File size: 1,767 Bytes
aa0fc22
 
 
 
 
 
84d9865
f6d6aa2
84d9865
33a1118
84d9865
17466c9
8509e5b
9c1d4ce
aed81b4
dfc5253
aed81b4
 
dfc5253
aed81b4
 
 
dfc9e76
dfc5253
 
 
 
 
 
 
 
 
 
 
 
 
 
aed81b4
 
55606e4
 
c5b17d4
55606e4
 
 
 
 
 
 
 
9c1d4ce
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
tags:
- computer_vision
- vision_models_playground
- custom-implementation
---
# **Vision Models Playground**
This is a trained model from the Vision Models Playground repository.
Link to the repository: https://github.com/Akrielz/vision_models_playground

## **Model**
This model is a custom implementation of **ResNetYoloV1** from the ```vision_models_playground.models.segmentation.yolo_v1``` module.
Please look in the config file for more information about the model architecture.

## **Usage**
To load the torch model, you can use the following code snippet:

```python
import torch
from vision_models_playground.utility.hub import load_vmp_model_from_hub


model = load_vmp_model_from_hub("Akriel/ResNetYoloV1")

x = torch.randn(...)
y = model(x)  # y will be of type torch.Tensor
```

To load the pipeline that includes the model, you can use the following code snippet:

```python
from vision_models_playground.utility.hub import load_vmp_pipeline_from_hub

pipeline = load_vmp_pipeline_from_hub("Akriel/ResNetYoloV1")

x = raw_data  # raw_data will be of type pipeline.input_type
y = pipeline(x)  # y will be of type pipeline.output_type
```

## **Metrics**

The model was evaluated on the following dataset: **YoloPascalVocDataset** from ```vision_models_playground.datasets.yolo_pascal_voc_dataset```  

These are the results of the evaluation:  
- MulticlassAccuracy: 0.7241  
- MulticlassAveragePrecision: 0.7643  
- MulticlassAUROC: 0.9684  
- Dice: 0.7241  
- MulticlassF1Score: 0.7241  
- LossTracker: 4.1958  


## **Additional Information**
The train and evaluation runs are also saved using tensorboard. You can use the following command to visualize the runs:

```bash
tensorboard --logdir ./model
```

```bash
tensorboard --logdir ./eval
```