Saving weights and logs of step 10000
Browse files- __pycache__/distributed_shampoo.cpython-38.pyc +0 -0
- distributed_shampoo.py +1611 -0
- flax_model.msgpack +1 -1
- run_clm_flax.py +32 -0
- runs/events.out.tfevents.1642099734.t1v-n-42145f73-w-0.2317757.0.v2 +0 -3
- runs/{events.out.tfevents.1642208918.t1v-n-42145f73-w-0.2567321.0.v2 → events.out.tfevents.1642236904.t1v-n-42145f73-w-0.2775834.0.v2} +2 -2
- start_train.sh +3 -6
__pycache__/distributed_shampoo.cpython-38.pyc
ADDED
|
Binary file (51.7 kB). View file
|
|
|
distributed_shampoo.py
ADDED
|
@@ -0,0 +1,1611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#from https://github.com/google-research/google-research/blob/master/scalable_shampoo/optax/distributed_shampoo.py
|
| 2 |
+
|
| 3 |
+
# coding=utf-8
|
| 4 |
+
# Copyright 2021 The Google Research Authors.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
|
| 18 |
+
# An implementation of distributed Shampoo optimizer from:
|
| 19 |
+
#
|
| 20 |
+
# Scalable Second Order Optimization for Deep Learning
|
| 21 |
+
# Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
| 22 |
+
# Preprint Paper: https://arxiv.org/abs/2002.09018
|
| 23 |
+
#
|
| 24 |
+
# This implementation moves computation of inverse pth root back to the
|
| 25 |
+
# accelerator (if higher precision is available).
|
| 26 |
+
#
|
| 27 |
+
# Authors: Rohan Anil (rohananil at google dot com)
|
| 28 |
+
# & Vineet Gupta (vineet at google dot com)
|
| 29 |
+
#
|
| 30 |
+
|
| 31 |
+
"""Distributed Shampoo Implementation."""
|
| 32 |
+
|
| 33 |
+
import enum
|
| 34 |
+
import functools
|
| 35 |
+
import itertools
|
| 36 |
+
from typing import Any, List, NamedTuple
|
| 37 |
+
|
| 38 |
+
import chex
|
| 39 |
+
from flax import struct
|
| 40 |
+
import jax
|
| 41 |
+
from jax import lax
|
| 42 |
+
import jax.experimental.pjit as pjit
|
| 43 |
+
import jax.numpy as jnp
|
| 44 |
+
import numpy as np
|
| 45 |
+
import optax
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# pylint:disable=no-value-for-parameter
|
| 49 |
+
@struct.dataclass
|
| 50 |
+
class QuantizedValue:
|
| 51 |
+
"""State associated with quantized value."""
|
| 52 |
+
quantized: chex.Array
|
| 53 |
+
diagonal: chex.Array # Diagonal (if extract_diagonal is set)
|
| 54 |
+
bucket_size: chex.Array
|
| 55 |
+
quantized_dtype: jnp.dtype = struct.field(
|
| 56 |
+
pytree_node=False) # Dtype for the quantized value.
|
| 57 |
+
extract_diagonal: bool = struct.field(
|
| 58 |
+
pytree_node=False) # In case its centered.
|
| 59 |
+
shape: Any = struct.field(pytree_node=False) # Shape of the tensor.
|
| 60 |
+
|
| 61 |
+
@classmethod
|
| 62 |
+
def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
| 63 |
+
if isinstance(fvalue, list) and not fvalue:
|
| 64 |
+
return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, [])
|
| 65 |
+
quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize(
|
| 66 |
+
fvalue, quantized_dtype, extract_diagonal)
|
| 67 |
+
return QuantizedValue(quantized, diagonal_fvalue, bucket_size,
|
| 68 |
+
quantized_dtype, extract_diagonal,
|
| 69 |
+
list(quantized.shape))
|
| 70 |
+
|
| 71 |
+
# Quantization is from Lingvo JAX optimizers.
|
| 72 |
+
# We extend it for int16 quantization of PSD matrices.
|
| 73 |
+
@classmethod
|
| 74 |
+
def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
| 75 |
+
"""Returns quantized value and the bucket."""
