Add files using upload-large-folder tool
Browse files- added_tokens.json +3 -0
- config.json +28 -0
- generation_config.json +10 -0
- latest +1 -0
- metrics.json +32 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- rng_state.pth +3 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +50 -0
- trainer_state.json +1261 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[PAD]": 32000
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "../models/Llama-2-7b-hf/",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 4096,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 11008,
|
| 14 |
+
"max_position_embeddings": 4096,
|
| 15 |
+
"model_type": "llama",
|
| 16 |
+
"num_attention_heads": 32,
|
| 17 |
+
"num_hidden_layers": 32,
|
| 18 |
+
"num_key_value_heads": 32,
|
| 19 |
+
"pretraining_tp": 1,
|
| 20 |
+
"rms_norm_eps": 1e-05,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 10000.0,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.37.0",
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 32001
|
| 28 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"temperature": 0.6,
|
| 8 |
+
"top_p": 0.9,
|
| 9 |
+
"transformers_version": "4.37.0"
|
| 10 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step200
|
metrics.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"PPL": 5.993422031402588,
|
| 3 |
+
"arc_challenge": {
|
| 4 |
+
"acc": 0.39761092150170646,
|
| 5 |
+
"acc_stderr": 0.014301752223279531,
|
| 6 |
+
"acc_norm": 0.4300341296928328,
|
| 7 |
+
"acc_norm_stderr": 0.014467631559137998
|
| 8 |
+
},
|
| 9 |
+
"arc_easy": {
|
| 10 |
+
"acc": 0.7466329966329966,
|
| 11 |
+
"acc_stderr": 0.008924765424529264,
|
| 12 |
+
"acc_norm": 0.7074915824915825,
|
| 13 |
+
"acc_norm_stderr": 0.009334649503078411
|
| 14 |
+
},
|
| 15 |
+
"hellaswag": {
|
| 16 |
+
"acc": 0.5515833499302928,
|
| 17 |
+
"acc_stderr": 0.0049631563370107785,
|
| 18 |
+
"acc_norm": 0.73132842063334,
|
| 19 |
+
"acc_norm_stderr": 0.0044236280800520195
|
| 20 |
+
},
|
| 21 |
+
"piqa": {
|
| 22 |
+
"acc": 0.7687704026115343,
|
| 23 |
+
"acc_stderr": 0.00983706318062533,
|
| 24 |
+
"acc_norm": 0.779651795429815,
|
| 25 |
+
"acc_norm_stderr": 0.009670535456853134
|
| 26 |
+
},
|
| 27 |
+
"winogrande": {
|
| 28 |
+
"acc": 0.6787687450670876,
|
| 29 |
+
"acc_stderr": 0.013123599324558316
|
| 30 |
+
},
|
| 31 |
+
"QA Avg": 0.6286732831487235
|
| 32 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d5e054f098e8481c34cf263e8d6ad8de0e58c98d771bdb8971dab77ce37b683
|
| 3 |
+
size 4938993544
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b3417e39a6e102dbbf4c2d13d65b150f593d3be6906b80fa594a5e7c5e77603
|
| 3 |
+
size 4947390880
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3935d05fdd93edd5697d7f729234e0c7cdc0848cd436d175d9eba1b7ff58920d
|
| 3 |
+
size 3590497008
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 13476847616
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3764ab64369aa722f0aba62bd45e4705a894f6aef6adc6bb8c3f6e41afa0374
|
| 3 |
+
size 14244
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"32000": {
|
| 30 |
+
"content": "[PAD]",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
}
|
| 37 |
+
},
|
| 38 |
+
"bos_token": "<s>",
|
| 39 |
+
"clean_up_tokenization_spaces": false,
|
| 40 |
+
"eos_token": "</s>",
|
| 41 |
+
"legacy": false,
|
| 42 |
+
"model_max_length": 1024,
|
| 43 |
+
"pad_token": "[PAD]",
|
| 44 |
+
"padding_side": "right",
|
| 45 |
+
"sp_model_kwargs": {},
|
| 46 |
+
"spaces_between_special_tokens": false,
|
| 47 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 48 |
+
"unk_token": "<unk>",
|
| 49 |
+
"use_default_system_prompt": false
|
| 50 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 34.754608154296875,
|
| 3 |
+
"best_model_checkpoint": "./ckpts/Llama-2-7b-hf/int3-g128/checkpoint-200",
|
| 4 |
+
"epoch": 2.0,
|
| 5 |
+
"eval_steps": 40,
|
| 6 |
+
"global_step": 200,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"learning_rate": 0.0,
|
| 14 |
+
"loss": 70.1932,
|
| 15 |
+
"step": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.02,
|
| 19 |
+
"learning_rate": 8e-06,
|
| 20 |
+
"loss": 67.6909,
|
| 21 |
+
"step": 2
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.03,
|
| 25 |
+
"learning_rate": 8e-06,
|
| 26 |
+
"loss": 76.7566,
|
| 27 |
+
"step": 3
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.04,
|
| 31 |
+
"learning_rate": 8e-06,
|
| 32 |
+
"loss": 64.8452,
|
| 33 |
+
"step": 4
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.05,
