File size: 19,280 Bytes
33456e7 f550107 33456e7 f550107 49dda95 33456e7 9dea54a 33456e7 9dea54a f550107 33456e7 f550107 33456e7 f550107 33456e7 f550107 33456e7 f550107 33456e7 f550107 33456e7 f550107 33456e7 f550107 33456e7 9dea54a 33456e7 9dea54a 33456e7 f550107 33456e7 0dcd6ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from transformers.models.llama.modeling_llama import LlamaModel, LlamaConfig, LlamaForCausalLM, KwargsForCausalLM
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple, Union, Any, Dict
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import ModelOutput
import torch
import torch.nn as nn
import torch.functional as F
from transformers.processing_utils import Unpack
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers import PretrainedConfig
import math
class RecLlamaConfig(PretrainedConfig):
model_type = "rec_llama"
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
prelude_layers:int = 2,
recurrent_layers:int = 2,
coda_layers:int = 2,
mean_recurrence:int = 12,
max_backprop_depth:int = 8,
max_recurrence:int = 18,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
self.prelude_layers = prelude_layers
self.recurrent_layers = recurrent_layers
self.coda_layers = coda_layers
self.mean_recurrence = mean_recurrence
self.max_backprop_depth = max_backprop_depth
self.max_recurrence = max_recurrence
self.auto_map = {"AutoModelForCausalLM": "Arthur-LAGACHERIE/RecLlama-code--modeling_recllama.RecLlamaForCausalLM", "AutoConfig":"Arthur-LAGACHERIE/RecLlama-code--modeling_recllama.RecLlamaConfig"}
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class RecDynamicCache(DynamicCache):
def __init__(self, rec_layers: List[int]) -> None:
super().__init__()
self._seen_tokens = 0 # Used in generate to keep tally of how many tokens the cache has seen
self.rec_layers = rec_layers
self.key_cache: Dict[str, torch.Tensor] = {}
self.value_cache: Dict[str, torch.Tensor] = {}
self.rec_counters = {layer: 0 for layer in rec_layers}
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if layer_idx not in self.rec_layers:
# Not a recurrent layer
layer_name = f"layer-{layer_idx}"
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if key_states is not None:
if layer_name not in self.key_cache:
self.key_cache[layer_name] = key_states
self.value_cache[layer_name] = value_states
else:
self.key_cache[layer_name] = torch.cat([self.key_cache[layer_name], key_states], dim=-2)
self.value_cache[layer_name] = torch.cat([self.value_cache[layer_name], value_states], dim=-2)
else:
# Recurrent layer
layer_name = f"rec-{layer_idx}-{self.rec_counters[layer_idx]}"
self.rec_counters[layer_idx] += 1
# Update the cache for recurrent layers
if layer_name not in self.key_cache:
self.key_cache[layer_name] = key_states
self.value_cache[layer_name] = value_states
else:
self.key_cache[layer_name] = torch.cat([self.key_cache[layer_name], key_states], dim=-2)
self.value_cache[layer_name] = torch.cat([self.value_cache[layer_name], value_states], dim=-2)
return self.key_cache[layer_name], self.value_cache[layer_name]
class RecLlamaForCausalLM(LlamaForCausalLM):
config_class = RecLlamaConfig
def __init__(self, config: RecLlamaConfig, num_steps=None):
super().__init__(config)
self.prelude_layers = config.prelude_layers
self.recurrent_layers = config.recurrent_layers
self.coda_layers = config.coda_layers
self.num_steps = num_steps
for i in range(len(self.model.layers)):
self.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.k_proj.out_features)) #nn.Parameter(torch.full((1, self.model.layers[i].self_attn.k_proj.out_features), k_bias_value))
self.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.q_proj.out_features))
def get_recurrent_params(self):
recurrent_params = []
# Get indices of recurrent layers
recurrent_start = self.prelude_layers
recurrent_end = self.prelude_layers + self.recurrent_layers
# Extract parameters from recurrent layers
for layer_idx in range(recurrent_start, recurrent_end):
layer = self.model.layers[layer_idx]
for param_name, param in layer.named_parameters():
recurrent_params.append(param)
return sum(p.numel() for p in recurrent_params)
def get_param_count(self):
return sum(p.numel() for p in self.parameters())
def add_bias(self, q_bias_value=0.1, k_bias_value=0.1):
for i in range(len(self.model.layers)):
self.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.k_proj.out_features)) #nn.Parameter(torch.full((1, self.model.layers[i].self_attn.k_proj.out_features), k_bias_value))
self.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.randn(1, self.model.layers[i].self_attn.q_proj.out_features))
@staticmethod
def add_bias_to_model(model, q_bias_value=0.1, k_bias_value=0.1):
for i in range(len(model.model.layers)):
model.model.layers[i].self_attn.k_proj.bias = nn.Parameter(torch.zeros(1, model.model.layers[i].self_attn.k_proj.out_features))
model.model.layers[i].self_attn.q_proj.bias = nn.Parameter(torch.zeros(1, model.model.layers[i].self_attn.q_proj.out_features))
return model
@classmethod
def from_llama_model(
cls,
llama_model: LlamaForCausalLM,
prelude_layers: int,
recurrent_layers: int,
coda_layers: int,
mean_recurrence: int = 4,
max_backprop_depth: int = 6,
max_recurrence: int = 8,
) -> "RecLlamaForCausalLM":
"""
Convert a regular LlamaForCausalLM model to a RecLlamaForCausalLM model.
