCWgPQwjhuIybmihuQJSGlFKUaBVNdQFoFkdAoZagjB2wFHV9lChoBmgJaA9DCCKJXkYxY21AlIaUUpRoFU2VAWgWR0ChmXjTjNpudX2UKGgGaAloD0MI1ESfj3IscUCUhpRSlGgVTdQBaBZHQKGbe+MZP2x1fZQoaAZoCWgPQwguOIO/3wRlQJSGlFKUaBVN6ANoFkdAoaDV1IRRM3V9lChoBmgJaA9DCAgddAnH6XFAlIaUUpRoFU1UAmgWR0Cho3UR3/xUdX2UKGgGaAloD0MIlQ1rKoubYUCUhpRSlGgVTegDaBZHQKGoLm7rcCZ1fZQoaAZoCWgPQwhKtOTxNMpuQJSGlFKUaBVNDwNoFkdAoars5CF9KHV9lChoBmgJaA9DCJj4o6izsGBAlIaUUpRoFU3oA2gWR0ChrxUu+RHPdX2UKGgGaAloD0MI3Xu45HhYcECUhpRSlGgVTcgBaBZHQKGxM/QjUut1fZQoaAZoCWgPQwh0RL5LqQtHQJSGlFKUaBVL1WgWR0ChsfKpcX3ydX2UKGgGaAloD0MIigESTaDabkCUhpRSlGgVTUgDaBZHQKG2Wrxy4nZ1fZQoaAZoCWgPQwjFqkGY2+FuQJSGlFKUaBVNeQFoFkdAobf6xZ+x4nV9lChoBmgJaA9DCK/rF+yGwmVAlIaUUpRoFU3oA2gWR0ChvLwuuievdX2UKGgGaAloD0MI/z9OmDBGY0CUhpRSlGgVTegDaBZHQKHBbJmNBGB1fZQoaAZoCWgPQwijdyrgnnlxQJSGlFKUaBVN5wFoFkdAocNsMy8BdXV9lChoBmgJaA9DCD9xAP3+U3FAlIaUUpRoFU1MAWgWR0ChxGE2Hck/dX2UKGgGaAloD0MI1dAGYMMJcUCUhpRSlGgVTZMBaBZHQKHFqKJl8PZ1fZQoaAZoCWgPQwggtYmT+whlQJSGlFKUaBVN6ANoFkdAocpI6wMYuXV9lChoBmgJaA9DCJNuS+QCN2xAlIaUUpRoFU30AWgWR0ChzK+/gzgudX2UKGgGaAloD0MIYFeTp6zKa0CUhpRSlGgVTWoBaBZHQKHN0+/QBxR1fZQoaAZoCWgPQwj+JhQiYOdiQJSGlFKUaBVN6ANoFkdAodNjtAs053V9lChoBmgJaA9DCFW+ZyRCuW9AlIaUUpRoFU19AWgWR0Ch1fr9/BnBdX2UKGgGaAloD0MITtGRXH4ObUCUhpRSlGgVTVwBaBZHQKHXeG47Rv51fZQoaAZoCWgPQwiEm4wqQ1VvQJSGlFKUaBVNlwFoFkdAodjnze40/HV9lChoBmgJaA9DCK65o/9lFW5AlIaUUpRoFU1yAWgWR0Ch2p2bPQfIdX2UKGgGaAloD0MI63Hfah1pcECUhpRSlGgVTbcBaBZHQKHcDH5Jsft1fZQoaAZoCWgPQwg9Qzhm2UFBQJSGlFKUaBVLzGgWR0Ch3JT0QK8ddX2UKGgGaAloD0MIe0s5X+yZcECUhpRSlGgVTbUBaBZHQKHehKlHjId1fZQoaAZoCWgPQwjac5maBK8FQJSGlFKUaBVNKgFoFkdAod9VI3BHkXV9lChoBmgJaA9DCF+3CIw1BXFAlIaUUpRoFU0OAmgWR0Ch4ZFwDNhWdX2UKGgGaAloD0MI+OC1S5sObUCUhpRSlGgVTdwBaBZHQKHjFLRrrPd1fZQoaAZoCWgPQwgsms5OBj5vQJSGlFKUaBVNSAFoFkdAoeQJYoy9EnV9lChoBmgJaA9DCKPJxRhYT2xAlIaUUpRoFU2aAWgWR0Ch5eWJSBK+dX2UKGgGaAloD0MIwVd06/UycECUhpRSlGgVTTMBaBZHQKHmxosZpBZ1fZQoaAZoCWgPQwgR/dr66bltQJSGlFKUaBVNUQFoFkdAoefNTYNAknV9lChoBmgJaA9DCJVjsrj/Bm9AlIaUUpRoFU3MAWgWR0Ch6g5MDfWMdX2UKGgGaAloD0MIUdhF0QNQYUCUhpRSlGgVTegDaBZHQKHvI4vN/vx1fZQoaAZoCWgPQwiH4SNiymttQJSGlFKUaBVNkQFoFkdAofD9at9x63V9lChoBmgJaA9DCBu62R+ocHBAlIaUUpRoFU2lAWgWR0Ch86sEA5q/dX2UKGgGaAloD0MImwKZnUX3bkCUhpRSlGgVTfsBaBZHQKH17wxWT5h1fZQoaAZoCWgPQwi9xFimX9NqQJSGlFKUaBVNcQFoFkdAofcP5Lytm3V9lChoBmgJaA9DCJD3qpWJqHFAlIaUUpRoFU0oAWgWR0Ch+IMNMGordX2UKGgGaAloD0MITz49tuXqbUCUhpRSlGgVTXkBaBZHQKH5ozAN5MV1fZQoaAZoCWgPQwj2evfH+99wQJSGlFKUaBVNRgFoFkdAofqCy+pOvnV9lChoBmgJaA9DCLtgcM0dM29AlIaUUpRoFU2xAWgWR0Ch/HGXgLqmdX2UKGgGaAloD0MIZ7rXSX0scECUhpRSlGgVTVcBaBZHQKH9h5ULlV91fZQoaAZoCWgPQwjvx+2XT3YiQJSGlFKUaBVL/GgWR0Ch/jYq5LAYdX2UKGgGaAloD0MI9WbUfBWrbkCUhpRSlGgVTT8BaBZHQKH/wnl4keJ1fZQoaAZoCWgPQwjcgTrl0UFwQJSGlFKUaBVNQwFoFkdAogC1e0G/vnV9lChoBmgJaA9DCJROJJjqLm9AlIaUUpRoFU2RAWgWR0CiAfOSW7e3dX2UKGgGaAloD0MITS1b64v/bkCUhpRSlGgVTbUBaBZHQKID3NKRMex1fZQoaAZoCWgPQwjp1QClIQdvQJSGlFKUaBVNewFoFkdAogUTltCRfXV9lChoBmgJaA9DCDbmdcShbW5AlIaUUpRoFU29AWgWR0CiBwiH6/IsdX2UKGgGaAloD0MIpKgz9xBFbkCUhpRSlGgVTYQBaBZHQKIIKFW4mTl1fZQoaAZoCWgPQwgUP8bcNdtsQJSGlFKUaBVNogFoFkdAogl4V2zOX3V9lChoBmgJaA9DCPJCOjzEMnBAlIaUUpRoFU2bAWgWR0CiC88Kw6hhdX2UKGgGaAloD0MIdVq3QW1cbECUhpRSlGgVTUkBaBZHQKINIPuG9Ht1fZQoaAZoCWgPQwhMNh5ssVxxQJSGlFKUaBVNfAFoFkdAog+jKgZjx3V9lChoBmgJaA9DCP/QzJNrmWBAlIaUUpRoFU3oA2gWR0CiFFkgfU4JdX2UKGgGaAloD0MIYf2fw3xvcECUhpRSlGgVTY4BaBZHQKIVlzmOlwd1fZQoaAZoCWgPQwhcAvBPKe1uQJSGlFKUaBVNYAFoFkdAohaue+VTrHV9lChoBmgJaA9DCEkvavfrxHBAlIaUUpRoFU1hAWgWR0CiGGIsI3R5dX2UKGgGaAloD0MIf05BfraCbUCUhpRSlGgVTWsBaBZHQKIZlqveP7x1fZQoaAZoCWgPQwiNuAA0SltuQJSGlFKUaBVNeAFoFkdAohrLFOwgT3V9lChoBmgJaA9DCPs/h/lyy2tAlIaUUpRoFU1QAWgWR0CiHG16E8JVdX2UKGgGaAloD0MIz7wcdl/Wb0CUhpRSlGgVTWEBaBZHQKIdd3HJcPh1fZQoaAZoCWgPQwiOdtzwOy5sQJSGlFKUaBVNfAFoFkdAoh6mmtQsPXV9lChoBmgJaA9DCGsotRfRynBAlIaUUpRoFU1/AWgWR0CiIFWjXWe6dX2UKGgGaAloD0MIX7adtsYacECUhpRSlGgVTVYBaBZHQKIhS6IWP911fZQoaAZoCWgPQwjo2hfQi5pwQJSGlFKUaBVNbgFoFkdAoiJLmGM4tHV9lChoBmgJaA9DCIRnQpPEUk5AlIaUUpRoFUvraBZHQKIjhaJQ+EB1fZQoaAZoCWgPQwgBofXwJWBwQJSGlFKUaBVNiwFoFkdAoiSuXAuZkXV9lChoBmgJaA9DCP4nf/eOpGtAlIaUUpRoFU1nAWgWR0CiJdvtMPBjdX2UKGgGaAloD0MI1JrmHad+cUCUhpRSlGgVTXoBaBZHQKIoDIFvAGl1fZQoaAZoCWgPQwil9iLajlNDQJSGlFKUaBVNCgFoFkdAoikEqWkadnV9lChoBmgJaA9DCKeVQiCXRnBAlIaUUpRoFU18AWgWR0CiKpMkIHC5dX2UKGgGaAloD0MIbXL4pBMdNECUhpRSlGgVTTMBaBZHQKIsyXkYGdJ1fZQoaAZoCWgPQwgWw9UB0PhwQJSGlFKUaBVNfgFoFkdAoi6Et5D7ZXV9lChoBmgJaA9DCNuGURC8bW1AlIaUUpRoFU1QAWgWR0CiL/pb+tKadX2UKGgGaAloD0MID9B9ObP/TUCUhpRSlGgVS/1oFkdAojFCg2606nV9lChoBmgJaA9DCOYHrvLENnJAlIaUUpRoFU00AWgWR0CiMhpfICEIdX2UKGgGaAloD0MIUoGTbaB/cECUhpRSlGgVTVsBaBZHQKIzHgm7aqV1fZQoaAZoCWgPQwjIlXoWxMJwQJSGlFKUaBVNQgFoFkdAojSlsenyeHV9lChoBmgJaA9DCIZVvJG5JnBAlIaUUpRoFU1FAWgWR0CiNZe7cwg1dX2UKGgGaAloD0MIJa5jXPEQbkCUhpRSlGgVTWYBaBZHQKI2ranJkoZ1fZQoaAZoCWgPQwhcjexKyyJsQJSGlFKUaBVNdgFoFkdAojh7O7g883V9lChoBmgJaA9DCDF9ryE4knFAlIaUUpRoFU1KAWgWR0CiOXIGIKtxdX2UKGgGaAloD0MI44xhTtDqb0CUhpRSlGgVTTUBaBZHQKI6Vuy/sVt1fZQoaAZoCWgPQwhLPnYXqL1wQJSGlFKUaBVNwAFoFkdAojw7vVmSQ3V9lChoBmgJaA9DCNDsurfiCXJAlIaUUpRoFU2DAWgWR0CiPVNZvDP4dX2UKGgGaAloD0MIDTM0noiCbUCUhpRSlGgVTWsBaBZHQKI+UrOJLuh1fZQoaAZoCWgPQwgYeO493AJvQJSGlFKUaBVNJQFoFkdAoj/JGx2SuHV9lChoBmgJaA9DCNqPFJGhBnBAlIaUUpRoFU1oAWgWR0CiQNcBU70WdX2UKGgGaAloD0MISG5Nui32Y0CUhpRSlGgVTegDaBZHQKJE83y7PIJ1fZQoaAZoCWgPQwhkIToEji9vQJSGlFKUaBVNdQFoFkdAokaKTdLxqnV9lChoBmgJaA9DCPGdmPViZm9AlIaUUpRoFU1RAWgWR0CiSMjU/fO2dX2UKGgGaAloD0MIsFdYcD+0M8CUhpRSlGgVS8NoFkdAokmGNtIkJXV9lChoBmgJaA9DCNXOMLWlBnBAlIaUUpRoFU2RAWgWR0CiS0ob4rSWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.17 # 64~20.04.1-Ubuntu SMP Fri Jan 6 16:42:31 UTC 2023", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.78457100092953, "std_reward": 15.018985837908996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T16:37:56.196657"}