import torch from dataset import MiniBPETokenizr, ChatDataset, train, SimpleTokenizr # SimpleTokenizr might be unused now from model import MiniGPT import json from tokenizers import Tokenizer, models, trainers, pre_tokenizers, normalizers from tokenizers.trainers import BpeTrainer from tokenizers.normalizers import Lowercase, NFD, StripAccents from tokenizers.pre_tokenizers import Whitespace # For debugging purposes, turn on anomaly detection for gradients torch.autograd.set_detect_anomaly(True) # Load training data # NOTE: For underfitting on "10 examples", ensure this file *only* contains those 10 examples, # and they are long enough (as you confirmed). with open("./data/overfit_data.jsonl", "r", encoding="utf-8") as f: texts = [(json.loads(line)["input"] + ' ' + json.loads(line)["output"]) for line in f if line.strip()] def main(): # ๐Ÿง  Initialize HuggingFace BPE tokenizer tokenizer = Tokenizer(models.BPE(unk_token="")) tokenizer.normalizer = normalizers.Sequence([Lowercase(), NFD(), StripAccents()]) tokenizer.pre_tokenizer = Whitespace() # ๐Ÿ› ๏ธ BPE Training trainer = BpeTrainer( vocab_size=28517, special_tokens=["", "", "", "^User:", "MiniGPT:"] ) tokenizer.train_from_iterator(texts, trainer) # ๐Ÿ’พ Save tokenizer tokenizer.save("./trained-mini-gpt/tokenizer.json") hf_tokenizer = Tokenizer.from_file("./trained-mini-gpt/tokenizer.json") # ๐Ÿงพ Dataset & Model Init dataset = ChatDataset( data="./data/overfit_data.jsonl", # Ensure this path points to your 10-example dataset for testing tokenizer=hf_tokenizer ) model = MiniGPT(vocab_size=hf_tokenizer.get_vocab_size()) model.reset_params() # ๐Ÿš‚ Train # ๐ŸŽฏ CHANGE 2: Pass an increased learning rate (e.g., 1e-4) to the train function. # Set epochs to a high number for clear overfitting. train(model, dataset, hf_tokenizer, epochs=200, filepathh="./data/merged_data.jsonl", learning_rate=1e-4) if __name__ == "__main__": main()