BrownianNotion commited on
Commit
e195374
·
verified ·
1 Parent(s): ebf7042

Add files using upload-large-folder tool

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../models/Llama-2-7b-hf/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.37.0",
26
+ "use_cache": true,
27
+ "vocab_size": 32001
28
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.37.0"
10
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200
metrics.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "PPL": 5.993422031402588,
3
+ "arc_challenge": {
4
+ "acc": 0.39761092150170646,
5
+ "acc_stderr": 0.014301752223279531,
6
+ "acc_norm": 0.4300341296928328,
7
+ "acc_norm_stderr": 0.014467631559137998
8
+ },
9
+ "arc_easy": {
10
+ "acc": 0.7466329966329966,
11
+ "acc_stderr": 0.008924765424529264,
12
+ "acc_norm": 0.7074915824915825,
13
+ "acc_norm_stderr": 0.009334649503078411
14
+ },
15
+ "hellaswag": {
16
+ "acc": 0.5515833499302928,
17
+ "acc_stderr": 0.0049631563370107785,
18
+ "acc_norm": 0.73132842063334,
19
+ "acc_norm_stderr": 0.0044236280800520195
20
+ },
21
+ "piqa": {
22
+ "acc": 0.7687704026115343,
23
+ "acc_stderr": 0.00983706318062533,
24
+ "acc_norm": 0.779651795429815,
25
+ "acc_norm_stderr": 0.009670535456853134
26
+ },
27
+ "winogrande": {
28
+ "acc": 0.6787687450670876,
29
+ "acc_stderr": 0.013123599324558316
30
+ },
31
+ "QA Avg": 0.6286732831487235
32
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d5e054f098e8481c34cf263e8d6ad8de0e58c98d771bdb8971dab77ce37b683
3
+ size 4938993544
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3417e39a6e102dbbf4c2d13d65b150f593d3be6906b80fa594a5e7c5e77603
3
+ size 4947390880
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3935d05fdd93edd5697d7f729234e0c7cdc0848cd436d175d9eba1b7ff58920d
3
+ size 3590497008
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476847616
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3764ab64369aa722f0aba62bd45e4705a894f6aef6adc6bb8c3f6e41afa0374
3
+ size 14244
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1024,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,1261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 34.754608154296875,
3
+ "best_model_checkpoint": "./ckpts/Llama-2-7b-hf/int3-g128/checkpoint-200",
4
+ "epoch": 2.0,
5
+ "eval_steps": 40,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 0.0,
14
+ "loss": 70.1932,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 8e-06,
20
+ "loss": 67.6909,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 8e-06,
26
+ "loss": 76.7566,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 8e-06,
32
+ "loss": 64.8452,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 8e-06,
38
+ "loss": 52.2909,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 8e-06,
44
+ "loss": 67.598,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 8e-06,
50
+ "loss": 78.0235,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 8e-06,
56
+ "loss": 62.1902,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.09,
61
+ "learning_rate": 8e-06,
62
+ "loss": 61.246,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.1,
67
+ "learning_rate": 8e-06,
68
+ "loss": 55.0042,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.11,
73
+ "learning_rate": 8e-06,
74
+ "loss": 52.8673,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.12,
79
+ "learning_rate": 8e-06,
80
+ "loss": 55.6663,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.13,
85
+ "learning_rate": 8e-06,
86
+ "loss": 70.2528,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.14,
91
+ "learning_rate": 8e-06,
92
+ "loss": 60.2472,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.15,
97
+ "learning_rate": 8e-06,
98