|
| 76 |
+
if quantized_dtype == jnp.float32:
|
| 77 |
+
return fvalue, [], []
|
| 78 |
+
elif quantized_dtype == jnp.bfloat16:
|
| 79 |
+
return fvalue.astype(jnp.bfloat16), [], []
|
| 80 |
+
|
| 81 |
+
float_dtype = fvalue.dtype
|
| 82 |
+
if quantized_dtype == jnp.int8:
|
| 83 |
+
# value -128 is not used.
|
| 84 |
+
num_buckets = jnp.array(127.0, dtype=float_dtype)
|
| 85 |
+
elif quantized_dtype == jnp.int16:
|
| 86 |
+
# value -32768 is not used.
|
| 87 |
+
num_buckets = jnp.array(32767.0, dtype=float_dtype)
|
| 88 |
+
else:
|
| 89 |
+
raise ValueError(f'Quantized dtype {quantized_dtype} not supported.')
|
| 90 |
+
# max value is mapped to num_buckets
|
| 91 |
+
|
| 92 |
+
if extract_diagonal and fvalue.ndim != 2:
|
| 93 |
+
raise ValueError(
|
| 94 |
+
f'Input array {fvalue} must be 2D to work with extract_diagonal.')
|
| 95 |
+
|
| 96 |
+
diagonal_fvalue = []
|
| 97 |
+
if extract_diagonal:
|
| 98 |
+
diagonal_fvalue = jnp.diag(fvalue)
|
| 99 |
+
# Remove the diagonal entries.
|
| 100 |
+
fvalue = fvalue - jnp.diag(diagonal_fvalue)
|
| 101 |
+
|
| 102 |
+
# TODO(rohananil): Extend this by making use of information about the blocks
|
| 103 |
+
# SM3 style which will be useful for diagonal statistics
|
| 104 |
+
# We first decide the scale.
|
| 105 |
+
if fvalue.ndim < 1:
|
| 106 |
+
raise ValueError(
|
| 107 |
+
f'Input array {fvalue} must have a strictly positive number of '
|
| 108 |
+
'dimensions.')
|
| 109 |
+
|
| 110 |
+
max_abs = jnp.max(jnp.abs(fvalue), axis=0)
|
| 111 |
+
bucket_size = max_abs / num_buckets
|
| 112 |
+
bs_expanded = bucket_size[jnp.newaxis, Ellipsis]
|
| 113 |
+
# To avoid divide by 0.0
|
| 114 |
+
bs_nonzero = jnp.where(bs_expanded > 0.0, bs_expanded,
|
| 115 |
+
jnp.ones_like(bs_expanded))
|
| 116 |
+
ratio = fvalue / bs_nonzero
|
| 117 |
+
# We use rounding to remove bias.
|
| 118 |
+
quantized = jnp.round(ratio)
|
| 119 |
+
return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size
|
| 120 |
+
|
| 121 |
+
def to_float(self):
|
| 122 |
+
"""Returns the float value."""
|
| 123 |
+
if isinstance(self.quantized, list) and not self.quantized:
|
| 124 |
+
return self.quantized
|
| 125 |
+
|
| 126 |
+
if self.quantized_dtype == jnp.float32:
|
| 127 |
+
return self.quantized
|
| 128 |
+
|
| 129 |
+
if self.quantized_dtype == jnp.bfloat16:
|
| 130 |
+
return self.quantized.astype(jnp.float32)
|
| 131 |
+
|
| 132 |
+
float_dtype = self.bucket_size.dtype
|
| 133 |
+
bucket_size = self.bucket_size[jnp.newaxis, Ellipsis]
|
| 134 |
+
val = self.quantized.astype(float_dtype) * bucket_size
|
| 135 |
+
if self.extract_diagonal:
|
| 136 |
+
val += jnp.diag(self.diagonal)
|
| 137 |
+
return val
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# Per parameter optimizer state used in data-parallel training.
|
| 141 |
+
class ParameterStats(NamedTuple):
|
| 142 |
+
"""State associated to each parameter of the model being trained."""
