Upload combined_stable_diffusion.py with huggingface_hub
Browse files- combined_stable_diffusion.py +397 -0
combined_stable_diffusion.py
ADDED
|
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import DiffusionPipeline, DDPMScheduler
|
| 6 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
|
| 7 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
| 8 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class CombinedStableDiffusion(
|
| 16 |
+
DiffusionPipeline,
|
| 17 |
+
PyTorchModelHubMixin
|
| 18 |
+
):
|
| 19 |
+
"""
|
| 20 |
+
A Stable Diffusion model wrapper that provides functionality for text-to-image synthesis,
|
| 21 |
+
noise scheduling, latent space manipulation, and image decoding.
|
| 22 |
+
"""
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
original_unet: torch.nn.Module,
|
| 26 |
+
fine_tuned_unet: torch.nn.Module,
|
| 27 |
+
scheduler: DDPMScheduler,
|
| 28 |
+
vae: torch.nn.Module,
|
| 29 |
+
tokenizer: CLIPTextModel,
|
| 30 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 31 |
+
feature_extractor: CLIPImageProcessor,
|
| 32 |
+
text_encoder: CLIPTokenizer,
|
| 33 |
+
) -> None:
|
| 34 |
+
|
| 35 |
+
super().__init__()
|
| 36 |
+
|
| 37 |
+
self.register_modules(
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
text_encoder=text_encoder,
|
| 40 |
+
original_unet=original_unet,
|
| 41 |
+
fine_tuned_unet=fine_tuned_unet,
|
| 42 |
+
scheduler=scheduler,
|
| 43 |
+
vae=vae,
|
| 44 |
+
safety_checker=safety_checker,
|
| 45 |
+
feature_extractor=feature_extractor,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 49 |
+
self.image_processor = VaeImageProcessor(
|
| 50 |
+
vae_scale_factor=self.vae_scale_factor
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
def _get_negative_prompts(self, batch_size: int) -> torch.Tensor:
|
| 54 |
+
return self.tokenizer(
|
| 55 |
+
[""] * batch_size,
|
| 56 |
+
max_length=self.tokenizer.model_max_length,
|
| 57 |
+
padding="max_length",
|
| 58 |
+
truncation=True,
|
| 59 |
+
return_tensors="pt",
|
| 60 |
+
).input_ids
|
| 61 |
+
|
| 62 |
+
def _get_encoder_hidden_states(
|
| 63 |
+
self, tokenized_prompts: torch.Tensor, do_classifier_free_guidance: bool = False
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
+
if do_classifier_free_guidance:
|
| 66 |
+
tokenized_prompts = torch.cat(
|
| 67 |
+
[
|
| 68 |
+
self._get_negative_prompts(tokenized_prompts.shape[0]).to(
|
| 69 |
+
tokenized_prompts.device
|
| 70 |
+
),
|
| 71 |
+
tokenized_prompts,
|
| 72 |
+
]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
return self.text_encoder(tokenized_prompts)[0]
|
| 76 |
+
|
| 77 |
+
def _get_unet_prediction(
|
| 78 |
+
self,
|
| 79 |
+
latent_model_input: torch.Tensor,
|
| 80 |
+
timestep: int,
|
| 81 |
+
encoder_hidden_states: torch.Tensor,
|
| 82 |
+
) -> torch.Tensor:
|
| 83 |
+
"""
|
| 84 |
+
Return unet noise prediction
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
latent_model_input (torch.Tensor): Unet latents input
|
| 88 |
+
timestep (int): noise scheduler timestep
|
| 89 |
+
encoder_hidden_states (torch.Tensor): Text encoder hidden states
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
torch.Tensor: noise prediction
|
| 93 |
+
"""
|
| 94 |
+
unet = self.original_unet if self._use_original_unet else self.fine_tuned_unet
|
| 95 |
+
|
| 96 |
+
return unet(
|
| 97 |
+
latent_model_input,
|
| 98 |
+
timestep=timestep,
|
| 99 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 100 |
+
).sample
|
| 101 |
+
|
| 102 |
+
def get_noise_prediction(
|
| 103 |
+
self,
|
| 104 |
+
latents: torch.Tensor,
|