|
| 37 |
+
"learning_rate": 8e-06,
|
| 38 |
+
"loss": 52.2909,
|
| 39 |
+
"step": 5
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.06,
|
| 43 |
+
"learning_rate": 8e-06,
|
| 44 |
+
"loss": 67.598,
|
| 45 |
+
"step": 6
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.07,
|
| 49 |
+
"learning_rate": 8e-06,
|
| 50 |
+
"loss": 78.0235,
|
| 51 |
+
"step": 7
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.08,
|
| 55 |
+
"learning_rate": 8e-06,
|
| 56 |
+
"loss": 62.1902,
|
| 57 |
+
"step": 8
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.09,
|
| 61 |
+
"learning_rate": 8e-06,
|
| 62 |
+
"loss": 61.246,
|
| 63 |
+
"step": 9
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.1,
|
| 67 |
+
"learning_rate": 8e-06,
|
| 68 |
+
"loss": 55.0042,
|
| 69 |
+
"step": 10
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.11,
|
| 73 |
+
"learning_rate": 8e-06,
|
| 74 |
+
"loss": 52.8673,
|
| 75 |
+
"step": 11
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"epoch": 0.12,
|
| 79 |
+
"learning_rate": 8e-06,
|
| 80 |
+
"loss": 55.6663,
|
| 81 |
+
"step": 12
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.13,
|
| 85 |
+
"learning_rate": 8e-06,
|
| 86 |
+
"loss": 70.2528,
|
| 87 |
+
"step": 13
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.14,
|
| 91 |
+
"learning_rate": 8e-06,
|
| 92 |
+
"loss": 60.2472,
|
| 93 |
+
"step": 14
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.15,
|
| 97 |
+
"learning_rate": 8e-06,
|
| 98 |
+
"loss": 57.8519,
|
| 99 |
+
"step": 15
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.16,
|
| 103 |
+
"learning_rate": 8e-06,
|
| 104 |
+
"loss": 47.3574,
|
| 105 |
+
"step": 16
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.17,
|
| 109 |
+
"learning_rate": 8e-06,
|
| 110 |
+
"loss": 50.0662,
|
| 111 |
+
"step": 17
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 0.18,
|
| 115 |
+
"learning_rate": 8e-06,
|
| 116 |
+
"loss": 52.1729,
|
| 117 |
+
"step": 18
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.19,
|
| 121 |
+
"learning_rate": 8e-06,
|
| 122 |
+
"loss": 53.3213,
|
| 123 |
+
"step": 19
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.2,
|
| 127 |
+
"learning_rate": 8e-06,
|
| 128 |
+
"loss": 53.2194,
|
| 129 |
+
"step": 20
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.21,
|
| 133 |
+
"learning_rate": 8e-06,
|
| 134 |
+
"loss": 45.2142,
|
| 135 |
+
"step": 21
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.22,
|
| 139 |
+
"learning_rate": 8e-06,
|
| 140 |
+
"loss": 42.5466,
|
| 141 |
+
"step": 22
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.23,
|
| 145 |
+
"learning_rate": 8e-06,
|
| 146 |
+
"loss": 40.9077,
|
| 147 |
+
"step": 23
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.24,
|
| 151 |
+
"learning_rate": 8e-06,
|
| 152 |
+
"loss": 50.6565,
|
| 153 |
+
"step": 24
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.25,
|
| 157 |
+
"learning_rate": 8e-06,
|
| 158 |
+
"loss": 38.8218,
|
| 159 |
+
"step": 25
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.26,
|
| 163 |
+
"learning_rate": 8e-06,
|
| 164 |
+
"loss": 42.316,
|
| 165 |
+
"step": 26
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.27,
|
| 169 |
+
"learning_rate": 8e-06,
|
| 170 |
+
"loss": 36.5283,
|
| 171 |
+
"step": 27
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.28,
|
| 175 |
+
"learning_rate": 8e-06,
|
| 176 |
+
"loss": 48.0275,
|
| 177 |
+
"step": 28
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.29,
|
| 181 |
+
"learning_rate": 8e-06,
|
| 182 |
+
"loss": 38.2751,
|
| 183 |
+
"step": 29
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"epoch": 0.3,
|
| 187 |
+
"learning_rate": 8e-06,
|
| 188 |
+
"loss": 42.834,
|
| 189 |
+
"step": 30
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.31,
|
| 193 |
+
"learning_rate": 8e-06,
|
| 194 |
+
"loss": 39.2073,
|
| 195 |
+
"step": 31
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.32,
|
| 199 |
+
"learning_rate": 8e-06,
|
| 200 |
+
"loss": 44.7288,
|
| 201 |
+
"step": 32
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.33,
|
| 205 |
+
"learning_rate": 8e-06,
|
| 206 |
+
"loss": 36.8056,
|
| 207 |
+
"step": 33
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.34,
|
| 211 |
+
"learning_rate": 8e-06,
|
| 212 |
+
"loss": 41.3759,
|
| 213 |
+
"step": 34
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.35,
|
| 217 |
+
"learning_rate": 8e-06,
|
| 218 |
+
"loss": 40.6316,
|
| 219 |
+
"step": 35
