support mteb evaluation and update readme
Browse files- README.md +25 -20
- configuration_listconranker.py +44 -0
- modeling_listconranker.py +530 -0
README.md
CHANGED
|
@@ -106,9 +106,9 @@ To reduce the discrepancy between training and inference, we propose iterative i
|
|
| 106 |
|
| 107 |
## How to use
|
| 108 |
```python
|
| 109 |
-
from transfoermers import AutoModelForSequenceClassification
|
| 110 |
|
| 111 |
-
reranker = AutoModelForSequenceClassification('ByteDance/ListConRanker', trust_remote_code=True)
|
| 112 |
|
| 113 |
# [query, passages_1, passage_2, ..., passage_n]
|
| 114 |
batch = [
|
|
@@ -130,31 +130,37 @@ batch = [
|
|
| 130 |
# for conventional inference, please manage the batch size by yourself
|
| 131 |
scores = reranker.multi_passage(batch)
|
| 132 |
print(scores)
|
| 133 |
-
# [
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
inputs = tokenizer(
|
| 136 |
[
|
| 137 |
[
|
| 138 |
-
"
|
| 139 |
-
"
|
| 140 |
],
|
| 141 |
[
|
| 142 |
-
"
|
| 143 |
-
"
|
| 144 |
],
|
| 145 |
[
|
| 146 |
-
"
|
| 147 |
-
"
|
| 148 |
],
|
| 149 |
],
|
| 150 |
return_tensors="pt",
|
| 151 |
padding=True,
|
|
|
|
| 152 |
)
|
| 153 |
-
|
| 154 |
-
print(probs)
|
| 155 |
-
# tensor([[0.4359], [0.3840]], grad_fn=<ViewBackward0>)
|
| 156 |
```
|
| 157 |
-
or using the `sentence_transformers` library:
|
| 158 |
```python
|
| 159 |
from sentence_transformers import CrossEncoder
|
| 160 |
|
|
@@ -162,21 +168,20 @@ model = CrossEncoder('ByteDance/ListConRanker', trust_remote_code=True)
|
|
| 162 |
|
| 163 |
inputs = [
|
| 164 |
[
|
| 165 |
-
"
|
| 166 |
-
"
|
| 167 |
],
|
| 168 |
[
|
| 169 |
-
"
|
| 170 |
-
"
|
| 171 |
],
|
| 172 |
[
|
| 173 |
-
"
|
| 174 |
-
"
|
| 175 |
],
|
| 176 |
]
|
| 177 |
scores = model.predict(inputs)
|
| 178 |
print(scores)
|
| 179 |
-
# [0.43585014, 0.32305932, 0.38395187]
|
| 180 |
```
|
| 181 |
|
| 182 |
To reproduce the results with iterative inference, please run:
|
|
|
|
| 106 |
|
| 107 |
## How to use
|
| 108 |
```python
|
| 109 |
+
from transfoermers import AutoModelForSequenceClassification, AutoTokenizer
|
| 110 |
|
| 111 |
+
reranker = AutoModelForSequenceClassification.from_pretrained('ByteDance/ListConRanker', trust_remote_code=True)
|
| 112 |
|
| 113 |
# [query, passages_1, passage_2, ..., passage_n]
|
| 114 |
batch = [
|
|
|
|
| 130 |
# for conventional inference, please manage the batch size by yourself
|
| 131 |
scores = reranker.multi_passage(batch)
|
| 132 |
print(scores)
|
| 133 |
+
# [0.5126814246177673, 0.33125635981559753, 0.3642643094062805, 0.6367220282554626, 0.7166246175765991, 0.4281482696533203, 0.3530198335647583]
|
| 134 |
|
| 135 |
+
# for iterative inferfence, only a batch size of 1 is supported
|
| 136 |
+
# the scores do not carry similarity meaning and are only used for ranking
|
| 137 |
+
scores = reranker.multi_passage_in_iterative_inference(batch[0])
|
| 138 |
+
print(scores)
|
| 139 |
+
# [0.5126813650131226, 0.3312564790248871, 0.3642643094062805]
|
| 140 |
+
|
| 141 |
+
tokenizer = AutoTokenizer.from_pretrained('ByteDance/ListConRanker')
|
| 142 |
inputs = tokenizer(
|
| 143 |
[
|
| 144 |
[
|
| 145 |
+
"皮蛋是寒性的食物吗",
|
| 146 |
+
"营养医师介绍皮蛋是属于凉性的食物,中医认为皮蛋可治眼疼、牙疼、高血压、耳鸣眩晕等疾病。体虚者要少吃。",
|
| 147 |
],
|
| 148 |
[
|
| 149 |
+
"皮蛋是寒性的食物吗",
|
| 150 |
+
"皮蛋这种食品是在中国地域才常见的传统食品,它的生长汗青也是非常的悠长。",
|
| 151 |
],
|
| 152 |
[
|
| 153 |
+
"月有阴晴圆缺的意义",
|
| 154 |
+
"形容的是月所有的状态,晴朗明媚,阴沉混沌,有月圆时,但多数时总是有缺陷。",
|
| 155 |
],
|
| 156 |
],
|
| 157 |
return_tensors="pt",
|
| 158 |
padding=True,
|
| 159 |
+
truncation=False
|
| 160 |
)
|
| 161 |
+
# tensor([[0.5070], [0.3334], [0.6294]], device='cuda:0', dtype=torch.float16, grad_fn=<ViewBackward0>)
|
|
|
|
|
|
|
| 162 |
```
|
| 163 |
+
or using the `sentence_transformers` library (We do not recommend using `sentence_transformers`. Because its truncation strategy may not match the model design, which may lead to performance degradation.):
|
| 164 |
```python
|
| 165 |
from sentence_transformers import CrossEncoder
|
| 166 |
|
|
|
|
| 168 |
|
| 169 |
inputs = [
|
| 170 |
[
|
| 171 |
+
"皮蛋是寒性的食物吗",
|
| 172 |
+
"营养医师介绍皮蛋是属于凉性的食物,中医认为皮蛋可治眼疼、牙疼、高血压、耳鸣眩晕等疾病。体虚者要少吃。",
|
| 173 |
],
|
| 174 |
[
|
| 175 |
+
"皮蛋是寒性的食物吗",
|
| 176 |
+
"皮蛋这种食品是在中国地域才常见的传统食品,它的生长汗青也是非常的悠长。",
|
| 177 |
],
|
| 178 |
[
|
| 179 |
+
"月有阴晴圆缺的意义",
|
| 180 |
+
"形容的是月所有的状态,晴朗明媚,阴沉混沌,有月圆时,但多数时总是有缺陷。",
|
| 181 |
],
|
| 182 |
]
|
| 183 |
scores = model.predict(inputs)
|
| 184 |
print(scores)
|
|
|
|
| 185 |
```
|
| 186 |
|
| 187 |
To reproduce the results with iterative inference, please run:
|
configuration_listconranker.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
#
|
| 3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
| 4 |
+
# and associated documentation files (the "Software"), to deal in the Software without
|
| 5 |
+
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
|
| 6 |
+
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
| 7 |
+
# Software is furnished to do so, subject to the following conditions:
|
| 8 |
+
#
|
| 9 |
+
# The above copyright notice and this permission notice shall be included in all copies or
|
| 10 |
+
# substantial portions of the Software.
|
| 11 |
+
#
|
| 12 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 13 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 14 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
| 15 |
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
| 16 |
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
| 17 |
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
| 18 |
+
# OTHER DEALINGS IN THE SOFTWARE.
|
| 19 |
+
from __future__ import annotations
|
| 20 |
+
from transformers import BertConfig
|
| 21 |
+
|
| 22 |
+
class ListConRankerConfig(BertConfig):
|
| 23 |
+
"""Configuration class for ListConRanker model."""
|
| 24 |
+
|
| 25 |
+
model_type = "ListConRanker"
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
list_transformer_layers: int = 2,
|
| 30 |
+
list_con_hidden_size: int = 1792,
|
| 31 |
+
num_labels: int = 1,
|
| 32 |
+
cls_token_id: int = 101,
|
| 33 |
+
sep_token_id: int = 102,
|
| 34 |
+
**kwargs,
|
| 35 |
+
):
|
| 36 |
+
super().__init__(**kwargs)
|
| 37 |
+
self.list_transformer_layers = list_transformer_layers
|
| 38 |
+
self.list_con_hidden_size = list_con_hidden_size
|
| 39 |
+
self.num_labels = num_labels
|
| 40 |
+
self.cls_token_id = cls_token_id
|
| 41 |
+
self.sep_token_id = sep_token_id
|
| 42 |
+
|
| 43 |
+
self.bert_config = BertConfig(**kwargs)