+ "loss": 57.8519,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.16,
103
+ "learning_rate": 8e-06,
104
+ "loss": 47.3574,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.17,
109
+ "learning_rate": 8e-06,
110
+ "loss": 50.0662,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.18,
115
+ "learning_rate": 8e-06,
116
+ "loss": 52.1729,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.19,
121
+ "learning_rate": 8e-06,
122
+ "loss": 53.3213,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.2,
127
+ "learning_rate": 8e-06,
128
+ "loss": 53.2194,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.21,
133
+ "learning_rate": 8e-06,
134
+ "loss": 45.2142,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.22,
139
+ "learning_rate": 8e-06,
140
+ "loss": 42.5466,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.23,
145
+ "learning_rate": 8e-06,
146
+ "loss": 40.9077,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.24,
151
+ "learning_rate": 8e-06,
152
+ "loss": 50.6565,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.25,
157
+ "learning_rate": 8e-06,
158
+ "loss": 38.8218,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.26,
163
+ "learning_rate": 8e-06,
164
+ "loss": 42.316,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.27,
169
+ "learning_rate": 8e-06,
170
+ "loss": 36.5283,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.28,
175
+ "learning_rate": 8e-06,
176
+ "loss": 48.0275,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.29,
181
+ "learning_rate": 8e-06,
182
+ "loss": 38.2751,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.3,
187
+ "learning_rate": 8e-06,
188
+ "loss": 42.834,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.31,
193
+ "learning_rate": 8e-06,
194
+ "loss": 39.2073,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.32,
199
+ "learning_rate": 8e-06,
200
+ "loss": 44.7288,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.33,
205
+ "learning_rate": 8e-06,
206
+ "loss": 36.8056,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.34,
211
+ "learning_rate": 8e-06,
212
+ "loss": 41.3759,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.35,
217
+ "learning_rate": 8e-06,
218
+ "loss": 40.6316,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.36,
223
+ "learning_rate": 8e-06,
224
+ "loss": 47.9148,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.37,
229
+ "learning_rate": 8e-06,
230
+ "loss": 30.0608,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.38,
235
+ "learning_rate": 8e-06,
236
+ "loss": 33.4302,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.39,
241
+ "learning_rate": 8e-06,
242
+ "loss": 40.6124,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.4,
247
+ "learning_rate": 8e-06,
248
+ "loss": 33.3383,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.4,
253
+ "eval_loss": 40.53251266479492,
254
+ "eval_runtime": 154.9152,
255
+ "eval_samples_per_second": 10.328,
256
+ "eval_steps_per_second": 0.646,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.41,
261
+ "learning_rate": 8e-06,
262
+ "loss": 46.2151,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.42,
267
+ "learning_rate": 8e-06,
268
+ "loss": 29.8222,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.43,
273
+ "learning_rate": 8e-06,
274
+ "loss": 41.9211,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.44,
279
+ "learning_rate": 8e-06,
280
+ "loss": 34.8395,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.45,
285
+ "learning_rate": 8e-06,
286
+ "loss": 42.4029,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.46,
291
+ "learning_rate": 8e-06,
292
+ "loss": 38.0884,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.47,
297
+ "learning_rate": 8e-06,
