Upload mteb_eval_openai.py
Browse files- mteb_eval_openai.py +175 -0
mteb_eval_openai.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import time
|
| 4 |
+
import hashlib
|
| 5 |
+
import numpy as np
|
| 6 |
+
import requests
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
import functools
|
| 10 |
+
import tiktoken
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
from mteb import MTEB
|
| 13 |
+
#from sentence_transformers import SentenceTransformer
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger("main")
|
| 16 |
+
|
| 17 |
+
all_task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
|
| 18 |
+
if len(sys.argv) > 1:
|
| 19 |
+
task_list = [t for t in sys.argv[1].split(',') if t in all_task_list]
|
| 20 |
+
else:
|
| 21 |
+
task_list = all_task_list
|
| 22 |
+
|
| 23 |
+
OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', '')
|
| 24 |
+
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
|
| 25 |
+
EMB_CACHE_DIR = os.environ.get('EMB_CACHE_DIR', '.cache/embs')
|
| 26 |
+
REQ_OPENAI_TIMEOUT = int(os.environ.get('REQ_OPENAI_TIMEOUT', 120))
|
| 27 |
+
REQ_OPENAI_RETRY = int(os.environ.get('REQ_OPENAI_RETRY', 3))
|
| 28 |
+
REQ_OPENAI_INTERVAL = int(os.environ.get('REQ_OPENAI_INTERVAL', 60))
|
| 29 |
+
os.makedirs(EMB_CACHE_DIR, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
def log(*args):
|
| 32 |
+
print(*args, file=sys.stderr)
|
| 33 |
+
|
| 34 |
+
def uuid_for_text(text):
|
| 35 |
+
return hashlib.md5(text.encode('utf8')).hexdigest()
|
| 36 |
+
|
| 37 |
+
def count_openai_tokens(text, model="text-embedding-3-large"):
|
| 38 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
| 39 |
+
#encoding = tiktoken.encoding_for_model(model)
|
| 40 |
+
input_ids = encoding.encode(text)
|
| 41 |
+
return len(input_ids)
|
| 42 |
+
|
| 43 |
+
def request_openai_emb(texts, model="text-embedding-3-large",
|
| 44 |
+
base_url='https://api.openai.com', prefix_url='/v1/embeddings',
|
| 45 |
+
timeout=4, retry=3, interval=2, caching=True):
|
| 46 |
+
if isinstance(texts, str):
|
| 47 |
+
texts = [texts]
|
| 48 |
+
|
| 49 |
+
data = []
|
| 50 |
+
if caching:
|
| 51 |
+
for text in texts:
|
| 52 |
+
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
|
| 53 |
+
if os.path.isfile(emb_file) and os.path.getsize(emb_file) > 0:
|
| 54 |
+
data.append(np.loadtxt(emb_file))
|
| 55 |
+
if len(texts) == len(data):
|
| 56 |
+
return data
|
| 57 |
+
|
| 58 |
+
url = f"{OPENAI_BASE_URL}{prefix_url}" if OPENAI_BASE_URL else f"{base_url}{prefix_url}"
|
| 59 |
+
headers = {
|
| 60 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}",
|
| 61 |
+
"Content-Type": "application/json"
|
| 62 |
+
}
|
| 63 |
+
payload = {"input": texts, "model": model}
|
| 64 |
+
|
| 65 |
+
data = []
|
| 66 |
+
while retry > 0 and len(data) == 0:
|
| 67 |
+
try:
|
| 68 |
+
r = requests.post(url, headers=headers, json=payload,
|
| 69 |
+
timeout=timeout)
|
| 70 |
+
res = r.json()
|
| 71 |
+
for x in res["data"]:
|
| 72 |
+
data.append(np.array(x["embedding"]))
|
| 73 |
+
except Exception as e:
|
| 74 |
+
log(f"request openai, retry {retry}, error: {e}")
|
| 75 |
+
time.sleep(interval)
|
| 76 |
+
retry -= 1
|
| 77 |
+
|
| 78 |
+
if len(data) != len(texts):
|
| 79 |
+
log(f"request openai, failed, texts and embs DONT match!")