| 105 |
+
timestep_index: int,
|
| 106 |
+
encoder_hidden_states: torch.Tensor,
|
| 107 |
+
do_classifier_free_guidance: bool = False,
|
| 108 |
+
detach_main_path: bool = False,
|
| 109 |
+
):
|
| 110 |
+
"""
|
| 111 |
+
Return noise prediction
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
latents (torch.Tensor): Image latents
|
| 115 |
+
timestep_index (int): noise scheduler timestep index
|
| 116 |
+
encoder_hidden_states (torch.Tensor): Text encoder hidden states
|
| 117 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
| 118 |
+
detach_main_path (bool): Detach gradient
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
torch.Tensor: noise prediction
|
| 122 |
+
"""
|
| 123 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
| 124 |
+
|
| 125 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 126 |
+
sample=torch.cat([latents] * 2) if do_classifier_free_guidance else latents,
|
| 127 |
+
timestep=timestep,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
noise_pred = self._get_unet_prediction(
|
| 131 |
+
latent_model_input=latent_model_input,
|
| 132 |
+
timestep=timestep,
|
| 133 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if do_classifier_free_guidance:
|
| 137 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 138 |
+
if detach_main_path:
|
| 139 |
+
noise_pred_text = noise_pred_text.detach()
|
| 140 |
+
|
| 141 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
| 142 |
+
noise_pred_text - noise_pred_uncond
|
| 143 |
+
)
|
| 144 |
+
return noise_pred
|
| 145 |
+
|
| 146 |
+
def sample_next_latents(
|
| 147 |
+
self,
|
| 148 |
+
latents: torch.Tensor,
|
| 149 |
+
timestep_index: int,
|
| 150 |
+
noise_pred: torch.Tensor,
|
| 151 |
+
return_pred_original: bool = False,
|
| 152 |
+
) -> torch.Tensor:
|
| 153 |
+
"""
|
| 154 |
+
Return next latents prediction
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
latents (torch.Tensor): Image latents
|
| 158 |
+
timestep_index (int): noise scheduler timestep index
|
| 159 |
+
noise_pred (torch.Tensor): noise prediction
|
| 160 |
+
return_pred_original (bool) Whether to sample original sample
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
torch.Tensor: latent prediction
|
| 164 |
+
"""
|
| 165 |
+
timestep = self.scheduler.timesteps[timestep_index]
|
| 166 |
+
sample = self.scheduler.step(
|
| 167 |
+
model_output=noise_pred, timestep=timestep, sample=latents
|
| 168 |
+
)
|
| 169 |
+
return (
|
| 170 |
+
sample.pred_original_sample if return_pred_original else sample.prev_sample
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
def predict_next_latents(
|
| 174 |
+
self,
|
| 175 |
+
latents: torch.Tensor,
|
| 176 |
+
timestep_index: int,
|
| 177 |
+
encoder_hidden_states: torch.Tensor,
|
| 178 |
+
return_pred_original: bool = False,
|
| 179 |
+
do_classifier_free_guidance: bool = False,
|
| 180 |
+
detach_main_path: bool = False,
|
| 181 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 182 |
+
"""
|
| 183 |
+
Predicts the next latent states during the diffusion process.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
latents (torch.Tensor): Current latent states.
|
| 187 |
+
timestep_index (int): Index of the current timestep.
|
| 188 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states from the text encoder.
|
| 189 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
| 190 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
| 191 |
+
detach_main_path (bool): Detach gradient
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
tuple: Next latents and predicted noise tensor.
