Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,57 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: image-segmentation
|
| 4 |
+
library_name: pytorch
|
| 5 |
+
tags:
|
| 6 |
+
- segformer
|
| 7 |
+
- mit-b4
|
| 8 |
+
- transformer
|
| 9 |
+
- segmentation-models-pytorch
|
| 10 |
+
- timm
|
| 11 |
+
- pytorch
|
| 12 |
+
- remote-sensing
|
| 13 |
+
- sentinel-2
|
| 14 |
+
- rgb
|
| 15 |
+
- cloud-detection
|
| 16 |
+
datasets:
|
| 17 |
+
- "isp-uv-es/CloudSEN12Plus"
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# Cloud Detection — SegFormer (MiT-B4 encoder, RGB)
|
| 21 |
+
|
| 22 |
+
**Repository:** `Burdenthrive/cloud-detection-segformer-mit-b4`
|
| 23 |
+
**Task:** Multiclass semantic segmentation (4 classes) on **Sentinel‑2 L1C RGB** (3 bands) using **SegFormer** (`segmentation_models_pytorch`) with **MiT‑B4** encoder.
|
| 24 |
+
|
| 25 |
+
This model predicts per‑pixel labels among: **clear**, **thick cloud**, **thin cloud**, **cloud shadow**.
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## ✨ Highlights
|
| 30 |
+
|
| 31 |
+
- **Input:** Sentinel‑2 L1C RGB tiles/patches (float32, shape `B×3×H×W`, bands **B04‑B03‑B02**).
|
| 32 |
+
- **Backbone:** `mit_b4` (MiT encoder via `segmentation_models_pytorch`).
|
| 33 |
+
- **Output:** Logits `B×4×H×W` (apply softmax + argmax).
|
| 34 |
+
- **Files:** `model.py`, `config.json`, and weights (`model.safetensors` and/or `best_model_mc.pth`).
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
## 📦 Files
|
| 39 |
+
|
| 40 |
+
- `model.py` — defines the `SegFormer` class (wrapper around `smp.Segformer`).
|
| 41 |
+
- `config.json` — hyperparameters and class names:
|
| 42 |
+
```json
|
| 43 |
+
{
|
| 44 |
+
"task": "image-segmentation",
|
| 45 |
+
"model_name": "segformer-mit-b4",
|
| 46 |
+
"model_kwargs": {
|
| 47 |
+
"encoder_name": "mit_b4",
|
| 48 |
+
"encoder_weights": "imagenet",
|
| 49 |
+
"in_channels": 3,
|
| 50 |
+
"num_classes": 4,
|
| 51 |
+
"freeze_encoder": false
|
| 52 |
+
},
|
| 53 |
+
"classes": ["clear", "thick cloud", "thin cloud", "cloud shadow"],
|
| 54 |
+
"id2label": { "0": "clear", "1": "thick cloud", "2": "thin cloud", "3": "cloud shadow" },
|
| 55 |
+
"label2id": { "clear": 0, "thick cloud": 1, "thin cloud": 2, "cloud shadow": 3 },
|
| 56 |
+
"input_bands": ["B04", "B03", "B02"]
|
| 57 |
+
}
|