--- license: mit --- We train a **text-to-clause** model for SQL generation. Given a natural language description as input, the model outputs the SQL clause (e.g., WHERE student.age > 18) instead of the entire SQL query. **modelS.tar.gz** includes our best checkpoint. Please refer below information for more details. | Type | Examples | | -------- | ------- | | Application | Microsoft SQL Server, PostgreSQL, SQLite | | Language | C++, Java, Python, Rust | | Library | PyTorch, AllenNLP | | License | MIT License | | Decoding Architecture | Transformer + RAT-SQL + rule-based | | Layers | 24 Transformer layers + 8 RAT-SQL layers| | Tree representation | 8 heads & dimensionality 256 | | Dataset | 83K synthetic dataset | | Optimizer | Adam | | Learning rate | 1.8e-4 | | Dropout rate | 0.1 | | Operating System | Linux, macOS, Windows | # Model Details Paper: [https://arxiv.org/abs/2305.07372](https://arxiv.org/abs/2305.07372) Code: [https://github.com/magic-YuanTian/STEPS](https://github.com/magic-YuanTian/STEPS) Dataset: [https://drive.google.com/file/d/1f1fnJK2vGuRpaQOeMlBD10tQMDH3dR83/view?pli=1](https://drive.google.com/file/d/1f1fnJK2vGuRpaQOeMlBD10tQMDH3dR83/view?pli=1)