File size: 2,153 Bytes
5e0d0b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: mit
base_model: EleutherAI/gpt-neo-1.3B
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gpt-medmentions
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt-medmentions

This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4512
- Precision: 0.4110
- Recall: 0.5052
- F1: 0.4533
- Accuracy: 0.4334

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.2514        | 1.0   | 2917  | 1.2192          | 0.4016    | 0.3853 | 0.3933 | 0.4191   |
| 1.0825        | 2.0   | 5834  | 1.1892          | 0.4234    | 0.6373 | 0.5088 | 0.4324   |
| 0.9093        | 3.0   | 8751  | 1.2419          | 0.4105    | 0.4848 | 0.4446 | 0.4308   |
| 0.7938        | 4.0   | 11668 | 1.3655          | 0.3774    | 0.3369 | 0.3560 | 0.4301   |
| 0.746         | 5.0   | 14585 | 1.4512          | 0.4110    | 0.5052 | 0.4533 | 0.4334   |


### Framework versions

- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1