--- library_name: transformers license: apache-2.0 base_model: google/rembert tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_401 results: [] --- # populism_classifier_bsample_401 This model is a fine-tuned version of [google/rembert](https://huggingface.co/google/rembert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7541 - Accuracy: 0.8675 - 1-f1: 0.4593 - 1-recall: 0.9688 - 1-precision: 0.3010 - Balanced Acc: 0.9150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1705 | 1.0 | 6 | 0.8757 | 0.7550 | 0.3216 | 1.0 | 0.1916 | 0.8699 | | 0.0318 | 2.0 | 12 | 0.2496 | 0.9365 | 0.6154 | 0.875 | 0.4746 | 0.9076 | | 0.0026 | 3.0 | 18 | 0.5881 | 0.8748 | 0.4733 | 0.9688 | 0.3131 | 0.9189 | | 0.0028 | 4.0 | 24 | 0.7541 | 0.8675 | 0.4593 | 0.9688 | 0.3010 | 0.9150 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3