Upload train_h100.py with huggingface_hub
Browse files- train_h100.py +36 -6
train_h100.py
CHANGED
|
@@ -17,11 +17,12 @@ Optimized for H100 80GB
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
import os
|
|
|
|
|
|
|
| 20 |
from datasets import load_dataset
|
| 21 |
from transformers import (
|
| 22 |
AutoTokenizer,
|
| 23 |
AutoModelForCausalLM,
|
| 24 |
-
DataCollatorForLanguageModeling,
|
| 25 |
Trainer,
|
| 26 |
TrainingArguments,
|
| 27 |
)
|
|
@@ -30,6 +31,38 @@ import torch
|
|
| 30 |
import trackio
|
| 31 |
from huggingface_hub import whoami
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# Configuration
|
| 34 |
BASE_MODEL = "Tesslate/Synthia-S1-27b"
|
| 35 |
OUTPUT_MODEL = "Synthia-S1-27b-tool-calling"
|
|
@@ -148,7 +181,7 @@ training_args = TrainingArguments(
|
|
| 148 |
report_to="trackio",
|
| 149 |
run_name=f"synthia-tool-calling-lora-r{LORA_R}",
|
| 150 |
bf16=True,
|
| 151 |
-
dataloader_num_workers=
|
| 152 |
dataloader_pin_memory=True,
|
| 153 |
seed=42,
|
| 154 |
remove_unused_columns=False,
|
|
@@ -156,10 +189,7 @@ training_args = TrainingArguments(
|
|
| 156 |
|
| 157 |
# Initialize trainer
|
| 158 |
print("\nInitializing trainer...")
|
| 159 |
-
data_collator =
|
| 160 |
-
tokenizer=tokenizer,
|
| 161 |
-
mlm=False,
|
| 162 |
-
)
|
| 163 |
|
| 164 |
trainer = Trainer(
|
| 165 |
model=model,
|
|
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
import os
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Any, Dict, List
|
| 22 |
from datasets import load_dataset
|
| 23 |
from transformers import (
|
| 24 |
AutoTokenizer,
|
| 25 |
AutoModelForCausalLM,
|
|
|
|
| 26 |
Trainer,
|
| 27 |
TrainingArguments,
|
| 28 |
)
|
|
|
|
| 31 |
import trackio
|
| 32 |
from huggingface_hub import whoami
|
| 33 |
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class DataCollatorForPreTokenized:
|
| 37 |
+
"""Data collator for pre-tokenized datasets with padding."""
|
| 38 |
+
pad_token_id: int
|
| 39 |
+
|
| 40 |
+
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
| 41 |
+
# Find max length in batch
|
| 42 |
+
max_length = max(len(f["input_ids"]) for f in features)
|
| 43 |
+
|
| 44 |
+
batch = {
|
| 45 |
+
"input_ids": [],
|
| 46 |
+
"attention_mask": [],
|
| 47 |
+
"labels": [],
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
for feature in features:
|
| 51 |
+
input_ids = feature["input_ids"]
|
| 52 |
+
attention_mask = feature["attention_mask"]
|
| 53 |
+
labels = feature.get("labels", input_ids.copy())
|
| 54 |
+
|
| 55 |
+
# Calculate padding needed
|
| 56 |
+
padding_length = max_length - len(input_ids)
|
| 57 |
+
|
| 58 |
+
# Pad sequences (right padding)
|
| 59 |
+
batch["input_ids"].append(input_ids + [self.pad_token_id] * padding_length)
|
| 60 |
+
batch["attention_mask"].append(attention_mask + [0] * padding_length)
|
| 61 |
+
batch["labels"].append(labels + [-100] * padding_length) # -100 is ignored by loss
|
| 62 |
+
|
| 63 |
+
# Convert to tensors
|
| 64 |
+
return {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
|
| 65 |
+
|
| 66 |
# Configuration
|
| 67 |
BASE_MODEL = "Tesslate/Synthia-S1-27b"
|
| 68 |
OUTPUT_MODEL = "Synthia-S1-27b-tool-calling"
|
|
|
|
| 181 |
report_to="trackio",
|
| 182 |
run_name=f"synthia-tool-calling-lora-r{LORA_R}",
|
| 183 |
bf16=True,
|
| 184 |
+
dataloader_num_workers=0, # Avoid multiprocessing issues with custom collator
|
| 185 |
dataloader_pin_memory=True,
|
| 186 |
seed=42,
|
| 187 |
remove_unused_columns=False,
|
|
|
|
| 189 |
|
| 190 |
# Initialize trainer
|
| 191 |
print("\nInitializing trainer...")
|
| 192 |
+
data_collator = DataCollatorForPreTokenized(pad_token_id=tokenizer.pad_token_id)
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
trainer = Trainer(
|
| 195 |
model=model,
|