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.36,
|
| 223 |
+
"learning_rate": 8e-06,
|
| 224 |
+
"loss": 47.9148,
|
| 225 |
+
"step": 36
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.37,
|
| 229 |
+
"learning_rate": 8e-06,
|
| 230 |
+
"loss": 30.0608,
|
| 231 |
+
"step": 37
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 0.38,
|
| 235 |
+
"learning_rate": 8e-06,
|
| 236 |
+
"loss": 33.4302,
|
| 237 |
+
"step": 38
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.39,
|
| 241 |
+
"learning_rate": 8e-06,
|
| 242 |
+
"loss": 40.6124,
|
| 243 |
+
"step": 39
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.4,
|
| 247 |
+
"learning_rate": 8e-06,
|
| 248 |
+
"loss": 33.3383,
|
| 249 |
+
"step": 40
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.4,
|
| 253 |
+
"eval_loss": 40.53251266479492,
|
| 254 |
+
"eval_runtime": 154.9152,
|
| 255 |
+
"eval_samples_per_second": 10.328,
|
| 256 |
+
"eval_steps_per_second": 0.646,
|
| 257 |
+
"step": 40
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"epoch": 0.41,
|
| 261 |
+
"learning_rate": 8e-06,
|
| 262 |
+
"loss": 46.2151,
|
| 263 |
+
"step": 41
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"epoch": 0.42,
|
| 267 |
+
"learning_rate": 8e-06,
|
| 268 |
+
"loss": 29.8222,
|
| 269 |
+
"step": 42
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.43,
|
| 273 |
+
"learning_rate": 8e-06,
|
| 274 |
+
"loss": 41.9211,
|
| 275 |
+
"step": 43
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.44,
|
| 279 |
+
"learning_rate": 8e-06,
|
| 280 |
+
"loss": 34.8395,
|
| 281 |
+
"step": 44
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"epoch": 0.45,
|
| 285 |
+
"learning_rate": 8e-06,
|
| 286 |
+
"loss": 42.4029,
|
| 287 |
+
"step": 45
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"epoch": 0.46,
|
| 291 |
+
"learning_rate": 8e-06,
|
| 292 |
+
"loss": 38.0884,
|
| 293 |
+
"step": 46
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"epoch": 0.47,
|
| 297 |
+
"learning_rate": 8e-06,
|
| 298 |
+
"loss": 45.029,
|
| 299 |
+
"step": 47
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 0.48,
|
| 303 |
+
"learning_rate": 8e-06,
|
| 304 |
+
"loss": 38.0069,
|
| 305 |
+
"step": 48
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"epoch": 0.49,
|
| 309 |
+
"learning_rate": 8e-06,
|
| 310 |
+
"loss": 40.672,
|
| 311 |
+
"step": 49
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.5,
|
| 315 |
+
"learning_rate": 8e-06,
|
| 316 |
+
"loss": 39.236,
|
| 317 |
+
"step": 50
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.51,
|
| 321 |
+
"learning_rate": 8e-06,
|
| 322 |
+
"loss": 39.0015,
|
| 323 |
+
"step": 51
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"epoch": 0.52,
|
| 327 |
+
"learning_rate": 8e-06,
|
| 328 |
+
"loss": 35.2186,
|
| 329 |
+
"step": 52
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"epoch": 0.53,
|
| 333 |
+
"learning_rate": 8e-06,
|
| 334 |
+
"loss": 37.2562,
|
| 335 |
+
"step": 53
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"epoch": 0.54,
|
| 339 |
+
"learning_rate": 8e-06,
|
| 340 |
+
"loss": 37.8843,
|
| 341 |
+
"step": 54
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"epoch": 0.55,
|
| 345 |
+
"learning_rate": 8e-06,
|
| 346 |
+
"loss": 38.0573,
|
| 347 |
+
"step": 55
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"epoch": 0.56,
|
| 351 |
+
"learning_rate": 8e-06,
|
| 352 |
+
"loss": 95.3889,
|
| 353 |
+
"step": 56
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.57,
|
| 357 |
+
"learning_rate": 8e-06,
|
| 358 |
+
"loss": 126.8946,
|
| 359 |
+
"step": 57
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.58,
|
| 363 |
+
"learning_rate": 8e-06,
|
| 364 |
+
"loss": 32.1835,
|
| 365 |
+
"step": 58
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"epoch": 0.59,
|
| 369 |
+
"learning_rate": 8e-06,
|
| 370 |
+
"loss": 37.8642,
|
| 371 |
+
"step": 59
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"epoch": 0.6,
|
| 375 |
+
"learning_rate": 8e-06,
|
| 376 |
+
"loss": 48.9652,
|
| 377 |
+
"step": 60
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"epoch": 0.61,
|
| 381 |
+
"learning_rate": 8e-06,
|
| 382 |
+
"loss": 28.4941,
|
| 383 |
+
"step": 61
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"epoch": 0.62,
|
| 387 |
+
"learning_rate": 8e-06,
|
| 388 |
+
"loss": 37.3462,
|
| 389 |
+
"step": 62
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"epoch": 0.63,
|
| 393 |
+
"learning_rate": 8e-06,
|
| 394 |
+
"loss": 31.7925,
|