|
| 44 |
+
self.bert_config.output_hidden_states = True
|
modeling_listconranker.py
ADDED
|
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
| 2 |
+
#
|
| 3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
| 4 |
+
# and associated documentation files (the "Software"), to deal in the Software without
|
| 5 |
+
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
|
| 6 |
+
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
| 7 |
+
# Software is furnished to do so, subject to the following conditions:
|
| 8 |
+
#
|
| 9 |
+
# The above copyright notice and this permission notice shall be included in all copies or
|
| 10 |
+
# substantial portions of the Software.
|
| 11 |
+
#
|
| 12 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 13 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 14 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
| 15 |
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
| 16 |
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
| 17 |
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
| 18 |
+
# OTHER DEALINGS IN THE SOFTWARE.
|
| 19 |
+
from __future__ import annotations
|
| 20 |
+
import torch
|
| 21 |
+
from torch import nn
|
| 22 |
+
from torch.nn import functional as F
|
| 23 |
+
from transformers import (
|
| 24 |
+
PreTrainedModel,
|
| 25 |
+
BertModel,
|
| 26 |
+
AutoTokenizer,
|
| 27 |
+
)
|
| 28 |
+
import os
|
| 29 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 30 |
+
from typing import Union, List, Optional
|
| 31 |
+
from collections import defaultdict
|
| 32 |
+
import numpy as np
|
| 33 |
+
import math
|
| 34 |
+
from huggingface_hub import hf_hub_download
|
| 35 |
+
from .configuration_listconranker import ListConRankerConfig
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class QueryEmbedding(nn.Module):
|
| 39 |
+
def __init__(self, config) -> None:
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.query_embedding = nn.Embedding(2, config.list_con_hidden_size)
|
| 42 |
+
self.layerNorm = nn.LayerNorm(config.list_con_hidden_size)
|
| 43 |
+
|
| 44 |
+
def forward(self, x, tags):
|
| 45 |
+
query_embeddings = self.query_embedding(tags)
|
| 46 |
+
x += query_embeddings
|
| 47 |
+
x = self.layerNorm(x)
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ListTransformer(nn.Module):
|
| 52 |
+
def __init__(self, num_layer, config) -> None:
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.config = config
|
| 55 |
+
self.list_transformer_layer = nn.TransformerEncoderLayer(
|
| 56 |
+
config.list_con_hidden_size,
|
| 57 |
+
self.config.num_attention_heads,
|
| 58 |
+
batch_first=True,
|
| 59 |
+
activation=F.gelu,
|
| 60 |
+
norm_first=False,
|
| 61 |
+
)
|
| 62 |
+
self.list_transformer = nn.TransformerEncoder(
|
| 63 |
+
self.list_transformer_layer, num_layer
|
| 64 |
+
)
|
| 65 |
+
self.relu = nn.ReLU()
|
| 66 |
+
self.query_embedding = QueryEmbedding(config)
|
| 67 |
+
|
| 68 |
+
self.linear_score3 = nn.Linear(
|
| 69 |
+
config.list_con_hidden_size * 2, config.list_con_hidden_size
|
| 70 |
+
)
|
| 71 |
+
self.linear_score2 = nn.Linear(
|
| 72 |
+
config.list_con_hidden_size * 2, config.list_con_hidden_size
|
| 73 |
+
)
|
| 74 |
+
self.linear_score1 = nn.Linear(config.list_con_hidden_size * 2, 1)
|
| 75 |
+
|
| 76 |
+
def forward(
|
| 77 |
+
self, pair_features: torch.Tensor, pair_nums: List[int]
|
| 78 |
+
) -> torch.Tensor:
|
| 79 |
+
batch_pair_features = pair_features.split(pair_nums)
|
| 80 |
+
|
| 81 |
+
pair_feature_query_passage_concat_list = []
|
| 82 |
+
for i in range(len(batch_pair_features)):
|
| 83 |
+
pair_feature_query = (
|
| 84 |
+
batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
|
| 85 |
+
)
|
| 86 |
+
pair_feature_passage = batch_pair_features[i][1:]
|
| 87 |
+
pair_feature_query_passage_concat_list.append(
|
| 88 |
+
torch.cat([pair_feature_query, pair_feature_passage], dim=1)
|
| 89 |
+
)
|
| 90 |
+
pair_feature_query_passage_concat = torch.cat(
|
| 91 |
+
pair_feature_query_passage_concat_list, dim=0
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
batch_pair_features = nn.utils.rnn.pad_sequence(
|
| 95 |
+
batch_pair_features, batch_first=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
query_embedding_tags = torch.zeros(
|
| 99 |
+
batch_pair_features.size(0),
|
| 100 |
+
batch_pair_features.size(1),
|
| 101 |
+
dtype=torch.long,
|
| 102 |
+
device=self.device,
|
| 103 |
+
)
|
| 104 |
+
query_embedding_tags[:, 0] = 1
|
| 105 |
+
batch_pair_features = self.query_embedding(
|
| 106 |
