# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import logging from pytorch_pretrained_bert.file_utils import http_get logger = logging.getLogger(__name__) # Note that the model size is roughly half of the GPT model because our model is saved by fp16 LSP_MODEL_URL = { 'multiref': { 'large_fs': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/multiref/large_fs.pkl', 'medium_fs': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/multiref/medium_fs.pkl', 'medium_ft': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/multiref/medium_ft.pkl', 'small_fs': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/multiref/small_fs.pkl', 'small_ft': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/multiref/small_ft.pkl' }, 'dstc': { 'medium_ft': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/DSTC/medium_ft.pkl' } } # GPT model could be downloaded from huggingface repo GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = { "small": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin", "medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin", "large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-pytorch_model.bin" } CONFIG_FILE = { 'small': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/117M/config.json', 'medium': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/345M/config.json', 'large': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/1542M/config.json' } VOCAB_FILE = { 'small': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/117M/vocab.json', 'medium': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/345M/vocab.json', 'large': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/1542M/vocab.json' } MERGE_FILE = { 'small': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/117M/merges.txt', 'medium': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/345M/merges.txt', 'large': 'https://acvrpublicycchen.blob.core.windows.net/dialogpt/1542M/merges.txt' } def download_file(url, folder): if not os.path.exists(folder): os.makedirs(folder, exist_ok=True) file_name = os.path.basename(url) if 'pytorch_model.bin' in file_name: file_name = 'pytorch_model.bin' if os.path.isfile(os.path.join(folder, file_name)): logger.info(f'{os.path.join(folder, file_name)} exists, return!') return with open(os.path.join(folder, file_name), 'wb') as f: http_get(url, f) def download_model_folder(model_size, dataset=None, from_scratch=None, DATA_FOLDER=None): assert DATA_FOLDER is not None, 'DATA_FOLDER cannot be None' assert model_size in ['small', 'medium', 'large'], 'model size should be one of \'small\', \'medium\' or \'large\'' target_folder = os.path.join(DATA_FOLDER, model_size) download_file(CONFIG_FILE[model_size], target_folder) download_file(VOCAB_FILE[model_size], target_folder) download_file(MERGE_FILE[model_size], target_folder) download_file(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP[model_size], target_folder) if dataset is not None: assert dataset in ['multiref', 'dstc'], \ 'dataset has to be \'multiref\' or \'dstc\'' assert from_scratch in [True, False], 'from scratch has to be True or False' if from_scratch: model_train_type = model_size + '_fs' else: model_train_type = model_size + '_ft' if model_train_type not in LSP_MODEL_URL[dataset]: k = ','.join(list(LSP_MODEL_URL[dataset].keys())) raise ValueError(f'\'{model_train_type}\' not exist for dataset \'{dataset}\', please choose from [{k}]') download_file(LSP_MODEL_URL[dataset][model_train_type], target_folder) return target_folder