298
+ "loss": 45.029,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.48,
303
+ "learning_rate": 8e-06,
304
+ "loss": 38.0069,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.49,
309
+ "learning_rate": 8e-06,
310
+ "loss": 40.672,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.5,
315
+ "learning_rate": 8e-06,
316
+ "loss": 39.236,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.51,
321
+ "learning_rate": 8e-06,
322
+ "loss": 39.0015,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.52,
327
+ "learning_rate": 8e-06,
328
+ "loss": 35.2186,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.53,
333
+ "learning_rate": 8e-06,
334
+ "loss": 37.2562,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.54,
339
+ "learning_rate": 8e-06,
340
+ "loss": 37.8843,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.55,
345
+ "learning_rate": 8e-06,
346
+ "loss": 38.0573,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.56,
351
+ "learning_rate": 8e-06,
352
+ "loss": 95.3889,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.57,
357
+ "learning_rate": 8e-06,
358
+ "loss": 126.8946,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.58,
363
+ "learning_rate": 8e-06,
364
+ "loss": 32.1835,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.59,
369
+ "learning_rate": 8e-06,
370
+ "loss": 37.8642,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.6,
375
+ "learning_rate": 8e-06,
376
+ "loss": 48.9652,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.61,
381
+ "learning_rate": 8e-06,
382
+ "loss": 28.4941,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.62,
387
+ "learning_rate": 8e-06,
388
+ "loss": 37.3462,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.63,
393
+ "learning_rate": 8e-06,
394
+ "loss": 31.7925,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.64,
399
+ "learning_rate": 8e-06,
400
+ "loss": 31.283,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.65,
405
+ "learning_rate": 8e-06,
406
+ "loss": 39.8363,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.66,
411
+ "learning_rate": 8e-06,
412
+ "loss": 31.2446,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.67,
417
+ "learning_rate": 8e-06,
418
+ "loss": 33.1192,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.68,
423
+ "learning_rate": 8e-06,
424
+ "loss": 33.2369,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.69,
429
+ "learning_rate": 8e-06,
430
+ "loss": 34.728,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.7,
435
+ "learning_rate": 8e-06,
436
+ "loss": 29.9321,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.71,
441
+ "learning_rate": 8e-06,
442
+ "loss": 36.9186,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.72,
447
+ "learning_rate": 8e-06,
448
+ "loss": 34.2812,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.73,
453
+ "learning_rate": 8e-06,
454
+ "loss": 55.7578,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.74,
459
+ "learning_rate": 8e-06,
460
+ "loss": 33.7752,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.75,
465
+ "learning_rate": 8e-06,
466
+ "loss": 31.4701,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.76,
471
+ "learning_rate": 8e-06,
472
+ "loss": 32.5574,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.77,
477
+ "learning_rate": 8e-06,
478
+ "loss": 32.2222,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.78,
483
+ "learning_rate": 8e-06,
484
+ "loss": 36.8305,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.79,
489
+ "learning_rate": 8e-06,
490
+ "loss": 31.7624,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.8,
495
+ "learning_rate": 8e-06,
496
+ "loss": 35.8632,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.8,