+
batch_pair_features, query_embedding_tags
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
mask = self.generate_attention_mask(pair_nums)
|
| 110 |
+
query_mask = self.generate_attention_mask_custom(pair_nums)
|
| 111 |
+
pair_list_features = self.list_transformer(
|
| 112 |
+
batch_pair_features, src_key_padding_mask=mask, mask=query_mask
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
output_pair_list_features = []
|
| 116 |
+
output_query_list_features = []
|
| 117 |
+
pair_features_after_transformer_list = []
|
| 118 |
+
for idx, pair_num in enumerate(pair_nums):
|
| 119 |
+
output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
|
| 120 |
+
output_query_list_features.append(pair_list_features[idx, 0, :])
|
| 121 |
+
pair_features_after_transformer_list.append(
|
| 122 |
+
pair_list_features[idx, :pair_num, :]
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
pair_features_after_transformer_cat_query_list = []
|
| 126 |
+
for idx, pair_num in enumerate(pair_nums):
|
| 127 |
+
query_ft = (
|
| 128 |
+
output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
|
| 129 |
+
)
|
| 130 |
+
pair_features_after_transformer_cat_query = torch.cat(
|
| 131 |
+
[query_ft, output_pair_list_features[idx]], dim=1
|
| 132 |
+
)
|
| 133 |
+
pair_features_after_transformer_cat_query_list.append(
|
| 134 |
+
pair_features_after_transformer_cat_query
|
| 135 |
+
)
|
| 136 |
+
pair_features_after_transformer_cat_query = torch.cat(
|
| 137 |
+
pair_features_after_transformer_cat_query_list, dim=0
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
pair_feature_query_passage_concat = self.relu(
|
| 141 |
+
self.linear_score2(pair_feature_query_passage_concat)
|
| 142 |
+
)
|
| 143 |
+
pair_features_after_transformer_cat_query = self.relu(
|
| 144 |
+
self.linear_score3(pair_features_after_transformer_cat_query)
|
| 145 |
+
)
|
| 146 |
+
final_ft = torch.cat(
|
| 147 |
+
[
|
| 148 |
+
pair_feature_query_passage_concat,
|
| 149 |
+
pair_features_after_transformer_cat_query,
|
| 150 |
+
],
|
| 151 |
+
dim=1,
|
| 152 |
+
)
|
| 153 |
+
logits = self.linear_score1(final_ft).squeeze()
|
| 154 |
+
return logits, torch.cat(pair_features_after_transformer_list, dim=0)
|
| 155 |
+
|
| 156 |
+
def generate_attention_mask(self, pair_num):
|
| 157 |
+
max_len = max(pair_num)
|
| 158 |
+
batch_size = len(pair_num)
|
| 159 |
+
mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
|
| 160 |
+
for i, length in enumerate(pair_num):
|
| 161 |
+
mask[i, length:] = True
|
| 162 |
+
return mask
|
| 163 |
+
|
| 164 |
+
def generate_attention_mask_custom(self, pair_num):
|
| 165 |
+
max_len = max(pair_num)
|
| 166 |
+
mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
|
| 167 |
+
mask[0, 1:] = True
|
| 168 |
+
return mask
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class ListConRankerModel(PreTrainedModel):
|
| 172 |
+
"""
|
| 173 |
+
ListConRanker model for sequence classification that's compatible with AutoModelForSequenceClassification.
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
config_class = ListConRankerConfig
|
| 177 |
+
base_model_prefix = "listconranker"
|
| 178 |
+
|
| 179 |
+
def __init__(self, config: ListConRankerConfig):
|
| 180 |
+
super().__init__(config)
|
| 181 |
+
self.config = config
|
| 182 |
+
self.num_labels = config.num_labels
|
| 183 |
+
self.hf_model = BertModel(config.bert_config)
|
| 184 |
+
|
| 185 |
+
self.sigmoid = nn.Sigmoid()
|
| 186 |
+
|
| 187 |
+
self.linear_in_embedding = nn.Linear(
|
| 188 |
+
config.hidden_size, config.list_con_hidden_size
|
| 189 |
+
)
|
| 190 |
+
self.list_transformer = ListTransformer(
|
| 191 |
+
config.list_transformer_layers,
|
| 192 |
+
config,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
def forward(
|
| 196 |
+
self,
|
| 197 |
+
input_ids: torch.Tensor,
|
| 198 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 199 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 200 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 201 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 202 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 203 |
+
labels: Optional[torch.Tensor] = None,
|
| 204 |
+
output_attentions: Optional[bool] = None,
|
| 205 |
+
output_hidden_states: Optional[bool] = None,
|
| 206 |
+
return_dict: Optional[bool] = None,
|
| 207 |
+
**kwargs,
|
| 208 |
+
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 209 |
+
if self.training:
|
| 210 |
+
raise NotImplementedError("Training not supported; use eval mode.")