|
| 143 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
| 144 |
+
statistics: List[Any] # Statistics (QuantizedValue, chex.Array)
|
| 145 |
+
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
| 146 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 147 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# For training extremely large model; We keep a global state with a concatenated
|
| 151 |
+
# statistics and preconditioner states for all vars. This is so that we can
|
| 152 |
+
# annotate the leading axis to be sharded to save memory at the cost of
|
| 153 |
+
# communication.
|
| 154 |
+
@struct.dataclass
|
| 155 |
+
class GlobalShardedParameterStats:
|
| 156 |
+
statistics: chex.Array # Statistics
|
| 157 |
+
preconditioners: chex.Array # Preconditioners
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# These are per-parameter local states; All statistics here mirror the parameter
|
| 161 |
+
# Thus the sharding is copied over from the param specification.
|
| 162 |
+
@struct.dataclass
|
| 163 |
+
class LocalShardedParameterStats:
|
| 164 |
+
"""State associated to each parameter of the model being trained."""
|
| 165 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
| 166 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 167 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
| 168 |
+
index_start: np.int32 = struct.field(
|
| 169 |
+
pytree_node=False) # Index into global statistics array
|
| 170 |
+
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class ShardedShampooStats(NamedTuple):
|
| 174 |
+
"""Shampoo state in sharded mode."""
|
| 175 |
+
global_stats: Any
|
| 176 |
+
local_stats: Any
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ShampooState(NamedTuple):
|
| 180 |
+
count: chex.Array
|
| 181 |
+
stats: Any
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class GraftingType(enum.IntEnum):
|
| 185 |
+
SGD = 1
|
| 186 |
+
ADAGRAD = 2
|
| 187 |
+
RMSPROP = 3
|
| 188 |
+
RMSPROP_NORMALIZED = 4
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def power_iteration(
|
| 192 |
+
matrix,
|
| 193 |
+
num_iters=100,
|
| 194 |
+
error_tolerance=1e-6,
|
| 195 |
+
precision=lax.Precision.HIGHEST):
|
| 196 |
+
r"""Power iteration algorithm.
|
| 197 |
+
|
| 198 |
+
The power iteration algorithm takes a symmetric PSD matrix `A`, and produces
|
| 199 |
+
a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue
|
| 200 |
+
of `A`, and a vector v, which is the corresponding eigenvector of `A`.
|
| 201 |
+
|
| 202 |
+
References:
|
| 203 |
+
[Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration)
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
matrix: the symmetric PSD matrix.
|
| 207 |
+
num_iters: Number of iterations.
|
| 208 |
+
error_tolerance: Iterative exit condition.
|
| 209 |
+
precision: precision XLA related flag, the available options are:
|
| 210 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
| 211 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
| 212 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
eigen vector, eigen value
|
| 216 |
+
"""
|
| 217 |
+
matrix_size = matrix.shape[-1]
|
| 218 |
+
def _iter_condition(state):
|
| 219 |
+
i, unused_v, unused_s, unused_s_v, run_step = state
|
| 220 |
+
return jnp.logical_and(i < num_iters, run_step)
|
| 221 |
+
|
| 222 |
+
def _iter_body(state):
|
| 223 |
+
"""One step of power iteration."""
|
| 224 |
+
i, new_v, s, s_v, unused_run_step = state
|
| 225 |
+
new_v = new_v / jnp.linalg.norm(new_v)
|
| 226 |
+
|
| 227 |
+
s_v = jnp.einsum('ij,j->i', matrix, new_v, precision=precision)
|
| 228 |
+
s_new = jnp.einsum('i,i->', new_v, s_v, precision=precision)
|
| 229 |
+
return (i + 1, s_v, s_new, s_v,
|
| 230 |
+
jnp.greater(jnp.abs(s_new - s), error_tolerance))