501
+ "eval_loss": 35.58610916137695,
502
+ "eval_runtime": 154.5226,
503
+ "eval_samples_per_second": 10.354,
504
+ "eval_steps_per_second": 0.647,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 0.81,
509
+ "learning_rate": 8e-06,
510
+ "loss": 35.7327,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 0.82,
515
+ "learning_rate": 8e-06,
516
+ "loss": 32.6438,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 0.83,
521
+ "learning_rate": 8e-06,
522
+ "loss": 36.4637,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 0.84,
527
+ "learning_rate": 8e-06,
528
+ "loss": 32.5079,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 0.85,
533
+ "learning_rate": 8e-06,
534
+ "loss": 32.3764,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 0.86,
539
+ "learning_rate": 8e-06,
540
+ "loss": 45.1832,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 0.87,
545
+ "learning_rate": 8e-06,
546
+ "loss": 41.6549,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 0.88,
551
+ "learning_rate": 8e-06,
552
+ "loss": 29.4204,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 0.89,
557
+ "learning_rate": 8e-06,
558
+ "loss": 26.9814,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 0.9,
563
+ "learning_rate": 8e-06,
564
+ "loss": 31.1968,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 0.91,
569
+ "learning_rate": 8e-06,
570
+ "loss": 35.0577,
571
+ "step": 91
572
+ },
573
+ {
574
+ "epoch": 0.92,
575
+ "learning_rate": 8e-06,
576
+ "loss": 31.8462,
577
+ "step": 92
578
+ },
579
+ {
580
+ "epoch": 0.93,
581
+ "learning_rate": 8e-06,
582
+ "loss": 38.5505,
583
+ "step": 93
584
+ },
585
+ {
586
+ "epoch": 0.94,
587
+ "learning_rate": 8e-06,
588
+ "loss": 37.2476,
589
+ "step": 94
590
+ },
591
+ {
592
+ "epoch": 0.95,
593
+ "learning_rate": 8e-06,
594
+ "loss": 31.5365,
595
+ "step": 95
596
+ },
597
+ {
598
+ "epoch": 0.96,
599
+ "learning_rate": 8e-06,
600
+ "loss": 38.1864,
601
+ "step": 96
602
+ },
603
+ {
604
+ "epoch": 0.97,
605
+ "learning_rate": 8e-06,
606
+ "loss": 31.9911,
607
+ "step": 97
608
+ },
609
+ {
610
+ "epoch": 0.98,
611
+ "learning_rate": 8e-06,
612
+ "loss": 34.924,
613
+ "step": 98
614
+ },
615
+ {
616
+ "epoch": 0.99,
617
+ "learning_rate": 8e-06,
618
+ "loss": 27.633,
619
+ "step": 99
620
+ },
621
+ {
622
+ "epoch": 1.0,
623
+ "learning_rate": 8e-06,
624
+ "loss": 27.6581,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 1.01,
629
+ "learning_rate": 8e-06,
630
+ "loss": 18.3519,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 1.02,
635
+ "learning_rate": 8e-06,
636
+ "loss": 39.2772,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 1.03,
641
+ "learning_rate": 8e-06,
642
+ "loss": 35.468,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 1.04,
647
+ "learning_rate": 8e-06,
648
+ "loss": 30.707,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 1.05,
653
+ "learning_rate": 8e-06,
654
+ "loss": 29.9162,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 1.06,
659
+ "learning_rate": 8e-06,
660
+ "loss": 36.4187,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 1.07,
665
+ "learning_rate": 8e-06,
666
+ "loss": 35.4851,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 1.08,
671
+ "learning_rate": 8e-06,
672
+ "loss": 28.6545,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 1.09,
677
+ "learning_rate": 8e-06,
678
+ "loss": 28.0569,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 1.1,
683
+ "learning_rate": 8e-06,
684
+ "loss": 28.9129,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 1.11,
689
+ "learning_rate": 8e-06,
690
+ "loss": 36.2509,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 1.12,
695
+ "learning_rate": 8e-06,
696