|
| 80 |
+
return []
|
| 81 |
+
|
| 82 |
+
if caching and len(data) > 0:
|
| 83 |
+
for text, emb in zip(texts, data):
|
| 84 |
+
emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
|
| 85 |
+
np.savetxt(emb_file, emb)
|
| 86 |
+
|
| 87 |
+
return data
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class OpenaiEmbModel:
|
| 91 |
+
|
| 92 |
+
def __init__(self, model_name, model_dim, *args, **kwargs):
|
| 93 |
+
super().__init__(*args, **kwargs)
|
| 94 |
+
self.model_name = model_name
|
| 95 |
+
self.model_dim = model_dim
|
| 96 |
+
|
| 97 |
+
def encode(self, sentences, batch_size=32, **kwargs):
|
| 98 |
+
i = 0
|
| 99 |
+
max_tokens = kwargs.get("max_tokens", 8000)
|
| 100 |
+
batch_tokens = 0
|
| 101 |
+
batch = []
|
| 102 |
+
batch_list = []
|
| 103 |
+
while i < len(sentences):
|
| 104 |
+
num_tokens = count_openai_tokens(sentences[i],
|
| 105 |
+
model=self.model_name)
|
| 106 |
+
if batch_tokens+num_tokens > max_tokens:
|
| 107 |
+
if batch:
|
| 108 |
+
batch_list.append(batch)
|
| 109 |
+
if num_tokens > max_tokens:
|
| 110 |
+
batch = [sentences[i][:2048]]
|
| 111 |
+
batch_tokens = count_openai_tokens(sentences[i][:2048],
|
| 112 |
+
model=self.model_name)
|
| 113 |
+
else:
|
| 114 |
+
batch = [sentences[i]]
|
| 115 |
+
batch_tokens = num_tokens
|
| 116 |
+
else:
|
| 117 |
+
batch_list.append([sentences[i][:2048]])
|
| 118 |
+
else:
|
| 119 |
+
batch.append(sentences[i])
|
| 120 |
+
batch_tokens += num_tokens
|
| 121 |
+
i += 1
|
| 122 |
+
if batch:
|
| 123 |
+
batch_list.append(batch)
|
| 124 |
+
|
| 125 |
+
#batch_size = min(64, batch_size)
|
| 126 |
+
#
|
| 127 |
+
#for i in range(0, len(sentences), batch_size):
|
| 128 |
+
# batch_texts = sentences[i:i+batch_size]
|
| 129 |
+
# batch_list.append(batch_texts)
|
| 130 |
+
|
| 131 |
+
log(f"Total sentences={len(sentences)}, batches={len(batch_list)}")
|
| 132 |
+
embs = []
|
| 133 |
+
waiting = 0
|
| 134 |
+
for batch_idx, batch_texts in enumerate(tqdm(batch_list)):
|
| 135 |
+
batch_embs = request_openai_emb(batch_texts, model=self.model_name,
|
| 136 |
+
caching=kwargs.get("caching", True),
|
| 137 |
+
timeout=kwargs.get("timeout", REQ_OPENAI_TIMEOUT),
|
| 138 |
+
retry=kwargs.get("retry", REQ_OPENAI_RETRY),
|
| 139 |
+
interval=kwargs.get("interval", REQ_OPENAI_INTERVAL))
|
| 140 |
+
|
| 141 |
+
if len(batch_texts) == len(batch_embs):
|
| 142 |
+
embs.extend(batch_embs)
|
| 143 |
+
waiting = waiting // 2
|
| 144 |
+
log(f"The batch-{batch_idx} encoding SUCCESS! waiting={waiting}s...")
|
| 145 |
+
else:
|
| 146 |
+
embs.extend([np.array([0.0 for j in range(self.model_dim)]) for i in range(len(batch_texts))])
|
| 147 |
+
waiting = 120 if waiting <= 0 else waiting+120
|
| 148 |
+
log(f"The batch-{batch_idx} encoding FAILED {len(batch_texts)}:{len(batch_embs)}! waiting={waiting}s...")
|
| 149 |
+
|
| 150 |
+
if waiting > 3600:
|
| 151 |
+
log(f"Frequently failed, should be waiting more then 3600s, break down!!!")
|
| 152 |
+
break
|
| 153 |
+
if waiting > 0:
|
| 154 |
+
time.sleep(waiting)
|
| 155 |
+
|
| 156 |
+
print(f'Total encoding sentences={len(sentences)}, embeddings={len(embs)}')
|
| 157 |
+
return embs
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
model_name = "text-embedding-3-large"
|
| 161 |
+
model_dim = 3072
|
| 162 |
+
model = OpenaiEmbModel(model_name, model_dim)
|
| 163 |
+
|
| 164 |
+
######
|
| 165 |
+
# test
|
| 166 |
+
#####
|
| 167 |
+
#embs = model.encode(['全国', '北京'])
|
| 168 |
+
#print(embs)
|
| 169 |
+
#exit()
|
| 170 |
+
|
| 171 |
+
# languages
|
| 172 |
+
task_langs=["zh", "zh-CN"]
|
| 173 |
+
|
| 174 |
+
evaluation = MTEB(task_types=task_list, task_langs=task_langs)
|
| 175 |
+
evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")
|