|
| 211 |
+
device = input_ids.device
|
| 212 |
+
self.list_transformer.device = device
|
| 213 |
+
# Reorganize by unique queries and their passages
|
| 214 |
+
(
|
| 215 |
+
reorganized_input_ids,
|
| 216 |
+
reorganized_attention_mask,
|
| 217 |
+
reorganized_token_type_ids,
|
| 218 |
+
pair_nums,
|
| 219 |
+
group_indices,
|
| 220 |
+
) = self._reorganize_inputs(input_ids, attention_mask, token_type_ids)
|
| 221 |
+
|
| 222 |
+
out = self.hf_model(
|
| 223 |
+
input_ids=reorganized_input_ids,
|
| 224 |
+
attention_mask=reorganized_attention_mask,
|
| 225 |
+
token_type_ids=reorganized_token_type_ids,
|
| 226 |
+
return_dict=True,
|
| 227 |
+
)
|
| 228 |
+
feats = out.last_hidden_state
|
| 229 |
+
pooled = self.average_pooling(feats, reorganized_attention_mask)
|
| 230 |
+
embedded = self.linear_in_embedding(pooled)
|
| 231 |
+
logits, _ = self.list_transformer(embedded, pair_nums)
|
| 232 |
+
probs = self.sigmoid(logits)
|
| 233 |
+
|
| 234 |
+
# Restore original order
|
| 235 |
+
sorted_probs = self._restore_original_order(probs, group_indices)
|
| 236 |
+
sorted_logits = self._restore_original_order(logits, group_indices)
|
| 237 |
+
if not return_dict:
|
| 238 |
+
return (sorted_probs, sorted_logits)
|
| 239 |
+
|
| 240 |
+
return SequenceClassifierOutput(
|
| 241 |
+
loss=None,
|
| 242 |
+
logits=sorted_logits,
|
| 243 |
+
hidden_states=out.hidden_states,
|
| 244 |
+
attentions=out.attentions,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
def _reorganize_inputs(
|
| 248 |
+
self,
|
| 249 |
+
input_ids: torch.Tensor,
|
| 250 |
+
attention_mask: torch.Tensor,
|
| 251 |
+
token_type_ids: Optional[torch.Tensor],
|
| 252 |
+
) -> tuple[
|
| 253 |
+
torch.Tensor, torch.Tensor, Optional[torch.Tensor], List[int], List[List[int]]
|
| 254 |
+
]:
|
| 255 |
+
"""
|
| 256 |
+
Group inputs by unique queries: for each query, produce [query] + its passages,
|
| 257 |
+
then flatten, pad, and return pair sizes and original indices mapping.
|
| 258 |
+
"""
|
| 259 |
+
batch_size = input_ids.size(0)