|
| 231 |
+
|
| 232 |
+
# Figure out how to use step as seed for random.
|
| 233 |
+
v_0 = np.random.RandomState(1729).uniform(-1.0, 1.0,
|
| 234 |
+
matrix_size).astype(matrix.dtype)
|
| 235 |
+
|
| 236 |
+
init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True])
|
| 237 |
+
_, v_out, s_out, _, _ = lax.while_loop(
|
| 238 |
+
_iter_condition, _iter_body, init_state)
|
| 239 |
+
v_out = v_out / jnp.linalg.norm(v_out)
|
| 240 |
+
return v_out, s_out
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def matrix_inverse_pth_root(
|
| 244 |
+
matrix,
|
| 245 |
+
p,
|
| 246 |
+
num_iters=100,
|
| 247 |
+
ridge_epsilon=1e-6,
|
| 248 |
+
error_tolerance=1e-6,
|
| 249 |
+
precision=lax.Precision.HIGHEST):
|
| 250 |
+
"""Computes `matrix^(-1/p)`, where `p` is a positive integer.
|
| 251 |
+
|
| 252 |
+
This function uses the Coupled newton iterations algorithm for
|
| 253 |
+
the computation of a matrix's inverse pth root.
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
References:
|
| 257 |
+
[Functions of Matrices, Theory and Computation,
|
| 258 |
+
Nicholas J Higham, Pg 184, Eq 7.18](
|
| 259 |
+
https://epubs.siam.org/doi/book/10.1137/1.9780898717778)
|
| 260 |
+
|
| 261 |
+
Args:
|
| 262 |
+
matrix: the symmetric PSD matrix whose power it to be computed
|
| 263 |
+
p: exponent, for p a positive integer.
|
| 264 |
+
num_iters: Maximum number of iterations.
|
| 265 |
+
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
| 266 |
+
error_tolerance: Error indicator, useful for early termination.
|
| 267 |
+
precision: precision XLA related flag, the available options are:
|
| 268 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
| 269 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
| 270 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
| 271 |
+
|
| 272 |
+
Returns:
|
| 273 |
+
matrix^(-1/p)
|
| 274 |
+
"""
|
| 275 |
+
|
| 276 |
+
# We use float32 for the matrix inverse pth root.
|
| 277 |
+
# Switch to f64 if you have hardware that supports it.
|
| 278 |
+
matrix_size = matrix.shape[0]
|
| 279 |
+
alpha = jnp.asarray(-1.0 / p, jnp.float32)
|
| 280 |
+
identity = jnp.eye(matrix_size, dtype=jnp.float32)
|
| 281 |
+
_, max_ev = power_iteration(
|
| 282 |
+
matrix=matrix, num_iters=100,
|
| 283 |
+
error_tolerance=1e-6, precision=precision)
|
| 284 |
+
ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-16)
|
| 285 |
+
|
| 286 |
+
def _unrolled_mat_pow_1(mat_m):
|
| 287 |
+
"""Computes mat_m^1."""
|
| 288 |
+
return mat_m
|
| 289 |
+
|
| 290 |
+
def _unrolled_mat_pow_2(mat_m):
|
| 291 |
+
"""Computes mat_m^2."""
|
| 292 |
+
return jnp.matmul(mat_m, mat_m, precision=precision)
|
| 293 |
+
|
| 294 |
+
def _unrolled_mat_pow_4(mat_m):
|
| 295 |
+
"""Computes mat_m^4."""
|
| 296 |
+
mat_pow_2 = _unrolled_mat_pow_2(mat_m)
|
| 297 |
+
return jnp.matmul(
|
| 298 |
+
mat_pow_2, mat_pow_2, precision=precision)
|
| 299 |
+
|
| 300 |
+
def _unrolled_mat_pow_8(mat_m):
|
| 301 |
+
"""Computes mat_m^4."""
|
| 302 |
+
mat_pow_4 = _unrolled_mat_pow_4(mat_m)
|
| 303 |
+
return jnp.matmul(
|
| 304 |
+
mat_pow_4, mat_pow_4, precision=precision)
|
| 305 |
+
|
| 306 |
+
def mat_power(mat_m, p):
|
| 307 |
+
"""Computes mat_m^p, for p == 1, 2, 4 or 8.