| 395 |
+
"step": 63
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.64,
|
| 399 |
+
"learning_rate": 8e-06,
|
| 400 |
+
"loss": 31.283,
|
| 401 |
+
"step": 64
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.65,
|
| 405 |
+
"learning_rate": 8e-06,
|
| 406 |
+
"loss": 39.8363,
|
| 407 |
+
"step": 65
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"epoch": 0.66,
|
| 411 |
+
"learning_rate": 8e-06,
|
| 412 |
+
"loss": 31.2446,
|
| 413 |
+
"step": 66
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"epoch": 0.67,
|
| 417 |
+
"learning_rate": 8e-06,
|
| 418 |
+
"loss": 33.1192,
|
| 419 |
+
"step": 67
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"epoch": 0.68,
|
| 423 |
+
"learning_rate": 8e-06,
|
| 424 |
+
"loss": 33.2369,
|
| 425 |
+
"step": 68
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"epoch": 0.69,
|
| 429 |
+
"learning_rate": 8e-06,
|
| 430 |
+
"loss": 34.728,
|
| 431 |
+
"step": 69
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"epoch": 0.7,
|
| 435 |
+
"learning_rate": 8e-06,
|
| 436 |
+
"loss": 29.9321,
|
| 437 |
+
"step": 70
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.71,
|
| 441 |
+
"learning_rate": 8e-06,
|
| 442 |
+
"loss": 36.9186,
|
| 443 |
+
"step": 71
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.72,
|
| 447 |
+
"learning_rate": 8e-06,
|
| 448 |
+
"loss": 34.2812,
|
| 449 |
+
"step": 72
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"epoch": 0.73,
|
| 453 |
+
"learning_rate": 8e-06,
|
| 454 |
+
"loss": 55.7578,
|
| 455 |
+
"step": 73
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"epoch": 0.74,
|
| 459 |
+
"learning_rate": 8e-06,
|
| 460 |
+
"loss": 33.7752,
|
| 461 |
+
"step": 74
|
| 462 |
+
},
|
| 463 |
+
{
|
| 464 |
+
"epoch": 0.75,
|
| 465 |
+
"learning_rate": 8e-06,
|
| 466 |
+
"loss": 31.4701,
|
| 467 |
+
"step": 75
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"epoch": 0.76,
|
| 471 |
+
"learning_rate": 8e-06,
|
| 472 |
+
"loss": 32.5574,
|
| 473 |
+
"step": 76
|
| 474 |
+
},
|
| 475 |
+
{
|
| 476 |
+
"epoch": 0.77,
|
| 477 |
+
"learning_rate": 8e-06,
|
| 478 |
+
"loss": 32.2222,
|
| 479 |
+
"step": 77
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.78,
|
| 483 |
+
"learning_rate": 8e-06,
|
| 484 |
+
"loss": 36.8305,
|
| 485 |
+
"step": 78
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.79,
|
| 489 |
+
"learning_rate": 8e-06,
|
| 490 |
+
"loss": 31.7624,
|
| 491 |
+
"step": 79
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"epoch": 0.8,
|
| 495 |
+
"learning_rate": 8e-06,
|
| 496 |
+
"loss": 35.8632,
|
| 497 |
+
"step": 80
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"epoch": 0.8,
|
| 501 |
+
"eval_loss": 35.58610916137695,
|
| 502 |
+
"eval_runtime": 154.5226,
|
| 503 |
+
"eval_samples_per_second": 10.354,
|
| 504 |
+
"eval_steps_per_second": 0.647,
|
| 505 |
+
"step": 80
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"epoch": 0.81,
|
| 509 |
+
"learning_rate": 8e-06,
|
| 510 |
+
"loss": 35.7327,
|
| 511 |
+
"step": 81
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"epoch": 0.82,
|
| 515 |
+
"learning_rate": 8e-06,
|
| 516 |
+
"loss": 32.6438,
|
| 517 |
+
"step": 82
|
| 518 |
+
},
|
| 519 |
+
{
|
| 520 |
+
"epoch": 0.83,
|
| 521 |
+
"learning_rate": 8e-06,
|
| 522 |
+
"loss": 36.4637,
|
| 523 |
+
"step": 83
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"epoch": 0.84,
|
| 527 |
+
"learning_rate": 8e-06,
|
| 528 |
+
"loss": 32.5079,
|
| 529 |
+
"step": 84
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"epoch": 0.85,
|
| 533 |
+
"learning_rate": 8e-06,
|
| 534 |
+
"loss": 32.3764,
|
| 535 |
+
"step": 85
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.86,
|
| 539 |
+
"learning_rate": 8e-06,
|
| 540 |
+
"loss": 45.1832,
|
| 541 |
+
"step": 86
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.87,
|
| 545 |
+
"learning_rate": 8e-06,
|
| 546 |
+
"loss": 41.6549,
|
| 547 |
+
"step": 87
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
"epoch": 0.88,
|
| 551 |
+
"learning_rate": 8e-06,
|
| 552 |
+
"loss": 29.4204,
|
| 553 |
+
"step": 88
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"epoch": 0.89,
|
| 557 |
+
"learning_rate": 8e-06,
|
| 558 |
+
"loss": 26.9814,
|
| 559 |
+
"step": 89
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"epoch": 0.9,
|
| 563 |
+
"learning_rate": 8e-06,
|
| 564 |
+
"loss": 31.1968,
|
| 565 |
+
"step": 90
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"epoch": 0.91,
|
| 569 |
+
"learning_rate": 8e-06,