|
| 260 |
+
# Structure: query_key -> {
|
| 261 |
+
# 'query': (seq, mask, tt),
|
| 262 |
+
# 'passages': [(seq, mask, tt), ...],
|
| 263 |
+
# 'indices': [original_index, ...]
|
| 264 |
+
# }
|
| 265 |
+
grouped = {}
|
| 266 |
+
|
| 267 |
+
for idx in range(batch_size):
|
| 268 |
+
seq = input_ids[idx]
|
| 269 |
+
mask = attention_mask[idx]
|
| 270 |
+
token_type_ids[idx] if token_type_ids is not None else torch.zeros_like(seq)
|
| 271 |
+
|
| 272 |
+
sep_idxs = (seq == self.config.sep_token_id).nonzero(as_tuple=True)[0]
|
| 273 |
+
if sep_idxs.numel() == 0:
|
| 274 |
+
raise ValueError(f"No SEP in sequence {idx}")
|
| 275 |
+
first_sep = sep_idxs[0].item()
|
| 276 |
+
second_sep = sep_idxs[1].item()
|
| 277 |
+
|
| 278 |
+
# Extract query and passage
|
| 279 |
+
q_seq = seq[: first_sep + 1]
|
| 280 |
+
q_mask = mask[: first_sep + 1]
|
| 281 |
+
q_tt = torch.zeros_like(q_seq)
|
| 282 |
+
|
| 283 |
+
p_seq = seq[first_sep : second_sep + 1]
|
| 284 |
+
p_mask = mask[first_sep : second_sep + 1]
|
| 285 |
+
p_seq = p_seq.clone()
|
| 286 |
+
p_seq[0] = self.config.cls_token_id
|
| 287 |
+
p_tt = torch.zeros_like(p_seq)
|
| 288 |
+
|
| 289 |
+
# Build key excluding CLS/SEP
|
| 290 |
+
key = tuple(
|
| 291 |
+
q_seq[
|
| 292 |
+
(q_seq != self.config.cls_token_id)
|
| 293 |
+
& (q_seq != self.config.sep_token_id)
|
| 294 |
+
].tolist()
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# truncation
|
| 298 |
+
q_seq = q_seq[: self.config.max_position_embeddings]
|
| 299 |
+
q_seq[-1] = self.config.sep_token_id
|
| 300 |
+
p_seq = p_seq[: self.config.max_position_embeddings]
|
| 301 |
+
p_seq[-1] = self.config.sep_token_id
|
| 302 |
+
q_mask = q_mask[: self.config.max_position_embeddings]
|
| 303 |
+
p_mask = p_mask[: self.config.max_position_embeddings]
|
| 304 |
+
q_tt = q_tt[: self.config.max_position_embeddings]
|
| 305 |
+
p_tt = p_tt[: self.config.max_position_embeddings]
|
| 306 |
+
|
| 307 |
+
if key not in grouped:
|
| 308 |
+
grouped[key] = {
|
| 309 |
+
"query": (q_seq, q_mask, q_tt),
|
| 310 |
+
"passages": [],
|
| 311 |
+
"indices": [],
|
| 312 |
+
}
|
| 313 |
+
grouped[key]["passages"].append((p_seq, p_mask, p_tt))
|
| 314 |
+
grouped[key]["indices"].append(idx)
|
| 315 |
+
|
| 316 |
+
# Flatten according to group insertion order
|
| 317 |
+
seqs, masks, tts, pair_nums, group_indices = [], [], [], [], []
|
| 318 |
+
for key, data in grouped.items():
|
| 319 |
+
q_seq, q_mask, q_tt = data["query"]
|
| 320 |
+
passages = data["passages"]
|
| 321 |
+
indices = data["indices"]
|
| 322 |
+
# record sizes and original positions
|
| 323 |
+
pair_nums.append(len(passages) + 1) # +1 for the query
|
| 324 |
+
group_indices.append(indices)
|
| 325 |
+
|
| 326 |
+
# append query then its passages
|
| 327 |
+
seqs.append(q_seq)
|
| 328 |
+
masks.append(q_mask)
|
| 329 |
+
tts.append(q_tt)
|
| 330 |
+
for p_seq, p_mask, p_tt in passages:
|
| 331 |
+
seqs.append(p_seq)
|
| 332 |
+
masks.append(p_mask)
|
| 333 |
+
tts.append(p_tt)
|
| 334 |
+
|
| 335 |
+
# Pad to uniform length
|
| 336 |
+
max_len = max(s.size(0) for s in seqs)
|
| 337 |
+
padded_seqs, padded_masks, padded_tts = [], [], []
|
| 338 |
+
for s, m, t in zip(seqs, masks, tts):
|
| 339 |
+
ps = torch.zeros(max_len, dtype=s.dtype, device=s.device)
|
| 340 |
+
pm = torch.zeros(max_len, dtype=m.dtype, device=m.device)
|
| 341 |
+
pt = torch.zeros(max_len, dtype=t.dtype, device=t.device)
|
| 342 |
+
ps[: s.size(0)] = s
|
| 343 |
+
pm[: m.size(0)] = m
|
| 344 |
+
pt[: t.size(0)] = t
|
| 345 |
+
padded_seqs.append(ps)
|
| 346 |
+
padded_masks.append(pm)
|
| 347 |
+
padded_tts.append(pt)
|
| 348 |
+
|
| 349 |
+
rid = torch.stack(padded_seqs)
|
| 350 |
+
ram = torch.stack(padded_masks)
|
| 351 |
+
rtt = torch.stack(padded_tts) if token_type_ids is not None else None
|
| 352 |
+
|
| 353 |
+
return rid, ram, rtt, pair_nums, group_indices
|
| 354 |
+
|
| 355 |
+
def _restore_original_order(
|
| 356 |
+
self,
|
| 357 |
+
logits: torch.Tensor,
|
| 358 |
+
group_indices: List[List[int]],
|
| 359 |
+
) -> torch.Tensor:
|
| 360 |
+
"""
|
| 361 |
+
Map flattened logits back so each original index gets its passage score.
