|
|
from typing import Dict, Any |
|
|
import torch |
|
|
import base64 |
|
|
from io import BytesIO |
|
|
from model import Model |
|
|
from PIL import Image |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
if device.type != 'cuda': |
|
|
raise ValueError("need to run on GPU") |
|
|
|
|
|
class EndpointHandler(): |
|
|
def __init__(self, path=""): |
|
|
|
|
|
self.model = Model() |
|
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Any: |
|
|
""" |
|
|
Args: |
|
|
data (:obj:): |
|
|
includes the input data and the parameters for the inference. |
|
|
Return: |
|
|
A :obj:`dict`:. base64 encoded image |
|
|
""" |
|
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
|
|
|
|
|
|
|
_, res = self.model.process_lineart(image) |
|
|
|
|
|
|
|
|
|
|
|
return res |
|
|
|