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
noise_pred = self.get_noise_prediction(
|
| 198 |
+
latents=latents,
|
| 199 |
+
timestep_index=timestep_index,
|
| 200 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 201 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 202 |
+
detach_main_path=detach_main_path,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
latents = self.sample_next_latents(
|
| 206 |
+
latents=latents,
|
| 207 |
+
noise_pred=noise_pred,
|
| 208 |
+
timestep_index=timestep_index,
|
| 209 |
+
return_pred_original=return_pred_original,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
return latents, noise_pred
|
| 213 |
+
|
| 214 |
+
def get_latents(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
| 215 |
+
latent_resolution = int(self.resolution) // self.vae_scale_factor
|
| 216 |
+
return torch.randn(
|
| 217 |
+
(
|
| 218 |
+
batch_size,
|
| 219 |
+
self.original_unet.config.in_channels,
|
| 220 |
+
latent_resolution,
|
| 221 |
+
latent_resolution,
|
| 222 |
+
),
|
| 223 |
+
device=device,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
def do_k_diffusion_steps(
|
| 227 |
+
self,
|
| 228 |
+
start_timestep_index: int,
|
| 229 |
+
end_timestep_index: int,
|
| 230 |
+
latents: torch.Tensor,
|
| 231 |
+
encoder_hidden_states: torch.Tensor,
|
| 232 |
+
return_pred_original: bool = False,
|
| 233 |
+
do_classifier_free_guidance: bool = False,
|
| 234 |
+
detach_main_path: bool = False,
|
| 235 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 236 |
+
"""
|
| 237 |
+
Performs multiple diffusion steps between specified timesteps.
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
start_timestep_index (int): Starting timestep index.
|
| 241 |
+
end_timestep_index (int): Ending timestep index.
|
| 242 |
+
latents (torch.Tensor): Initial latents.
|
| 243 |
+
encoder_hidden_states (torch.Tensor): Encoder hidden states.
|
| 244 |
+
return_pred_original (bool): Whether to return the predicted original sample.
|
| 245 |
+
do_classifier_free_guidance (bool) Whether to do classifier free guidance
|
| 246 |
+
detach_main_path (bool): Detach gradient
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
tuple: Resulting latents and encoder hidden states.
|
| 250 |
+
"""
|
| 251 |
+
assert start_timestep_index <= end_timestep_index
|
| 252 |
+
|
| 253 |
+
for timestep_index in range(start_timestep_index, end_timestep_index - 1):
|
| 254 |
+
latents, _ = self.predict_next_latents(
|
| 255 |
+
latents=latents,
|
| 256 |
+
timestep_index=timestep_index,
|
| 257 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 258 |
+
return_pred_original=False,
|
| 259 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 260 |
+
detach_main_path=detach_main_path,
|
| 261 |
+
)
|
| 262 |
+
res, _ = self.predict_next_latents(
|
| 263 |
+
latents=latents,
|
| 264 |
+
timestep_index=end_timestep_index - 1,
|
| 265 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 266 |
+
return_pred_original=return_pred_original,
|
| 267 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 268 |
+
)
|
| 269 |
+
return res, encoder_hidden_states
|
| 270 |
+
|
| 271 |
+
def get_pil_image(self, raw_images: torch.Tensor) -> list[Image]:
|
| 272 |
+
do_denormalize = [True] * raw_images.shape[0]
|
| 273 |
+
images = self.inference_image_processor.postprocess(
|
| 274 |
+
raw_images, output_type="pil", do_denormalize=do_denormalize
|
| 275 |
+
)
|
| 276 |
+
return images
|
| 277 |
+
|
| 278 |
+
def get_reward_image(self, raw_images: torch.Tensor) -> torch.Tensor:
|
| 279 |
+
reward_images = (raw_images / 2 + 0.5).clamp(0, 1)
|
| 280 |
+
|
| 281 |
+
if self.use_image_shifting:
|
| 282 |
+
self._shift_tensor_batch(
|
| 283 |
+
reward_images,
|
| 284 |
+
dx=random.randint(0, math.ceil(self.resolution / 224)),
|
| 285 |
+
dy=random.randint(0, math.ceil(self.resolution / 224)),
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
return self.reward_image_processor(reward_images)
|
| 289 |
+
|
| 290 |
+
