File size: 2,268 Bytes
fdd0e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import segmentation_models_pytorch as smp
from typing import Optional


class SegFormer(nn.Module):
    """
    SegFormer model for multi-class semantic segmentation.

    Default setup targets RGB (3 bands), but you can set `in_channels` to support
    multispectral inputs (e.g., 13 for Sentinel-2 L1C). Outputs raw logits with
    shape (B, num_classes, H, W).
    """

    def __init__(
        self,
        encoder_name: str = "mit_b4",
        encoder_weights: Optional[str] = "imagenet",  # set to None if incompatible with in_channels
        in_channels: int = 3,
        num_classes: int = 4,
        freeze_encoder: bool = False,
    ) -> None:
        """
        Args:
            encoder_name: TIMM encoder name (e.g., 'mit_b0'...'mit_b5', default 'mit_b4').
            encoder_weights: Pretrained weights name (typically 'imagenet' or None).
            in_channels: Number of input channels (3 for RGB, 13 for Sentinel-2, etc.).
            num_classes: Number of output classes for segmentation.
            freeze_encoder: If True, freezes encoder parameters during training.
        """
        super().__init__()

        self.segformer = smp.Segformer(
            encoder_name=encoder_name,
            encoder_weights=encoder_weights,
            in_channels=in_channels,
            classes=num_classes,
        )

        if freeze_encoder:
            for p in self.segformer.encoder.parameters():
                p.requires_grad = False

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass.

        Args:
            x: Tensor of shape (B, in_channels, H, W).

        Returns:
            torch.Tensor: Logits of shape (B, num_classes, H, W).
        """
        return self.segformer(x)

    @torch.no_grad()
    def predict(self, x: torch.Tensor) -> torch.Tensor:
        """
        Inference helper: applies softmax + argmax to produce label maps.

        Args:
            x: Tensor of shape (B, in_channels, H, W).

        Returns:
            torch.Tensor: Integer labels of shape (B, H, W).
        """
        self.eval()
        logits = self.forward(x)                  # (B, num_classes, H, W)
        return torch.softmax(logits, dim=1).argmax(dim=1)