+ "loss": 39.2426,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 1.13,
701
+ "learning_rate": 8e-06,
702
+ "loss": 32.5102,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 1.14,
707
+ "learning_rate": 8e-06,
708
+ "loss": 41.6903,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 1.15,
713
+ "learning_rate": 8e-06,
714
+ "loss": 35.581,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 1.16,
719
+ "learning_rate": 8e-06,
720
+ "loss": 32.537,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 1.17,
725
+ "learning_rate": 8e-06,
726
+ "loss": 30.8246,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 1.18,
731
+ "learning_rate": 8e-06,
732
+ "loss": 40.0024,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 1.19,
737
+ "learning_rate": 8e-06,
738
+ "loss": 29.6397,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 1.2,
743
+ "learning_rate": 8e-06,
744
+ "loss": 37.67,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 1.2,
749
+ "eval_loss": 34.98255920410156,
750
+ "eval_runtime": 156.5425,
751
+ "eval_samples_per_second": 10.221,
752
+ "eval_steps_per_second": 0.639,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 1.21,
757
+ "learning_rate": 8e-06,
758
+ "loss": 29.2334,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 1.22,
763
+ "learning_rate": 8e-06,
764
+ "loss": 26.0862,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 1.23,
769
+ "learning_rate": 8e-06,
770
+ "loss": 32.7472,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 1.24,
775
+ "learning_rate": 8e-06,
776
+ "loss": 33.9717,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 1.25,
781
+ "learning_rate": 8e-06,
782
+ "loss": 26.5658,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 1.26,
787
+ "learning_rate": 8e-06,
788
+ "loss": 32.015,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 1.27,
793
+ "learning_rate": 8e-06,
794
+ "loss": 32.159,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 1.28,
799
+ "learning_rate": 8e-06,
800
+ "loss": 33.5825,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 1.29,
805
+ "learning_rate": 8e-06,
806
+ "loss": 30.7731,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 1.3,
811
+ "learning_rate": 8e-06,
812
+ "loss": 42.9997,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 1.31,
817
+ "learning_rate": 8e-06,
818
+ "loss": 29.0939,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 1.32,
823
+ "learning_rate": 8e-06,
824
+ "loss": 29.3714,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 1.33,
829
+ "learning_rate": 8e-06,
830
+ "loss": 37.7104,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 1.34,
835
+ "learning_rate": 8e-06,
836
+ "loss": 31.3754,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 1.35,
841
+ "learning_rate": 8e-06,
842
+ "loss": 33.5588,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 1.36,
847
+ "learning_rate": 8e-06,
848
+ "loss": 33.4266,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 1.37,
853
+ "learning_rate": 8e-06,
854
+ "loss": 35.2938,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 1.38,
859
+ "learning_rate": 8e-06,
860
+ "loss": 25.9463,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 1.39,
865
+ "learning_rate": 8e-06,
866
+ "loss": 36.727,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 1.4,
871
+ "learning_rate": 8e-06,
872
+ "loss": 26.5641,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 1.41,
877
+ "learning_rate": 8e-06,
878
+ "loss": 35.2519,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 1.42,
883
+ "learning_rate": 8e-06,
884
+ "loss": 28.0465,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 1.43,
889
+ "learning_rate": 8e-06,
890
+ "loss": 29.2274,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 1.44,
