| { | |
| "architecture_plans": { | |
| "arch_class_name": "ResEncL", | |
| "arch_kwargs": null, | |
| "arch_kwargs_requiring_import": null | |
| }, | |
| "pretrain_plan": { | |
| "dataset_name": "Dataset745_OpenNeuro_v2", | |
| "plans_name": "nnsslPlans", | |
| "original_median_spacing_after_transp": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "image_reader_writer": "SimpleITKIO", | |
| "transpose_forward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "transpose_backward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "configurations": { | |
| "onemmiso": { | |
| "data_identifier": "nnsslPlans_3d_fullres", | |
| "preprocessor_name": "DefaultPreprocessor", | |
| "spacing_style": "onemmiso", | |
| "normalization_schemes": [ | |
| "ZScoreNormalization" | |
| ], | |
| "use_mask_for_norm": [ | |
| false | |
| ], | |
| "resampling_fn_data": "resample_data_or_seg_to_shape", | |
| "resampling_fn_data_kwargs": { | |
| "is_seg": false, | |
| "order": 3, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "resampling_fn_mask": "resample_data_or_seg_to_shape", | |
| "resampling_fn_mask_kwargs": { | |
| "is_seg": true, | |
| "order": 1, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "spacing": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "patch_size": [ | |
| 160, | |
| 160, | |
| 160 | |
| ] | |
| } | |
| }, | |
| "experiment_planner_used": "FixedResEncUNetPlanner" | |
| }, | |
| "pretrain_num_input_channels": 1, | |
| "recommended_downstream_patchsize": [ | |
| 160, | |
| 160, | |
| 160 | |
| ], | |
| "key_to_encoder": "encoder.stages", | |
| "key_to_stem": "encoder.stem", | |
| "keys_to_in_proj": [ | |
| "encoder.stem.convs.0.conv", | |
| "encoder.stem.convs.0.all_modules.0" | |
| ], | |
| "key_to_lpe": null, | |
| "citations": [ | |
| { | |
| "type": "Architecture", | |
| "name": "ResEncL", | |
| "bibtex_citations": [ | |
| "@inproceedings{isensee2024nnu,\n title={nnu-net revisited: A call for rigorous validation in 3d medical image segmentation},\n author={Isensee, Fabian and Wald, Tassilo and Ulrich, Constantin and Baumgartner, Michael and Roy, Saikat and Maier-Hein, Klaus and Jaeger, Paul F},\n booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},\n pages={488--498},\n year={2024},\n organization={Springer}\n }" | |
| ] | |
| }, | |
| { | |
| "type": "Pretraining Method", | |
| "name": "Masked Auto Encoder", | |
| "bibtex_citations": [ | |
| "@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}" | |
| ] | |
| }, | |
| { | |
| "type": "Pre-Training Dataset", | |
| "name": "OpenMind", | |
| "bibtex_citations": [ | |
| "@article{wald2024openmind,\n title={An OpenMind for 3D medical vision self-supervised learning},\n author={Wald, Tassilo and Ulrich, Constantin and Suprijadi, Jonathan and Ziegler, Sebastian and Nohel, Michal and Peretzke, Robin and K{\"o}hler, Gregor and Maier-Hein, Klaus H},\n journal={arXiv preprint arXiv:2412.17041},\n year={2024}\n }\n " | |
| ] | |
| }, | |
| { | |
| "type": "Framework", | |
| "name": "nnssl", | |
| "bibtex_citations": [ | |
| "@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}" | |
| ] | |
| } | |
| ], | |
| "trainer_name": "BaseMAETrainer_BS8" | |
| } |