|
| 570 |
+
"loss": 35.0577,
|
| 571 |
+
"step": 91
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"epoch": 0.92,
|
| 575 |
+
"learning_rate": 8e-06,
|
| 576 |
+
"loss": 31.8462,
|
| 577 |
+
"step": 92
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.93,
|
| 581 |
+
"learning_rate": 8e-06,
|
| 582 |
+
"loss": 38.5505,
|
| 583 |
+
"step": 93
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.94,
|
| 587 |
+
"learning_rate": 8e-06,
|
| 588 |
+
"loss": 37.2476,
|
| 589 |
+
"step": 94
|
| 590 |
+
},
|
| 591 |
+
{
|
| 592 |
+
"epoch": 0.95,
|
| 593 |
+
"learning_rate": 8e-06,
|
| 594 |
+
"loss": 31.5365,
|
| 595 |
+
"step": 95
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"epoch": 0.96,
|
| 599 |
+
"learning_rate": 8e-06,
|
| 600 |
+
"loss": 38.1864,
|
| 601 |
+
"step": 96
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"epoch": 0.97,
|
| 605 |
+
"learning_rate": 8e-06,
|
| 606 |
+
"loss": 31.9911,
|
| 607 |
+
"step": 97
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"epoch": 0.98,
|
| 611 |
+
"learning_rate": 8e-06,
|
| 612 |
+
"loss": 34.924,
|
| 613 |
+
"step": 98
|
| 614 |
+
},
|
| 615 |
+
{
|
| 616 |
+
"epoch": 0.99,
|
| 617 |
+
"learning_rate": 8e-06,
|
| 618 |
+
"loss": 27.633,
|
| 619 |
+
"step": 99
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 1.0,
|
| 623 |
+
"learning_rate": 8e-06,
|
| 624 |
+
"loss": 27.6581,
|
| 625 |
+
"step": 100
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 1.01,
|
| 629 |
+
"learning_rate": 8e-06,
|
| 630 |
+
"loss": 18.3519,
|
| 631 |
+
"step": 101
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"epoch": 1.02,
|
| 635 |
+
"learning_rate": 8e-06,
|
| 636 |
+
"loss": 39.2772,
|
| 637 |
+
"step": 102
|
| 638 |
+
},
|
| 639 |
+
{
|
| 640 |
+
"epoch": 1.03,
|
| 641 |
+
"learning_rate": 8e-06,
|
| 642 |
+
"loss": 35.468,
|
| 643 |
+
"step": 103
|
| 644 |
+
},
|
| 645 |
+
{
|
| 646 |
+
"epoch": 1.04,
|
| 647 |
+
"learning_rate": 8e-06,
|
| 648 |
+
"loss": 30.707,
|
| 649 |
+
"step": 104
|
| 650 |
+
},
|
| 651 |
+
{
|
| 652 |
+
"epoch": 1.05,
|
| 653 |
+
"learning_rate": 8e-06,
|
| 654 |
+
"loss": 29.9162,
|
| 655 |
+
"step": 105
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 1.06,
|
| 659 |
+
"learning_rate": 8e-06,
|
| 660 |
+
"loss": 36.4187,
|
| 661 |
+
"step": 106
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 1.07,
|
| 665 |
+
"learning_rate": 8e-06,
|
| 666 |
+
"loss": 35.4851,
|
| 667 |
+
"step": 107
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 1.08,
|
| 671 |
+
"learning_rate": 8e-06,
|
| 672 |
+
"loss": 28.6545,
|
| 673 |
+
"step": 108
|
| 674 |
+
},
|
| 675 |
+
{
|
| 676 |
+
"epoch": 1.09,
|
| 677 |
+
"learning_rate": 8e-06,
|
| 678 |
+
"loss": 28.0569,
|
| 679 |
+
"step": 109
|
| 680 |
+
},
|
| 681 |
+
{
|
| 682 |
+
"epoch": 1.1,
|
| 683 |
+
"learning_rate": 8e-06,
|
| 684 |
+
"loss": 28.9129,
|
| 685 |
+
"step": 110
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"epoch": 1.11,
|
| 689 |
+
"learning_rate": 8e-06,
|
| 690 |
+
"loss": 36.2509,
|
| 691 |
+
"step": 111
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"epoch": 1.12,
|
| 695 |
+
"learning_rate": 8e-06,
|
| 696 |
+
"loss": 39.2426,
|
| 697 |
+
"step": 112
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"epoch": 1.13,
|
| 701 |
+
"learning_rate": 8e-06,
|
| 702 |
+
"loss": 32.5102,
|
| 703 |
+
"step": 113
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 1.14,
|
| 707 |
+
"learning_rate": 8e-06,
|
| 708 |
+
"loss": 41.6903,
|
| 709 |
+
"step": 114
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 1.15,
|
| 713 |
+
"learning_rate": 8e-06,
|
| 714 |
+
"loss": 35.581,
|
| 715 |
+
"step": 115
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"epoch": 1.16,
|
| 719 |
+
"learning_rate": 8e-06,
|
| 720 |
+
"loss": 32.537,
|
| 721 |
+
"step": 116
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"epoch": 1.17,
|
| 725 |
+
"learning_rate": 8e-06,
|
| 726 |
+
"loss": 30.8246,
|
| 727 |
+
"step": 117
|
| 728 |
+
},
|
| 729 |
+
{
|
| 730 |
+
"epoch": 1.18,
|
| 731 |
+
"learning_rate": 8e-06,
|
| 732 |
+
"loss": 40.0024,
|
| 733 |
+
"step": 118
|
| 734 |
+
},
|
| 735 |
+
{
|
| 736 |
+
"epoch": 1.19,
|
| 737 |
+
"learning_rate": 8e-06,
|
| 738 |
+
"loss": 29.6397,
|
| 739 |
+
"step": 119
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 1.2,
|
| 743 |
+
"learning_rate": 8e-06,
|
| 744 |
+
"loss": 37.67,
|
| 745 |
+
"step": 120
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 1.2,
|
| 749 |
+
