# %pip install comet_ml --quiet import comet_ml import torch from ultralytics import YOLO import ultralytics.data as data import ultralytics.data.dataset as dataset import ultralytics.data.build as build import numpy as np comet_ml.login(project_name='reduced_images_benthic_supercategory_detector6') #comet_ml.start(mode="get", experiment_keyd="87329baa84f547feb8f249cd3991b51d") import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" print("CUDA Available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("GPU Name:", torch.cuda.get_device_name(0)) model = YOLO("yolo11x.yaml") model = YOLO("yolo11x.pt") # Load a pretrained model model = YOLO("yolo11x.yaml").load("yolo11x.pt") results = model.train(data='/data/james/reduced_experiment/data6/benthic_supercategory_detector.yaml', batch = 32, epochs=100, imgsz=640, patience=15, val=True, device=0, plots=True)