|
| 362 |
+
"""
|
| 363 |
+
out = torch.zeros(logits.size(0), dtype=logits.dtype, device=logits.device)
|
| 364 |
+
i = 0
|
| 365 |
+
for indices in group_indices:
|
| 366 |
+
for idx in indices:
|
| 367 |
+
out[idx] = logits[i]
|
| 368 |
+
i += 1
|
| 369 |
+
return out.reshape(-1, 1)
|
| 370 |
+
|
| 371 |
+
def average_pooling(self, hidden_state, attention_mask):
|
| 372 |
+
extended_attention_mask = (
|
| 373 |
+
attention_mask.unsqueeze(-1)
|
| 374 |
+
.expand(hidden_state.size())
|
| 375 |
+
.to(dtype=hidden_state.dtype)
|
| 376 |
+
)
|
| 377 |
+
masked_hidden_state = hidden_state * extended_attention_mask
|
| 378 |
+
sum_embeddings = torch.sum(masked_hidden_state, dim=1)
|
| 379 |
+
sum_mask = extended_attention_mask.sum(dim=1)
|
| 380 |
+
return sum_embeddings / sum_mask
|
| 381 |
+
|
| 382 |
+
@classmethod
|
| 383 |
+
def from_pretrained(
|
| 384 |
+
cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs
|
| 385 |
+
):
|
| 386 |
+
model = super().from_pretrained(model_name_or_path, config=config, **kwargs)
|
| 387 |
+
model.hf_model = BertModel.from_pretrained(
|
| 388 |
+
model_name_or_path, config=model.config.bert_config, **kwargs
|
| 389 |
+
)
|
| 390 |
+
linear_path = hf_hub_download(
|
| 391 |
+
repo_id = model_name_or_path,
|
| 392 |
+
filename = "linear_in_embedding.pt",
|
| 393 |
+
revision = "main",
|
| 394 |
+
cache_dir = kwargs['cache_dir'] if 'cache_dir' in kwargs else None
|
| 395 |
+
)
|
| 396 |
+
list_transformer_path = hf_hub_download(
|
| 397 |
+
repo_id = "ByteDance/ListConRanker",
|
| 398 |
+
filename = "list_transformer.pt",
|
| 399 |
+
revision = "main",
|
| 400 |
+
cache_dir = kwargs['cache_dir'] if 'cache_dir' in kwargs else None
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
try:
|
| 404 |
+
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
|
| 405 |
+
model.list_transformer.load_state_dict(torch.load(list_transformer_path))
|
| 406 |
+
except FileNotFoundError as e:
|
| 407 |
+
raise e
|
| 408 |
+
|
| 409 |
+
return model
|
| 410 |
+
|
| 411 |
+
def multi_passage(
|
| 412 |
+
self,
|
| 413 |
+
sentences: List[List[str]],
|
| 414 |
+
batch_size: int = 32,
|
| 415 |
+
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
|
| 416 |
+
"ByteDance/ListConRanker"
|
| 417 |
+
),
|
| 418 |
+
):
|
| 419 |
+
"""
|
| 420 |
+
Process multiple passages for each query.
|
| 421 |
+
:param sentences: List of lists, where each inner list contains sentences for a query.
|
| 422 |
+
:return: Tensor of logits for each passage.
|
| 423 |
+
"""
|
| 424 |
+
pairs = []
|
| 425 |
+
for batch in sentences:
|
| 426 |
+
if len(batch) < 2:
|
| 427 |
+
raise ValueError("Each query must have at least one passage.")