895
+ "learning_rate": 8e-06,
896
+ "loss": 29.7366,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 1.45,
901
+ "learning_rate": 8e-06,
902
+ "loss": 34.904,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 1.46,
907
+ "learning_rate": 8e-06,
908
+ "loss": 28.4035,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 1.47,
913
+ "learning_rate": 8e-06,
914
+ "loss": 32.1873,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 1.48,
919
+ "learning_rate": 8e-06,
920
+ "loss": 31.183,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 1.49,
925
+ "learning_rate": 8e-06,
926
+ "loss": 32.8216,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 1.5,
931
+ "learning_rate": 8e-06,
932
+ "loss": 27.9256,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 1.51,
937
+ "learning_rate": 8e-06,
938
+ "loss": 26.3767,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 1.52,
943
+ "learning_rate": 8e-06,
944
+ "loss": 32.3658,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 1.53,
949
+ "learning_rate": 8e-06,
950
+ "loss": 37.5396,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 1.54,
955
+ "learning_rate": 8e-06,
956
+ "loss": 32.7156,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 1.55,
961
+ "learning_rate": 8e-06,
962
+ "loss": 33.9043,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 1.56,
967
+ "learning_rate": 8e-06,
968
+ "loss": 33.2096,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 1.57,
973
+ "learning_rate": 8e-06,
974
+ "loss": 31.2798,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 1.58,
979
+ "learning_rate": 8e-06,
980
+ "loss": 34.9985,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 1.59,
985
+ "learning_rate": 8e-06,
986
+ "loss": 33.815,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 1.6,
991
+ "learning_rate": 8e-06,
992
+ "loss": 33.2257,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 1.6,
997
+ "eval_loss": 35.390445709228516,
998
+ "eval_runtime": 154.3859,
999
+ "eval_samples_per_second": 10.364,
1000
+ "eval_steps_per_second": 0.648,
1001
+ "step": 160
1002
+ },
1003
+ {
1004
+ "epoch": 1.61,
1005
+ "learning_rate": 8e-06,
1006
+ "loss": 32.0209,
1007
+ "step": 161
1008
+ },
1009
+ {
1010
+ "epoch": 1.62,
1011
+ "learning_rate": 8e-06,
1012
+ "loss": 35.3135,
1013
+ "step": 162
1014
+ },
1015
+ {
1016
+ "epoch": 1.63,
1017
+ "learning_rate": 8e-06,
1018
+ "loss": 29.391,
1019
+ "step": 163
1020
+ },
1021
+ {
1022
+ "epoch": 1.64,
1023
+ "learning_rate": 8e-06,
1024
+ "loss": 31.3538,
1025
+ "step": 164
1026
+ },
1027
+ {
1028
+ "epoch": 1.65,
1029
+ "learning_rate": 8e-06,
1030
+ "loss": 33.4257,
1031
+ "step": 165
1032
+ },
1033
+ {
1034
+ "epoch": 1.66,
1035
+ "learning_rate": 8e-06,
1036
+ "loss": 30.2217,
1037
+ "step": 166
1038
+ },
1039
+ {
1040
+ "epoch": 1.67,
1041
+ "learning_rate": 8e-06,
1042
+ "loss": 28.0411,
1043
+ "step": 167
1044
+ },
1045
+ {
1046
+ "epoch": 1.68,
1047
+ "learning_rate": 8e-06,
1048
+ "loss": 31.9822,
1049
+ "step": 168
1050
+ },
1051
+ {
1052
+ "epoch": 1.69,
1053
+ "learning_rate": 8e-06,
1054
+ "loss": 29.2197,
1055
+ "step": 169
1056
+ },
1057
+ {
1058
+ "epoch": 1.7,
1059
+ "learning_rate": 8e-06,
1060
+ "loss": 33.8519,
1061
+ "step": 170
1062
+ },
1063
+ {
1064
+ "epoch": 1.71,
1065
+ "learning_rate": 8e-06,
1066
+ "loss": 27.0424,
1067
+ "step": 171
1068
+ },
1069
+ {
1070
+ "epoch": 1.72,
1071
+ "learning_rate": 8e-06,
1072
+ "loss": 29.5065,
1073
+ "step": 172
1074
+ },
1075
+ {
1076
+ "epoch": 1.73,
1077
+ "learning_rate": 8e-06,
1078
+ "loss": 36.2223,
1079
+ "step": 173
1080
+ },
1081
+ {
1082
+ "epoch": 1.74,
1083
+ "learning_rate": 8e-06,
1084
+ "loss": 34.8057,
