--- library_name: transformers license: apache-2.0 base_model: sentence-transformers/all-MiniLM-L12-v2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: allminidatamarker results: [] --- # allminidatamarker This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5075 - Precision: 0.2471 - Recall: 0.7698 - F1: 0.3741 - Accuracy: 0.8521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0925 | 1.0 | 38 | 0.6276 | 0.0122 | 0.0719 | 0.0208 | 0.8231 | | 1.0925 | 2.0 | 76 | 0.3662 | 0.0677 | 0.4245 | 0.1167 | 0.8200 | | 0.5958 | 3.0 | 114 | 0.4129 | 0.1643 | 0.7338 | 0.2684 | 0.8132 | | 0.5958 | 4.0 | 152 | 0.4021 | 0.2243 | 0.8777 | 0.3572 | 0.8240 | | 0.5958 | 5.0 | 190 | 0.3689 | 0.2495 | 0.8921 | 0.3899 | 0.8458 | | 0.1649 | 6.0 | 228 | 0.3811 | 0.2597 | 0.8201 | 0.3945 | 0.8573 | | 0.1649 | 7.0 | 266 | 0.4279 | 0.2806 | 0.8417 | 0.4209 | 0.8602 | | 0.0941 | 8.0 | 304 | 0.4482 | 0.2322 | 0.7050 | 0.3494 | 0.8535 | | 0.0941 | 9.0 | 342 | 0.4992 | 0.1965 | 0.5612 | 0.2910 | 0.8483 | | 0.0941 | 10.0 | 380 | 0.5075 | 0.2471 | 0.7698 | 0.3741 | 0.8521 | ### Framework versions - Transformers 4.53.2 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2