"eval_loss": 34.98255920410156,
|
| 750 |
+
"eval_runtime": 156.5425,
|
| 751 |
+
"eval_samples_per_second": 10.221,
|
| 752 |
+
"eval_steps_per_second": 0.639,
|
| 753 |
+
"step": 120
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 1.21,
|
| 757 |
+
"learning_rate": 8e-06,
|
| 758 |
+
"loss": 29.2334,
|
| 759 |
+
"step": 121
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 1.22,
|
| 763 |
+
"learning_rate": 8e-06,
|
| 764 |
+
"loss": 26.0862,
|
| 765 |
+
"step": 122
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 1.23,
|
| 769 |
+
"learning_rate": 8e-06,
|
| 770 |
+
"loss": 32.7472,
|
| 771 |
+
"step": 123
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"epoch": 1.24,
|
| 775 |
+
"learning_rate": 8e-06,
|
| 776 |
+
"loss": 33.9717,
|
| 777 |
+
"step": 124
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"epoch": 1.25,
|
| 781 |
+
"learning_rate": 8e-06,
|
| 782 |
+
"loss": 26.5658,
|
| 783 |
+
"step": 125
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 1.26,
|
| 787 |
+
"learning_rate": 8e-06,
|
| 788 |
+
"loss": 32.015,
|
| 789 |
+
"step": 126
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"epoch": 1.27,
|
| 793 |
+
"learning_rate": 8e-06,
|
| 794 |
+
"loss": 32.159,
|
| 795 |
+
"step": 127
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 1.28,
|
| 799 |
+
"learning_rate": 8e-06,
|
| 800 |
+
"loss": 33.5825,
|
| 801 |
+
"step": 128
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 1.29,
|
| 805 |
+
"learning_rate": 8e-06,
|
| 806 |
+
"loss": 30.7731,
|
| 807 |
+
"step": 129
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 1.3,
|
| 811 |
+
"learning_rate": 8e-06,
|
| 812 |
+
"loss": 42.9997,
|
| 813 |
+
"step": 130
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"epoch": 1.31,
|
| 817 |
+
"learning_rate": 8e-06,
|
| 818 |
+
"loss": 29.0939,
|
| 819 |
+
"step": 131
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 1.32,
|
| 823 |
+
"learning_rate": 8e-06,
|
| 824 |
+
"loss": 29.3714,
|
| 825 |
+
"step": 132
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"epoch": 1.33,
|
| 829 |
+
"learning_rate": 8e-06,
|
| 830 |
+
"loss": 37.7104,
|
| 831 |
+
"step": 133
|
| 832 |
+
},
|
| 833 |
+
{
|
| 834 |
+
"epoch": 1.34,
|
| 835 |
+
"learning_rate": 8e-06,
|
| 836 |
+
"loss": 31.3754,
|
| 837 |
+
"step": 134
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 1.35,
|
| 841 |
+
"learning_rate": 8e-06,
|
| 842 |
+
"loss": 33.5588,
|
| 843 |
+
"step": 135
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 1.36,
|
| 847 |
+
"learning_rate": 8e-06,
|
| 848 |
+
"loss": 33.4266,
|
| 849 |
+
"step": 136
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 1.37,
|
| 853 |
+
"learning_rate": 8e-06,
|
| 854 |
+
"loss": 35.2938,
|
| 855 |
+
"step": 137
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"epoch": 1.38,
|
| 859 |
+
"learning_rate": 8e-06,
|
| 860 |
+
"loss": 25.9463,
|
| 861 |
+
"step": 138
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 1.39,
|
| 865 |
+
"learning_rate": 8e-06,
|
| 866 |
+
"loss": 36.727,
|
| 867 |
+
"step": 139
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"epoch": 1.4,
|
| 871 |
+
"learning_rate": 8e-06,
|
| 872 |
+
"loss": 26.5641,
|
| 873 |
+
"step": 140
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 1.41,
|
| 877 |
+
"learning_rate": 8e-06,
|
| 878 |
+
"loss": 35.2519,
|
| 879 |
+
"step": 141
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 1.42,
|
| 883 |
+
"learning_rate": 8e-06,
|
| 884 |
+
"loss": 28.0465,
|
| 885 |
+
"step": 142
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 1.43,
|
| 889 |
+
"learning_rate": 8e-06,
|
| 890 |
+
"loss": 29.2274,
|
| 891 |
+
"step": 143
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 1.44,
|
| 895 |
+
"learning_rate": 8e-06,
|
| 896 |
+
"loss": 29.7366,
|
| 897 |
+
"step": 144
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"epoch": 1.45,
|
| 901 |
+
"learning_rate": 8e-06,
|
| 902 |
+
"loss": 34.904,
|
| 903 |
+
"step": 145
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 1.46,
|
| 907 |
+
"learning_rate": 8e-06,
|
| 908 |
+
"loss": 28.4035,
|
| 909 |
+
"step": 146
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 1.47,
|
| 913 |
+
"learning_rate": 8e-06,
|
| 914 |
+
"loss": 32.1873,
|
| 915 |
+
"step": 147
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"epoch": 1.48,
|
| 919 |
+
"learning_rate": 8e-06,
|
| 920 |
+
"loss": 31.183,
|
| 921 |
+
"step": 148
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 1.49,