1085
+ "step": 174
1086
+ },
1087
+ {
1088
+ "epoch": 1.75,
1089
+ "learning_rate": 8e-06,
1090
+ "loss": 49.0899,
1091
+ "step": 175
1092
+ },
1093
+ {
1094
+ "epoch": 1.76,
1095
+ "learning_rate": 8e-06,
1096
+ "loss": 32.509,
1097
+ "step": 176
1098
+ },
1099
+ {
1100
+ "epoch": 1.77,
1101
+ "learning_rate": 8e-06,
1102
+ "loss": 31.7111,
1103
+ "step": 177
1104
+ },
1105
+ {
1106
+ "epoch": 1.78,
1107
+ "learning_rate": 8e-06,
1108
+ "loss": 34.1072,
1109
+ "step": 178
1110
+ },
1111
+ {
1112
+ "epoch": 1.79,
1113
+ "learning_rate": 8e-06,
1114
+ "loss": 28.5069,
1115
+ "step": 179
1116
+ },
1117
+ {
1118
+ "epoch": 1.8,
1119
+ "learning_rate": 8e-06,
1120
+ "loss": 26.254,
1121
+ "step": 180
1122
+ },
1123
+ {
1124
+ "epoch": 1.81,
1125
+ "learning_rate": 8e-06,
1126
+ "loss": 32.7402,
1127
+ "step": 181
1128
+ },
1129
+ {
1130
+ "epoch": 1.82,
1131
+ "learning_rate": 8e-06,
1132
+ "loss": 29.3875,
1133
+ "step": 182
1134
+ },
1135
+ {
1136
+ "epoch": 1.83,
1137
+ "learning_rate": 8e-06,
1138
+ "loss": 33.2701,
1139
+ "step": 183
1140
+ },
1141
+ {
1142
+ "epoch": 1.84,
1143
+ "learning_rate": 8e-06,
1144
+ "loss": 35.6712,
1145
+ "step": 184
1146
+ },
1147
+ {
1148
+ "epoch": 1.85,
1149
+ "learning_rate": 8e-06,
1150
+ "loss": 32.692,
1151
+ "step": 185
1152
+ },
1153
+ {
1154
+ "epoch": 1.86,
1155
+ "learning_rate": 8e-06,
1156
+ "loss": 35.3144,
1157
+ "step": 186
1158
+ },
1159
+ {
1160
+ "epoch": 1.87,
1161
+ "learning_rate": 8e-06,
1162
+ "loss": 34.8303,
1163
+ "step": 187
1164
+ },
1165
+ {
1166
+ "epoch": 1.88,
1167
+ "learning_rate": 8e-06,
1168
+ "loss": 32.8445,
1169
+ "step": 188
1170
+ },
1171
+ {
1172
+ "epoch": 1.89,
1173
+ "learning_rate": 8e-06,
1174
+ "loss": 31.4664,
1175
+ "step": 189
1176
+ },
1177
+ {
1178
+ "epoch": 1.9,
1179
+ "learning_rate": 8e-06,
1180
+ "loss": 27.9705,
1181
+ "step": 190
1182
+ },
1183
+ {
1184
+ "epoch": 1.91,
1185
+ "learning_rate": 8e-06,
1186
+ "loss": 26.9433,
1187
+ "step": 191
1188
+ },
1189
+ {
1190
+ "epoch": 1.92,
1191
+ "learning_rate": 8e-06,
1192
+ "loss": 36.6188,
1193
+ "step": 192
1194
+ },
1195
+ {
1196
+ "epoch": 1.93,
1197
+ "learning_rate": 8e-06,
1198
+ "loss": 27.7417,
1199
+ "step": 193
1200
+ },
1201
+ {
1202
+ "epoch": 1.94,
1203
+ "learning_rate": 8e-06,
1204
+ "loss": 33.3827,
1205
+ "step": 194
1206
+ },
1207
+ {
1208
+ "epoch": 1.95,
1209
+ "learning_rate": 8e-06,
1210
+ "loss": 36.5606,
1211
+ "step": 195
1212
+ },
1213
+ {
1214
+ "epoch": 1.96,
1215
+ "learning_rate": 8e-06,
1216
+ "loss": 31.4672,
1217
+ "step": 196
1218
+ },
1219
+ {
1220
+ "epoch": 1.97,
1221
+ "learning_rate": 8e-06,
1222
+ "loss": 32.3858,
1223
+ "step": 197
1224
+ },
1225
+ {
1226
+ "epoch": 1.98,
1227
+ "learning_rate": 8e-06,
1228
+ "loss": 27.9721,
1229
+ "step": 198
1230
+ },
1231
+ {
1232
+ "epoch": 1.99,
1233
+ "learning_rate": 8e-06,
1234
+ "loss": 34.6578,
1235
+ "step": 199
1236
+ },
1237
+ {
1238
+ "epoch": 2.0,
1239
+ "learning_rate": 8e-06,
1240
+ "loss": 26.9039,
1241
+ "step": 200
1242
+ },
1243
+ {
1244
+ "epoch": 2.0,
1245
+ "eval_loss": 34.754608154296875,
1246
+ "eval_runtime": 154.4449,
1247
+ "eval_samples_per_second": 10.36,
1248
+ "eval_steps_per_second": 0.647,
1249
+ "step": 200
1250
+ }
1251
+ ],
1252
+ "logging_steps": 1.0,
1253
+ "max_steps": 400,
1254
+ "num_input_tokens_seen": 0,
1255
+ "num_train_epochs": 4,
1256
+ "save_steps": 40,
1257
+ "total_flos": 5.196229675843584e+17,
1258
+ "train_batch_size": 16,
1259
+ "trial_name": null,
1260
+ "trial_params": null
1261
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb3fe99ebfcabaf578e412df14c9a8e50de0fde1cf1e99733e1a38ab99394fd2
3
+ size 6392
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)