|
| 308 |
+
|
| 309 |
+
Args:
|
| 310 |
+
mat_m: a square matrix
|
| 311 |
+
p: a positive integer
|
| 312 |
+
|
| 313 |
+
Returns:
|
| 314 |
+
mat_m^p
|
| 315 |
+
"""
|
| 316 |
+
# We unrolled the loop for performance reasons.
|
| 317 |
+
exponent = jnp.round(jnp.log2(p))
|
| 318 |
+
return lax.switch(
|
| 319 |
+
jnp.asarray(exponent, jnp.int32), [
|
| 320 |
+
_unrolled_mat_pow_1,
|
| 321 |
+
_unrolled_mat_pow_2,
|
| 322 |
+
_unrolled_mat_pow_4,
|
| 323 |
+
_unrolled_mat_pow_8,
|
| 324 |
+
], (mat_m))
|
| 325 |
+
|
| 326 |
+
def _iter_condition(state):
|
| 327 |
+
(i, unused_mat_m, unused_mat_h, unused_old_mat_h, error,
|
| 328 |
+
run_step) = state
|
| 329 |
+
error_above_threshold = jnp.logical_and(
|
| 330 |
+
error > error_tolerance, run_step)
|
| 331 |
+
return jnp.logical_and(i < num_iters, error_above_threshold)
|
| 332 |
+
|
| 333 |
+
def _iter_body(state):
|
| 334 |
+
(i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state
|
| 335 |
+
mat_m_i = (1 - alpha) * identity + alpha * mat_m
|
| 336 |
+
new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision)
|
| 337 |
+
new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision)
|
| 338 |
+
new_error = jnp.max(jnp.abs(new_mat_m - identity))
|
| 339 |
+
# sometimes error increases after an iteration before decreasing and
|
| 340 |
+
# converging. 1.2 factor is used to bound the maximal allowed increase.
|
| 341 |
+
return (i + 1, new_mat_m, new_mat_h, mat_h, new_error,
|
| 342 |
+
new_error < error * 1.2)
|
| 343 |
+
|
| 344 |
+
if matrix_size == 1:
|
| 345 |
+
resultant_mat_h = (matrix + ridge_epsilon)**alpha
|
| 346 |
+
error = 0
|
| 347 |
+
else:
|
| 348 |
+
damped_matrix = matrix + ridge_epsilon * identity
|
| 349 |
+
|
| 350 |
+
z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix))
|
| 351 |
+
new_mat_m_0 = damped_matrix * z
|
| 352 |
+
new_error = jnp.max(jnp.abs(new_mat_m_0 - identity))
|
| 353 |
+
new_mat_h_0 = identity * jnp.power(z, 1.0 / p)
|
| 354 |
+
init_state = tuple(
|
| 355 |
+
[0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True])
|
| 356 |
+
_, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop(
|
| 357 |
+
_iter_condition, _iter_body, init_state)
|
| 358 |
+
error = jnp.max(jnp.abs(mat_m - identity))
|
| 359 |
+
is_converged = jnp.asarray(convergence, old_mat_h.dtype)
|
| 360 |
+
resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h
|
| 361 |
+
resultant_mat_h = jnp.asarray(resultant_mat_h, matrix.dtype)
|
| 362 |
+
return resultant_mat_h, error
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def merge_small_dims(shape_to_merge, max_dim):
|
| 366 |
+
"""Merge small dimensions.
|
| 367 |
+
|
| 368 |
+
If there are some small dimensions, we collapse them:
|
| 369 |
+
e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
|
| 370 |
+
[1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
| 371 |
+
|
| 372 |
+
Args:
|
| 373 |
+
shape_to_merge: Shape to merge small dimensions.
|
| 374 |
+
max_dim: Maximal dimension of output shape used in merging.
|
| 375 |
+
|
| 376 |
+
Returns:
|
| 377 |
+
Merged shape.
|
| 378 |
+
"""
|
| 379 |
+
resulting_shape = []
|
| 380 |
+
product = 1
|
| 381 |
+
for d in shape_to_merge:
|
| 382 |
+
if product * d <= max_dim:
|
| 383 |
+
product *= d
|
| 384 |
+
else:
|
| 385 |
+
if product > 1:
|
| 386 |
+
resulting_shape.append(product)
|
| 387 |
+
product = d
|
| 388 |
+
if product > 1:
|
| 389 |
+
resulting_shape.append(product)
|
| 390 |
+
return resulting_shape
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def pad_matrix(mat, max_size):
|
| 394 |
+
"""Pad a matrix to a max_size.