def run_safety_checker(self, image, device, dtype):
|
| 291 |
+
if self.safety_checker is None:
|
| 292 |
+
has_nsfw_concept = None
|
| 293 |
+
else:
|
| 294 |
+
if torch.is_tensor(image):
|
| 295 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
| 296 |
+
else:
|
| 297 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 298 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
| 299 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 300 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 301 |
+
)
|
| 302 |
+
return image, has_nsfw_concept
|
| 303 |
+
|
| 304 |
+
@torch.no_grad()
|
| 305 |
+
def __call__(
|
| 306 |
+
self,
|
| 307 |
+
prompt: str | list[str],
|
| 308 |
+
num_inference_steps=40,
|
| 309 |
+
original_unet_steps=30,
|
| 310 |
+
resolution=512,
|
| 311 |
+
guidance_scale=7.5,
|
| 312 |
+
output_type: str = "pil",
|
| 313 |
+
return_dict: bool = True,
|
| 314 |
+
generator=None,
|
| 315 |
+
):
|
| 316 |
+
self.guidance_scale = guidance_scale
|
| 317 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 318 |
+
|
| 319 |
+
tokenized_prompts = self.tokenizer(
|
| 320 |
+
prompt,
|
| 321 |
+
return_tensors="pt",
|
| 322 |
+
padding="max_length",
|
| 323 |
+
max_length=self.tokenizer.model_max_length,
|
| 324 |
+
truncation=True
|
| 325 |
+
).input_ids.to(self.device)
|
| 326 |
+
original_encoder_hidden_states = self._get_encoder_hidden_states(
|
| 327 |
+
tokenized_prompts=tokenized_prompts,
|
| 328 |
+
do_classifier_free_guidance=True
|
| 329 |
+
)
|
| 330 |
+
fine_tuned_encoder_hidden_states = self._get_encoder_hidden_states(
|
| 331 |
+
tokenized_prompts=tokenized_prompts,
|
| 332 |
+
do_classifier_free_guidance=False
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
latent_resolution = int(resolution) // self.vae_scale_factor
|
| 336 |
+
latents = torch.randn(
|
| 337 |
+
(
|
| 338 |
+
batch_size,
|
| 339 |
+
self.original_unet.config.in_channels,
|
| 340 |
+
latent_resolution,
|
| 341 |
+
latent_resolution,
|
| 342 |
+
),
|
| 343 |
+
device=self.device,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
self.scheduler.set_timesteps(
|
| 347 |
+
num_inference_steps,
|
| 348 |
+
device=self.device
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
self._use_original_unet = True
|
| 352 |
+
latents, _ = self.do_k_diffusion_steps(
|
| 353 |
+
start_timestep_index=0,
|
| 354 |
+
end_timestep_index=original_unet_steps,
|
| 355 |
+
latents=latents,
|
| 356 |
+
encoder_hidden_states=original_encoder_hidden_states,
|
| 357 |
+
return_pred_original=False,
|
| 358 |
+
do_classifier_free_guidance=True,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
self._use_original_unet = False
|
| 362 |
+
latents, _ = self.do_k_diffusion_steps(
|
| 363 |
+
start_timestep_index=original_unet_steps,
|
| 364 |
+
end_timestep_index=num_inference_steps,
|
| 365 |
+
latents=latents,
|
| 366 |
+
encoder_hidden_states=fine_tuned_encoder_hidden_states,
|
| 367 |
+
return_pred_original=False,
|
| 368 |
+
do_classifier_free_guidance=False,
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if not output_type == "latent":
|
| 372 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
| 373 |
+
0
|
| 374 |
+
]
|
| 375 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
| 376 |
+
image, self.device, original_encoder_hidden_states.dtype)
|
| 377 |
+
else:
|
| 378 |
+
image = latents
|
| 379 |
+
has_nsfw_concept = None
|
| 380 |
+
|
| 381 |
+
if has_nsfw_concept is None:
|
| 382 |
+
do_denormalize = [True] * image.shape[0]
|
| 383 |
+
else:
|
| 384 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 385 |
+
image = self.image_processor.postprocess(
|
| 386 |
+
image,
|
| 387 |
+
output_type=output_type,
|
| 388 |
+
do_denormalize=do_denormalize
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Offload all models
|
| 392 |
+
self.maybe_free_model_hooks()
|
| 393 |
+
|
| 394 |
+
if not return_dict:
|
| 395 |
+
return image, has_nsfw_concept
|
| 396 |
+
|
| 397 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|