--- license: mit datasets: - AmirMohseni/Nectar-filtered - AmirMohseni/Nectar-Qwen3-8B - AmirMohseni/qwen-router-mixture-v1 language: - en base_model: - answerdotai/ModernBERT-large tags: - router - classification --- # Reasoning Router v1 **Model Name:** `AmirMohseni/reasoning-router-v1` **Base Model:** [`answerdotai/ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) (396M parameters) **Task:** Binary classification — decide whether to use **reasoning mode** for a given text prompt. ## 📌 Overview This model routes incoming prompts to one of two categories: - **`no_think`** – Reasoning mode should **not** be used (fast, fewer tokens, lower cost). - **`think`** – Reasoning mode **should** be used (slower, more tokens, potentially higher accuracy). It is designed to help reduce unnecessary reasoning calls in large language model pipelines, saving computation and cost while maintaining quality. --- ## 🚀 Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer model_name = "AmirMohseni/reasoning-router-v1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Inference function def classify_text(text): # Tokenize input inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) # Get logits with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax(dim=-1).item() predicted_label = model.config.id2label[predicted_class_id] return predicted_label, logits.squeeze().tolist() # Example usage label, logits = classify_text("This is an example input.") print("Predicted label:", label) print("Logits:", logits) ``` --- ## 🏷 Labels | Label | Meaning | |-----------|---------| | `no_think` | Reasoning mode should not be used. | | `think` | Reasoning mode should be used. | --- ## 📄 Model Details - **Base Model:** `answerdotai/ModernBERT-large` — a 396M parameter encoder model optimized for classification. - **Training Objective:** Supervised fine-tuning for binary routing classification. - **Intended Use:** As part of an LLM routing system to decide whether to enable reasoning mode for a query. - **Languages:** English (primary). --- ## ⚠️ Limitations & Bias - The model is trained primarily on English data — performance may degrade on other languages. - Predictions are probabilistic; borderline cases may require human validation in high-stakes use cases. - May reflect biases present in the training data. --- ## 📚 Citation If you use this model, please cite: ```bibtex @misc{mohseni2025reasoningrouterv1, title={Reasoning Router v1}, author={Amir Mohseni}, year={2025}, howpublished={\url{https://huggingface.co/AmirMohseni/reasoning-router-v1}} } ```