Args:
llama_model: The source LlamaForCausalLM model
prelude_layers: Number of non-recurrent layers at the start
recurrent_layers: Number of recurrent layers in the middle
coda_layers: Number of non-recurrent layers at the end
mean_recurrence: Average number of recurrent iterations (default: 1)
max_backprop_depth: Maximum number of iterations to backpropagate through (default: 1)
Returns:
A RecLlamaForCausalLM model with weights copied from the source model
"""
# Validate layer counts
total_layers = len(llama_model.model.layers)
if prelude_layers + recurrent_layers + coda_layers != total_layers:
raise ValueError(
f"Sum of layers ({prelude_layers + recurrent_layers + coda_layers}) "
f"must equal total number of model layers ({total_layers})"
)
# Create new config based on original model's config
config = RecLlamaConfig(**llama_model.config.to_dict())
config.prelude_layers = prelude_layers
config.recurrent_layers = recurrent_layers
config.coda_layers = coda_layers
config.mean_recurrence = mean_recurrence
config.max_backprop_depth = max_backprop_depth
config.max_recurrence = max_recurrence
rec_model = cls(config)
rec_model.model.embed_tokens = llama_model.model.embed_tokens
rec_model.model.norm = llama_model.model.norm
rec_model.model.layers = llama_model.model.layers
rec_model.lm_head = llama_model.lm_head
rec_model = RecLlamaForCausalLM.add_bias_to_model(rec_model)
return rec_model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
num_steps: int = None,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = self.model.embed_tokens(input_ids)
if use_cache and past_key_values is None:
recurrent_layers = list(range(self.prelude_layers, self.prelude_layers+self.recurrent_layers))
past_key_values = RecDynamicCache(recurrent_layers)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self.model._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
position_embeddings = self.model.rotary_emb(inputs_embeds, position_ids)
# run non-recurrent blocks (prelude)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for block_idx, block in enumerate(self.model.layers[:self.prelude_layers]):
layer_outputs = block(
inputs_embeds,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
inputs_embeds = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# recurrent block
inputs_embeds = self.iterate_forward(
inputs_embeds=inputs_embeds,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
num_steps=num_steps
)
# coda blocks
for block_idx, block in enumerate(self.model.layers[self.prelude_layers+self.recurrent_layers : self.prelude_layers+self.recurrent_layers+self.coda_layers]):
layer_outputs = block(
inputs_embeds,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
inputs_embeds = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
inputs_embeds = self.model.norm(inputs_embeds)
if output_hidden_states:
all_hidden_states += (inputs_embeds,)
outputs = BaseModelOutputWithPast(
last_hidden_state=inputs_embeds,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(inputs_embeds[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.model.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + outputs if loss is not None else outputs
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@torch._dynamo.disable(recursive=False) # type: ignore
def iterate_forward(
self,
inputs_embeds,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
cache_position,
position_embeddings,
num_steps=None,
):
if num_steps is None and self.num_steps is None:
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
num_steps_no_grad, num_steps_with_grad = num_steps
elif self.num_steps is not None:
num_steps_no_grad, num_steps_with_grad = self.num_steps, self.num_steps
else:
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0)
with torch.no_grad():
# ultra annoying in ddp due to
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
# and all parameters are always used
for step in range(num_steps_no_grad):
for block_idx, block in enumerate(self.model.layers[self.prelude_layers:self.prelude_layers+self.recurrent_layers]):
layer_output = block(
inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
inputs_embeds = layer_output[0]
for step in range(num_steps_with_grad):
for block_idx, block in enumerate(self.model.layers[self.prelude_layers:self.prelude_layers+self.recurrent_layers]):
layer_output = block(
inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
inputs_embeds = layer_output[0]
return inputs_embeds
@torch._dynamo.disable(recursive=False) # type: ignore
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Outputs are long tensors so that they can be passed through compiled functions"""
t = max(self.config.mean_recurrence, 0)
if self.training:
sigma = 0.5
mu = math.log(t) - (sigma**2 / 2)
rate = torch.zeros((1,), dtype=torch.float).log_normal_(mean=mu, std=sigma)
n = torch.poisson(rate) + 1 # Corrected Poisson sampling
n = torch.clamp(n, min=0, max=self.config.max_recurrence) # Ensure non-negative
k = torch.clamp(n, max=self.config.max_backprop_depth) # Limit k properly
else:
n = torch.tensor(self.config.mean_recurrence, dtype=torch.long)
k = torch.tensor(0, dtype=torch.long)
return n.to(dtype=torch.long), k.to(dtype=torch.long)
@torch.no_grad()
def generate(self, *args, **kwargs):
return super().generate(*args, **kwargs) |