|
| 925 |
+
"learning_rate": 8e-06,
|
| 926 |
+
"loss": 32.8216,
|
| 927 |
+
"step": 149
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 1.5,
|
| 931 |
+
"learning_rate": 8e-06,
|
| 932 |
+
"loss": 27.9256,
|
| 933 |
+
"step": 150
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 1.51,
|
| 937 |
+
"learning_rate": 8e-06,
|
| 938 |
+
"loss": 26.3767,
|
| 939 |
+
"step": 151
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"epoch": 1.52,
|
| 943 |
+
"learning_rate": 8e-06,
|
| 944 |
+
"loss": 32.3658,
|
| 945 |
+
"step": 152
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 1.53,
|
| 949 |
+
"learning_rate": 8e-06,
|
| 950 |
+
"loss": 37.5396,
|
| 951 |
+
"step": 153
|
| 952 |
+
},
|
| 953 |
+
{
|
| 954 |
+
"epoch": 1.54,
|
| 955 |
+
"learning_rate": 8e-06,
|
| 956 |
+
"loss": 32.7156,
|
| 957 |
+
"step": 154
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 1.55,
|
| 961 |
+
"learning_rate": 8e-06,
|
| 962 |
+
"loss": 33.9043,
|
| 963 |
+
"step": 155
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 1.56,
|
| 967 |
+
"learning_rate": 8e-06,
|
| 968 |
+
"loss": 33.2096,
|
| 969 |
+
"step": 156
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 1.57,
|
| 973 |
+
"learning_rate": 8e-06,
|
| 974 |
+
"loss": 31.2798,
|
| 975 |
+
"step": 157
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 1.58,
|
| 979 |
+
"learning_rate": 8e-06,
|
| 980 |
+
"loss": 34.9985,
|
| 981 |
+
"step": 158
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"epoch": 1.59,
|
| 985 |
+
"learning_rate": 8e-06,
|
| 986 |
+
"loss": 33.815,
|
| 987 |
+
"step": 159
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 1.6,
|
| 991 |
+
"learning_rate": 8e-06,
|
| 992 |
+
"loss": 33.2257,
|
| 993 |
+
"step": 160
|
| 994 |
+
},
|
| 995 |
+
{
|
| 996 |
+
"epoch": 1.6,
|
| 997 |
+
"eval_loss": 35.390445709228516,
|
| 998 |
+
"eval_runtime": 154.3859,
|
| 999 |
+
"eval_samples_per_second": 10.364,
|
| 1000 |
+
"eval_steps_per_second": 0.648,
|
| 1001 |
+
"step": 160
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"epoch": 1.61,
|
| 1005 |
+
"learning_rate": 8e-06,
|
| 1006 |
+
"loss": 32.0209,
|
| 1007 |
+
"step": 161
|
| 1008 |
+
},
|
| 1009 |
+
{
|
| 1010 |
+
"epoch": 1.62,
|
| 1011 |
+
"learning_rate": 8e-06,
|
| 1012 |
+
"loss": 35.3135,
|
| 1013 |
+
"step": 162
|
| 1014 |
+
},
|
| 1015 |
+
{
|
| 1016 |
+
"epoch": 1.63,
|
| 1017 |
+
"learning_rate": 8e-06,
|
| 1018 |
+
"loss": 29.391,
|
| 1019 |
+
"step": 163
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"epoch": 1.64,
|
| 1023 |
+
"learning_rate": 8e-06,
|
| 1024 |
+
"loss": 31.3538,
|
| 1025 |
+
"step": 164
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 1.65,
|
| 1029 |
+
"learning_rate": 8e-06,
|
| 1030 |
+
"loss": 33.4257,
|
| 1031 |
+
"step": 165
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 1.66,
|
| 1035 |
+
"learning_rate": 8e-06,
|
| 1036 |
+
"loss": 30.2217,
|
| 1037 |
+
"step": 166
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"epoch": 1.67,
|
| 1041 |
+
"learning_rate": 8e-06,
|
| 1042 |
+
"loss": 28.0411,
|
| 1043 |
+
"step": 167
|
| 1044 |
+
},
|
| 1045 |
+
{
|
| 1046 |
+
"epoch": 1.68,
|
| 1047 |
+
"learning_rate": 8e-06,
|
| 1048 |
+
"loss": 31.9822,
|
| 1049 |
+
"step": 168
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"epoch": 1.69,
|
| 1053 |
+
"learning_rate": 8e-06,
|
| 1054 |
+
"loss": 29.2197,
|
| 1055 |
+
"step": 169
|
| 1056 |
+
},
|
| 1057 |
+
{
|
| 1058 |
+
"epoch": 1.7,
|
| 1059 |
+
"learning_rate": 8e-06,
|
| 1060 |
+
"loss": 33.8519,
|
| 1061 |
+
"step": 170
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"epoch": 1.71,
|
| 1065 |
+
"learning_rate": 8e-06,
|
| 1066 |
+
"loss": 27.0424,
|
| 1067 |
+
"step": 171
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 1.72,
|
| 1071 |
+
"learning_rate": 8e-06,
|
| 1072 |
+
"loss": 29.5065,
|
| 1073 |
+
"step": 172
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 1.73,
|
| 1077 |
+
"learning_rate": 8e-06,
|
| 1078 |
+
"loss": 36.2223,
|
| 1079 |
+
"step": 173
|
| 1080 |
+
},
|
| 1081 |
+
{
|
| 1082 |
+
"epoch": 1.74,
|
| 1083 |
+
"learning_rate": 8e-06,
|
| 1084 |
+
"loss": 34.8057,
|
| 1085 |
+
"step": 174
|
| 1086 |
+
},
|
| 1087 |
+
{
|
| 1088 |
+
"epoch": 1.75,
|
| 1089 |
+
"learning_rate": 8e-06,
|
| 1090 |
+
"loss": 49.0899,
|
| 1091 |
+
"step": 175
|
| 1092 |
+
},
|
| 1093 |
+
{
|
| 1094 |
+
"epoch": 1.76,
|
| 1095 |
+
"learning_rate": 8e-06,
|
| 1096 |
+
"loss": 32.509,
|
| 1097 |
+
"step": 176
|
| 1098 |