|
| 428 |
+
query = batch[0]
|
| 429 |
+
passages = batch[1:]
|
| 430 |
+
for passage in passages:
|
| 431 |
+
pairs.append((query, passage))
|
| 432 |
+
|
| 433 |
+
total_batches = (len(pairs) + batch_size - 1) // batch_size
|
| 434 |
+
total_logits = torch.zeros(len(pairs), dtype=torch.float, device=self.device)
|
| 435 |
+
for batch in range(total_batches):
|
| 436 |
+
batch_pairs = pairs[batch * batch_size : (batch + 1) * batch_size]
|
| 437 |
+
inputs = tokenizer(
|
| 438 |
+
batch_pairs,
|
| 439 |
+
padding=True,
|
| 440 |
+
truncation=False,
|
| 441 |
+
return_tensors="pt",
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
for k, v in inputs.items():
|
| 445 |
+
inputs[k] = v.to(self.device)
|
| 446 |
+
|
| 447 |
+
logits = self(**inputs)[0]
|
| 448 |
+
total_logits[batch * batch_size : (batch + 1) * batch_size] = (
|
| 449 |
+
logits.squeeze(1)
|
| 450 |
+
)
|
| 451 |
+
return total_logits.tolist()
|
| 452 |
+
|
| 453 |
+
def multi_passage_in_iterative_inference(
|
| 454 |
+
self,
|
| 455 |
+
sentences: List[str],
|
| 456 |
+
stop_num: int = 20,
|
| 457 |
+
decrement_rate: float = 0.2,
|
| 458 |
+
min_filter_num: int = 10,
|
| 459 |
+
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
|
| 460 |
+
"ByteDance/ListConRanker"
|
| 461 |
+
),
|
| 462 |
+
):
|
| 463 |
+
"""
|
| 464 |
+
Process multiple passages for one query in iterative inference.
|
| 465 |
+
:param sentences: List contains sentences for a query.
|
| 466 |
+
:return: Tensor of logits for each passage.
|
| 467 |
+
"""
|
| 468 |
+
if stop_num < 1:
|
| 469 |
+
raise ValueError("stop_num must be greater than 0")
|
| 470 |
+
if decrement_rate <= 0 or decrement_rate >= 1:
|
| 471 |
+
raise ValueError("decrement_rate must be in (0, 1)")
|
| 472 |
+
if min_filter_num < 1:
|
| 473 |
+
raise ValueError("min_filter_num must be greater than 0")
|
| 474 |
+
|
| 475 |
+
query = sentences[0]
|
| 476 |
+
passage = sentences[1:]
|
| 477 |
+
|
| 478 |
+
filter_times = 0
|
| 479 |
+
passage2score = defaultdict(list)
|
| 480 |
+
while len(passage) > stop_num:
|
| 481 |
+
batch = [[query] + passage]
|
| 482 |
+
pred_scores = self.multi_passage(
|
| 483 |
+
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
|
| 484 |
+
)
|
| 485 |
+
pred_scores_argsort = np.argsort(
|
| 486 |
+
pred_scores
|
| 487 |
+
).tolist() # Sort in increasing order
|
| 488 |
+
|
| 489 |
+
passage_len = len(passage)
|
| 490 |
+
to_filter_num = math.ceil(passage_len * decrement_rate)
|
| 491 |
+
if to_filter_num < min_filter_num:
|
| 492 |
+
to_filter_num = min_filter_num
|
| 493 |
+
|
| 494 |
+
have_filter_num = 0
|
| 495 |
+
while have_filter_num < to_filter_num:
|
| 496 |
+
idx = pred_scores_argsort[have_filter_num]
|
| 497 |
+
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
|
| 498 |
+
have_filter_num += 1
|
| 499 |
+
while (
|
| 500 |
+
pred_scores[pred_scores_argsort[have_filter_num - 1]]
|
| 501 |
+
== pred_scores[pred_scores_argsort[have_filter_num]]
|
| 502 |
+
):
|
| 503 |
+
idx = pred_scores_argsort[have_filter_num]
|
| 504 |
+
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
|
| 505 |
+
have_filter_num += 1
|
| 506 |
+
next_passage = []
|
| 507 |
+
next_passage_idx = have_filter_num
|
| 508 |
+
while next_passage_idx < len(passage):
|
| 509 |
+
idx = pred_scores_argsort[next_passage_idx]
|
| 510 |
+
next_passage.append(passage[idx])
|
| 511 |
+
next_passage_idx += 1
|
| 512 |
+
passage = next_passage
|
| 513 |
+
filter_times += 1
|
| 514 |
+
|
| 515 |
+
batch = [[query] + passage]
|
| 516 |
+
pred_scores = self.multi_passage(
|
| 517 |
+
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
cnt = 0
|
| 521 |
+
while cnt < len(passage):
|
| 522 |
+
passage2score[passage[cnt]].append(pred_scores[cnt] + filter_times)
|
| 523 |
+
cnt += 1
|
| 524 |
+
|
| 525 |
+
passage = sentences[1:]
|
| 526 |
+
final_score = []
|
| 527 |
+
for i in range(len(passage)):
|
| 528 |
+
p = passage[i]
|
| 529 |
+
final_score.append(passage2score[p][0])
|
| 530 |
+
return final_score
|