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
mat: a matrix to pad.
|
| 398 |
+
max_size: matrix size requested.
|
| 399 |
+
|
| 400 |
+
Returns:
|
| 401 |
+
Given M returns [[M, 0], [0, I]]
|
| 402 |
+
"""
|
| 403 |
+
size = mat.shape[0]
|
| 404 |
+
assert size <= max_size
|
| 405 |
+
if size == max_size:
|
| 406 |
+
return mat
|
| 407 |
+
pad_size = max_size - size
|
| 408 |
+
zs1 = jnp.zeros([size, pad_size], dtype=mat.dtype)
|
| 409 |
+
zs2 = jnp.zeros([pad_size, size], dtype=mat.dtype)
|
| 410 |
+
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
| 411 |
+
mat = jnp.concatenate([mat, zs1], 1)
|
| 412 |
+
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
| 413 |
+
return mat
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def pad_vector(vec, max_size):
|
| 417 |
+
"""Pad a vector to a max_size.
|
| 418 |
+
|
| 419 |
+
Args:
|
| 420 |
+
vec: a vector to pad.
|
| 421 |
+
max_size: matrix size requested.
|
| 422 |
+
|
| 423 |
+
Returns:
|
| 424 |
+
Given V returns [V, 0]
|
| 425 |
+
"""
|
| 426 |
+
size = vec.shape[0]
|
| 427 |
+
assert size <= max_size
|
| 428 |
+
if size == max_size:
|
| 429 |
+
return vec
|
| 430 |
+
pad_size = max_size - size
|
| 431 |
+
zs1 = jnp.zeros([pad_size], dtype=vec.dtype)
|
| 432 |
+
return jnp.concatenate([vec, zs1], 0)
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs):
|
| 436 |
+
"""Avoids wasteful buffer allocation with XLA."""
|
| 437 |
+
|
| 438 |
+
def _iter_body(unused_state):
|
| 439 |
+
results = compute_fn(*args, **kwargs)
|
| 440 |
+
return tuple([False] + list(results))
|
| 441 |
+
|
| 442 |
+
def _iter_condition(state):
|
| 443 |
+
return state[0]
|
| 444 |
+
|
| 445 |
+
results = jax.lax.while_loop(_iter_condition, _iter_body,
|
| 446 |
+
tuple([predicate] + init_state))
|
| 447 |
+
return tuple(results[1:])
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
class BlockPartitioner:
|
| 451 |
+
"""Partitions a tensor into smaller tensors."""
|
| 452 |
+
|
| 453 |
+
def __init__(self, param, block_size):
|
| 454 |
+
self._shape = param.shape
|
| 455 |
+
self._splits = []
|
| 456 |
+
split_sizes = []
|
| 457 |
+
# We split params into smaller blocks. Here we store the metadata to make
|
| 458 |
+
# that split.
|
| 459 |
+
for i, d in enumerate(param.shape):
|
| 460 |
+
if 0 < block_size < d:
|
| 461 |
+
# d-1, otherwise split appends a 0-size array.
|
| 462 |
+
nsplit = (d - 1) // block_size
|
| 463 |
+
indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size
|
| 464 |
+
sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size
|
| 465 |
+
sizes[-1] = d - indices[-1]
|
| 466 |
+
self._splits.append((i, indices))
|
| 467 |
+
split_sizes.append(sizes)
|
| 468 |
+
else:
|
| 469 |
+
split_sizes.append(np.array([d], dtype=np.int32))
|
| 470 |
+
self._num_splits = len(split_sizes)
|
| 471 |
+
self._preconditioner_shapes = []
|
| 472 |
+
for t in itertools.product(*split_sizes):
|
| 473 |
+
self._preconditioner_shapes.extend([[d, d] for d in t])
|
| 474 |
+
|
| 475 |
+
def shapes_for_preconditioners(self):
|
| 476 |
+
return self._preconditioner_shapes
|
| 477 |
+
|
| 478 |
+
def num_splits(self):
|
| 479 |
+
return self._num_splits
|
| 480 |
+
|
| 481 |
+
def partition(self, tensor):
|
| 482 |
+
"""Partition tensor into blocks."""
