File size: 19,280 Bytes
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
49dda95
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dea54a
33456e7
 
 
 
9dea54a
f550107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33456e7
f550107
 
 
 
 
 
 
 
 
 
 
 
33456e7
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
 
 
 
 
 
 
 
 
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dea54a
33456e7
 
 
9dea54a
 
33456e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f550107
33456e7
 
 
 
 
0dcd6ba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from transformers.models.llama.modeling_llama import LlamaModel, LlamaConfig, LlamaForCausalLM, KwargsForCausalLM
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple, Union, Any, Dict
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import ModelOutput
import torch
import torch.nn as nn
import torch.functional as F
from transformers.processing_utils import Unpack
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers import PretrainedConfig
import math

class RecLlamaConfig(PretrainedConfig):
    model_type = "rec_llama"
    def __init__(
        self, 
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        mlp_bias=False,
        head_dim=None,
        prelude_layers:int = 2,
        recurrent_layers:int = 2,
        coda_layers:int = 2,
        mean_recurrence:int = 12,
        max_backprop_depth:int = 8,
        max_recurrence:int = 18,
        **kwargs
    ): 
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.mlp_bias = mlp_bias
        self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
        # Validate the correctness of rotary position embeddings parameters
        # BC: if there is a 'type' field, copy it it to 'rope_type'.
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        self.prelude_layers = prelude_layers
        self.recurrent_layers = recurrent_layers
        self.coda_layers = coda_layers
        self.mean_recurrence = mean_recurrence
        self.max_backprop_depth = max_backprop_depth
        self.max_recurrence = max_recurrence
        self.auto_map = {"AutoModelForCausalLM": "Arthur-LAGACHERIE/RecLlama-code--modeling_recllama.RecLlamaForCausalLM", "AutoConfig":"Arthur-LAGACHERIE/RecLlama-code--modeling_recllama.RecLlamaConfig"}
        
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

            

class RecDynamicCache(DynamicCache):
    def __init__(self, rec_layers: List[int]) -> None:
        super().__init__()
        self._seen_tokens = 0  # Used in generate to keep tally of how many tokens the cache has seen
        self.rec_layers = rec_layers
        self.key_cache: Dict[str, torch.Tensor] = {}
        self.value_cache: Dict[str, torch.Tensor] = {}
        self.rec_counters = {layer: 0 for layer in rec_layers}

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        
        if layer_idx not in self.rec_layers:
            # Not a recurrent layer
            layer_name = f"layer-{layer_idx}"
            if layer_idx == 0:
                self._seen_tokens += key_states.shape[-2]

            # Update the cache
            if key_states is not None:
                if layer_name not in self.key_cache:
                    self.key_cache[layer_name] = key_states
                    self.value_cache[layer_name] = value_states
                else:
                    self.key_cache[layer_name] = torch.cat([self.key_cache[layer_name], key_states], dim=-2)
                    self.value_cache[layer_name] = torch.cat([self.value_cache[layer_name], value_states], dim=-2)
        else:
            # Recurrent layer
            layer_name = f"rec-{layer_idx}-{self.rec_counters[layer_idx]}"
            self.rec_counters[layer_idx] += 1
            
            # Update the cache for recurrent layers
            if layer_name not in self.key_cache:
                self.key_cache[layer_name] = key_states
                self.value_cache[layer_name] = value_states
            else:
                self.key_cache[layer_name] = torch.cat([self.key_cache[layer_name], key_states], dim=-2)
                self.value_cache[layer_name] = torch.cat([self.value_cache[layer_name], value_states], dim=-2)
        return self.key_cache[layer_name], self.value_cache[layer_name]


class RecLlamaForCausalLM(LlamaForCausalLM):
    config_class = RecLlamaConfig
    def __init__(self, config: RecLlamaConfig, num_steps=None):
        super().__init__(config)
        self.prelude_layers = config.prelude_layers
        self.recurrent_layers = config.recurrent_layers
        self.coda_layers = config.coda_layers
        self.num_steps = num_steps
        
        for i in range(len(self.model.layers)):
            self.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.k_proj.out_features)) #nn.Parameter(torch.full((1, self.model.layers[i].self_attn.k_proj.out_features), k_bias_value))
            self.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.q_proj.out_features))
    

    def get_recurrent_params(self):
        recurrent_params = []
        
        # Get indices of recurrent layers
        recurrent_start = self.prelude_layers
        recurrent_end = self.prelude_layers + self.recurrent_layers
        
        # Extract parameters from recurrent layers
        for layer_idx in range(recurrent_start, recurrent_end):
            layer = self.model.layers[layer_idx]
            for param_name, param in layer.named_parameters():
                recurrent_params.append(param)
        
        return sum(p.numel() for p in recurrent_params)
        
    def get_param_count(self):
        return sum(p.numel() for p in self.parameters())

    def add_bias(self, q_bias_value=0.1, k_bias_value=0.1):
        for i in range(len(self.model.layers)):
            self.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.k_proj.out_features)) #nn.Parameter(torch.full((1, self.model.layers[i].self_attn.k_proj.out_features), k_bias_value))
            self.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.q_proj.out_features))
    
    @staticmethod      
    def add_bias_to_model(model, q_bias_value=0.1, k_bias_value=0.1):
        for i in range(len(model.model.layers)):
            model.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.zeros(1, model.model.layers[i].self_attn.k_proj.out_features))
            model.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.zeros(1, model.model.layers[i].self_attn.q_proj.out_features))
        return model
        
    @classmethod
    def from_llama_model(
        cls,
        llama_model: LlamaForCausalLM,
        prelude_layers: int,
        recurrent_layers: int,
        coda_layers: int,
        mean_recurrence: int = 4,
        max_backprop_depth: int = 6,
        max_recurrence: int = 8,
    ) -> "RecLlamaForCausalLM":
        """
        Convert a regular LlamaForCausalLM model to a RecLlamaForCausalLM model.
        