+
},
|
| 1099 |
+
{
|
| 1100 |
+
"epoch": 1.77,
|
| 1101 |
+
"learning_rate": 8e-06,
|
| 1102 |
+
"loss": 31.7111,
|
| 1103 |
+
"step": 177
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"epoch": 1.78,
|
| 1107 |
+
"learning_rate": 8e-06,
|
| 1108 |
+
"loss": 34.1072,
|
| 1109 |
+
"step": 178
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 1.79,
|
| 1113 |
+
"learning_rate": 8e-06,
|
| 1114 |
+
"loss": 28.5069,
|
| 1115 |
+
"step": 179
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 1.8,
|
| 1119 |
+
"learning_rate": 8e-06,
|
| 1120 |
+
"loss": 26.254,
|
| 1121 |
+
"step": 180
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"epoch": 1.81,
|
| 1125 |
+
"learning_rate": 8e-06,
|
| 1126 |
+
"loss": 32.7402,
|
| 1127 |
+
"step": 181
|
| 1128 |
+
},
|
| 1129 |
+
{
|
| 1130 |
+
"epoch": 1.82,
|
| 1131 |
+
"learning_rate": 8e-06,
|
| 1132 |
+
"loss": 29.3875,
|
| 1133 |
+
"step": 182
|
| 1134 |
+
},
|
| 1135 |
+
{
|
| 1136 |
+
"epoch": 1.83,
|
| 1137 |
+
"learning_rate": 8e-06,
|
| 1138 |
+
"loss": 33.2701,
|
| 1139 |
+
"step": 183
|
| 1140 |
+
},
|
| 1141 |
+
{
|
| 1142 |
+
"epoch": 1.84,
|
| 1143 |
+
"learning_rate": 8e-06,
|
| 1144 |
+
"loss": 35.6712,
|
| 1145 |
+
"step": 184
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"epoch": 1.85,
|
| 1149 |
+
"learning_rate": 8e-06,
|
| 1150 |
+
"loss": 32.692,
|
| 1151 |
+
"step": 185
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 1.86,
|
| 1155 |
+
"learning_rate": 8e-06,
|
| 1156 |
+
"loss": 35.3144,
|
| 1157 |
+
"step": 186
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 1.87,
|
| 1161 |
+
"learning_rate": 8e-06,
|
| 1162 |
+
"loss": 34.8303,
|
| 1163 |
+
"step": 187
|
| 1164 |
+
},
|
| 1165 |
+
{
|
| 1166 |
+
"epoch": 1.88,
|
| 1167 |
+
"learning_rate": 8e-06,
|
| 1168 |
+
"loss": 32.8445,
|
| 1169 |
+
"step": 188
|
| 1170 |
+
},
|
| 1171 |
+
{
|
| 1172 |
+
"epoch": 1.89,
|
| 1173 |
+
"learning_rate": 8e-06,
|
| 1174 |
+
"loss": 31.4664,
|
| 1175 |
+
"step": 189
|
| 1176 |
+
},
|
| 1177 |
+
{
|
| 1178 |
+
"epoch": 1.9,
|
| 1179 |
+
"learning_rate": 8e-06,
|
| 1180 |
+
"loss": 27.9705,
|
| 1181 |
+
"step": 190
|
| 1182 |
+
},
|
| 1183 |
+
{
|
| 1184 |
+
"epoch": 1.91,
|
| 1185 |
+
"learning_rate": 8e-06,
|
| 1186 |
+
"loss": 26.9433,
|
| 1187 |
+
"step": 191
|
| 1188 |
+
},
|
| 1189 |
+
{
|
| 1190 |
+
"epoch": 1.92,
|
| 1191 |
+
"learning_rate": 8e-06,
|
| 1192 |
+
"loss": 36.6188,
|
| 1193 |
+
"step": 192
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 1.93,
|
| 1197 |
+
"learning_rate": 8e-06,
|
| 1198 |
+
"loss": 27.7417,
|
| 1199 |
+
"step": 193
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 1.94,
|
| 1203 |
+
"learning_rate": 8e-06,
|
| 1204 |
+
"loss": 33.3827,
|
| 1205 |
+
"step": 194
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"epoch": 1.95,
|
| 1209 |
+
"learning_rate": 8e-06,
|
| 1210 |
+
"loss": 36.5606,
|
| 1211 |
+
"step": 195
|
| 1212 |
+
},
|
| 1213 |
+
{
|
| 1214 |
+
"epoch": 1.96,
|
| 1215 |
+
"learning_rate": 8e-06,
|
| 1216 |
+
"loss": 31.4672,
|
| 1217 |
+
"step": 196
|
| 1218 |
+
},
|
| 1219 |
+
{
|
| 1220 |
+
"epoch": 1.97,
|
| 1221 |
+
"learning_rate": 8e-06,
|
| 1222 |
+
"loss": 32.3858,
|
| 1223 |
+
"step": 197
|
| 1224 |
+
},
|
| 1225 |
+
{
|
| 1226 |
+
"epoch": 1.98,
|
| 1227 |
+
"learning_rate": 8e-06,
|
| 1228 |
+
"loss": 27.9721,
|
| 1229 |
+
"step": 198
|
| 1230 |
+
},
|
| 1231 |
+
{
|
| 1232 |
+
"epoch": 1.99,
|
| 1233 |
+
"learning_rate": 8e-06,
|
| 1234 |
+
"loss": 34.6578,
|
| 1235 |
+
"step": 199
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 2.0,
|
| 1239 |
+
"learning_rate": 8e-06,
|
| 1240 |
+
"loss": 26.9039,
|
| 1241 |
+
"step": 200
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 2.0,
|
| 1245 |
+
"eval_loss": 34.754608154296875,
|
| 1246 |
+
"eval_runtime": 154.4449,
|
| 1247 |
+
"eval_samples_per_second": 10.36,
|
| 1248 |
+
"eval_steps_per_second": 0.647,
|
| 1249 |
+
"step": 200
|
| 1250 |
+
}
|
| 1251 |
+
],
|
| 1252 |
+
"logging_steps": 1.0,
|
| 1253 |
+
"max_steps": 400,
|
| 1254 |
+
"num_input_tokens_seen": 0,
|
| 1255 |
+
"num_train_epochs": 4,
|
| 1256 |
+
"save_steps": 40,
|
| 1257 |
+
"total_flos": 5.196229675843584e+17,
|
| 1258 |
+
"train_batch_size": 16,
|
| 1259 |
+
"trial_name": null,
|
| 1260 |
+
"trial_params": null
|
| 1261 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb3fe99ebfcabaf578e412df14c9a8e50de0fde1cf1e99733e1a38ab99394fd2
|
| 3 |
+
size 6392
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|