|
| 483 |
+
|
| 484 |
+
assert tensor.shape == self._shape
|
| 485 |
+
tensors = [tensor]
|
| 486 |
+
for (i, indices) in self._splits:
|
| 487 |
+
tensors_local = []
|
| 488 |
+
for t in tensors:
|
| 489 |
+
tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i))
|
| 490 |
+
tensors = tensors_local
|
| 491 |
+
return tensors
|
| 492 |
+
|
| 493 |
+
def merge_partitions(self, partitions):
|
| 494 |
+
"""Merge partitions back to original shape."""
|
| 495 |
+
|
| 496 |
+
for (i, indices) in reversed(self._splits):
|
| 497 |
+
n = len(indices) + 1
|
| 498 |
+
partial_merged_tensors = []
|
| 499 |
+
ind = 0
|
| 500 |
+
while ind < len(partitions):
|
| 501 |
+
partial_merged_tensors.append(
|
| 502 |
+
jnp.concatenate(partitions[ind:ind + n], axis=i))
|
| 503 |
+
ind += n
|
| 504 |
+
partitions = partial_merged_tensors
|
| 505 |
+
assert len(partitions) == 1
|
| 506 |
+
return partitions[0]
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
class Preconditioner:
|
| 510 |
+
"""Compute statistics/shape from gradients for preconditioning."""
|
| 511 |
+
|
| 512 |
+
def __init__(self, param, block_size, best_effort_shape_interpretation):
|
| 513 |
+
self._original_shape = param.shape
|
| 514 |
+
self._transformed_shape = param.shape
|
| 515 |
+
if best_effort_shape_interpretation:
|
| 516 |
+
self._transformed_shape = merge_small_dims(self._original_shape,
|
| 517 |
+
block_size)
|
| 518 |
+
reshaped_param = jnp.reshape(param, self._transformed_shape)
|
| 519 |
+
self._partitioner = BlockPartitioner(reshaped_param, block_size)
|
| 520 |
+
|
| 521 |
+
def statistics_from_grad(self, grad):
|
| 522 |
+
"""Compute statistics from gradients.
|
| 523 |
+
|
| 524 |
+
Args:
|
| 525 |
+
grad: Gradient to compute statistics from.
|
| 526 |
+
|
| 527 |
+
Returns:
|
| 528 |
+
A list of gradient statistics for each partition.
|
| 529 |
+
"""
|
| 530 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
| 531 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
| 532 |
+
stats = []
|
| 533 |
+
for g in partitioned_grads:
|
| 534 |
+
g_stats = []
|
| 535 |
+
rank = len(g.shape)
|
| 536 |
+
for i in range(rank):
|
| 537 |
+
axes = list(range(i)) + list(range(i + 1, rank))
|
| 538 |
+
stat = jnp.tensordot(g, g, axes=(axes, axes))
|
| 539 |
+
g_stats.append(stat)
|
| 540 |
+
stats.extend(g_stats)
|
| 541 |
+
return stats
|
| 542 |
+
|
| 543 |
+
def shapes_for_preconditioners(self):
|
| 544 |
+
"""Returns shape from statistics."""
|
| 545 |
+
return self._partitioner.shapes_for_preconditioners()
|
| 546 |
+
|
| 547 |
+
def exponent_for_preconditioner(self):
|
| 548 |
+
"""Returns exponent to use for inverse-pth root M^{-1/p}."""
|
| 549 |
+
return 2 * len(self._transformed_shape)
|
| 550 |
+
|
| 551 |
+
def preconditioned_grad(self, grad, preconditioners):
|
| 552 |
+
"""Precondition the gradient.
|
| 553 |
+
|
| 554 |
+
Args:
|
| 555 |
+
grad: A gradient tensor to precondition.
|
| 556 |
+
preconditioners: A list of preconditioners to apply.