        Args:
            llama_model: The source LlamaForCausalLM model
            prelude_layers: Number of non-recurrent layers at the start
            recurrent_layers: Number of recurrent layers in the middle
            coda_layers: Number of non-recurrent layers at the end
            mean_recurrence: Average number of recurrent iterations (default: 1)
            max_backprop_depth: Maximum number of iterations to backpropagate through (default: 1)
        
        Returns:
            A RecLlamaForCausalLM model with weights copied from the source model
        """
        # Validate layer counts
        total_layers = len(llama_model.model.layers)
        if prelude_layers + recurrent_layers + coda_layers != total_layers:
            raise ValueError(
                f"Sum of layers ({prelude_layers + recurrent_layers + coda_layers}) "
                f"must equal total number of model layers ({total_layers})"
            )
        
        # Create new config based on original model's config
        config = RecLlamaConfig(**llama_model.config.to_dict())
        config.prelude_layers = prelude_layers
        config.recurrent_layers = recurrent_layers
        config.coda_layers = coda_layers
        config.mean_recurrence = mean_recurrence
        config.max_backprop_depth = max_backprop_depth
        config.max_recurrence = max_recurrence
        
        rec_model = cls(config)
        rec_model.model.embed_tokens = llama_model.model.embed_tokens
        rec_model.model.norm = llama_model.model.norm
        rec_model.model.layers = llama_model.model.layers
        rec_model.lm_head = llama_model.lm_head
        rec_model = RecLlamaForCausalLM.add_bias_to_model(rec_model)
        return rec_model
        
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        num_steps: int = None,
        **kwargs: Unpack[KwargsForCausalLM],
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        inputs_embeds = self.model.embed_tokens(input_ids)
    
        if use_cache and past_key_values is None:
            recurrent_layers = list(range(self.prelude_layers, self.prelude_layers+self.recurrent_layers))
            past_key_values = RecDynamicCache(recurrent_layers)
            
        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self.model._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        position_embeddings = self.model.rotary_emb(inputs_embeds, position_ids)

        # run non-recurrent blocks (prelude)
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for block_idx, block in enumerate(self.model.layers[:self.prelude_layers]):
            layer_outputs = block(
                inputs_embeds,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
            inputs_embeds = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
            
        # recurrent block
        inputs_embeds = self.iterate_forward(
            inputs_embeds=inputs_embeds,
            attention_mask=causal_mask,
            position_ids=position_ids,
            past_key_value=past_key_values,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            num_steps=num_steps
        )

        # coda blocks
        for block_idx, block in enumerate(self.model.layers[self.prelude_layers+self.recurrent_layers : self.prelude_layers+self.recurrent_layers+self.coda_layers]):
            layer_outputs = block(
                inputs_embeds,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
            inputs_embeds = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        inputs_embeds = self.model.norm(inputs_embeds)
        
        if output_hidden_states:
            all_hidden_states += (inputs_embeds,)

        outputs = BaseModelOutputWithPast(
            last_hidden_state=inputs_embeds,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(inputs_embeds[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.model.config.vocab_size, **kwargs)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + outputs if loss is not None else outputs

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def iterate_forward(
        self,
        inputs_embeds,
        attention_mask,
        position_ids,
        past_key_value,
        output_attentions,
        use_cache,
        cache_position,
        position_embeddings,
        num_steps=None,
    ):
        if num_steps is None and self.num_steps is None:
            num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler()  # type: ignore
        elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
            num_steps_no_grad, num_steps_with_grad = num_steps
        elif self.num_steps is not None:
            num_steps_no_grad, num_steps_with_grad = self.num_steps, self.num_steps
        else:
            num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0)

        with torch.no_grad():
            # ultra annoying in ddp due to
            # https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
            # for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
            # and all parameters are always used
            for step in range(num_steps_no_grad):
                for block_idx, block in enumerate(self.model.layers[self.prelude_layers:self.prelude_layers+self.recurrent_layers]):
                    
                    layer_output = block(
                        inputs_embeds,
                        attention_mask=attention_mask,
                        position_ids=position_ids,
                        past_key_value=past_key_value,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                        cache_position=cache_position,
                        position_embeddings=position_embeddings,
                    )
                    inputs_embeds = layer_output[0]

        
        for step in range(num_steps_with_grad):
            for block_idx, block in enumerate(self.model.layers[self.prelude_layers:self.prelude_layers+self.recurrent_layers]):
                layer_output = block(
                    inputs_embeds,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )
                inputs_embeds = layer_output[0]
                
        return inputs_embeds


    @torch._dynamo.disable(recursive=False)  # type: ignore
    def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
        """Outputs are long tensors so that they can be passed through compiled functions"""
        t = max(self.config.mean_recurrence, 0)
        if self.training:
            sigma = 0.5
            mu = math.log(t) - (sigma**2 / 2)
            rate = torch.zeros((1,), dtype=torch.float).log_normal_(mean=mu, std=sigma)
            n = torch.poisson(rate) + 1  # Corrected Poisson sampling
            n = torch.clamp(n, min=0, max=self.config.max_recurrence)  # Ensure non-negative
            k = torch.clamp(n, max=self.config.max_backprop_depth)  # Limit k properly
        else:
            n = torch.tensor(self.config.mean_recurrence, dtype=torch.long)
            k = torch.tensor(0, dtype=torch.long)

        return n.to(dtype=torch.long), k.to(dtype=torch.long)

    @torch.no_grad()
    def generate(self, *args, **kwargs):
        return super().generate(*args, **kwargs)