|
| 557 |
+
|
| 558 |
+
Returns:
|
| 559 |
+
A preconditioned gradient.
|
| 560 |
+
"""
|
| 561 |
+
|
| 562 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
| 563 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
| 564 |
+
preconditioned_partitioned_grads = []
|
| 565 |
+
num_splits = self._partitioner.num_splits()
|
| 566 |
+
for i, g in enumerate(partitioned_grads):
|
| 567 |
+
preconditioners_for_grad = preconditioners[i * num_splits:(i + 1) *
|
| 568 |
+
num_splits]
|
| 569 |
+
rank = len(g.shape)
|
| 570 |
+
precond_g = g
|
| 571 |
+
for j in range(rank):
|
| 572 |
+
precond_g = jnp.tensordot(
|
| 573 |
+
precond_g, preconditioners_for_grad[j], axes=[[0], [0]])
|
| 574 |
+
preconditioned_partitioned_grads.append(precond_g)
|
| 575 |
+
merged_grad = self._partitioner.merge_partitions(
|
| 576 |
+
preconditioned_partitioned_grads)
|
| 577 |
+
return jnp.reshape(merged_grad, self._original_shape)
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
def _convert_to_parameter_stats(global_stats, local_stat):
|
| 581 |
+
"""Creates parameter stats from sharded stats."""
|
| 582 |
+
index_start = int(local_stat.index_start)
|
| 583 |
+
index_end = int(len(local_stat.sizes)) + index_start
|
| 584 |
+
statistics = global_stats.statistics[index_start:index_end, :, :]
|
| 585 |
+
preconditioners = global_stats.preconditioners[index_start:index_end, :, :]
|
| 586 |
+
new_statistics = []
|
| 587 |
+
new_preconditioners = []
|
| 588 |
+
for i, size in enumerate(local_stat.sizes):
|
| 589 |
+
new_statistics.append(statistics[i][:size, :size])
|
| 590 |
+
new_preconditioners.append(preconditioners[i][:size, :size])
|
| 591 |
+
return ParameterStats(local_stat.diagonal_statistics, new_statistics,
|
| 592 |
+
new_preconditioners, local_stat.diagonal_momentum,
|
| 593 |
+
local_stat.momentum)
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
def _convert_from_parameter_stats(parameter_stats, local_stats):
|
| 597 |
+
"""Creates sharded stats from paramter stats."""
|
| 598 |
+
return LocalShardedParameterStats(parameter_stats.diagonal_statistics,
|
| 599 |
+
parameter_stats.diagonal_momentum,
|
| 600 |
+
parameter_stats.momentum,
|
| 601 |
+
local_stats.index_start, local_stats.sizes)
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
def batch(x, num_devices):
|
| 605 |
+
"""Batch `x` so that so that leading axis is num_devices."""
|
| 606 |
+
n = len(x)
|
| 607 |
+
b = int(n / num_devices)
|
| 608 |
+
return jnp.stack([jnp.stack(x[idx:idx + b]) for idx in range(0, n, b)])
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
def unbatch(batched_values):
|
| 612 |
+
"""Unbatch values across leading axis and return a list of elements."""
|
| 613 |
+
b1, b2 = batched_values.shape[0], batched_values.shape[1]
|
| 614 |
+
results = []
|
| 615 |
+
for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0):
|
| 616 |
+
v_array = jnp.squeeze(v_array)
|
| 617 |
+
# b2 = batches (number of preconditioner computation) per core.
|
| 618 |
+
if b2 > 1:
|
| 619 |
+
for v in jnp.split(v_array, indices_or_sections=b2, axis=0):
|
| 620 |
+
results.append(jnp.squeeze(v))
|
| 621 |
+
else:
|
| 622 |
+
results.append(v_array)
|
| 623 |
+
return results
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def distributed_shampoo(
|
| 627 |
+
learning_rate,
|
| 628 |
+
block_size,
|
| 629 |
+
beta1=0.9,
|
| 630 |
+
beta2=0.999,
|
| 631 |
+
diagonal_epsilon=1e-10,
|
| 632 |
+
matrix_epsilon=1e-6,
|
| 633 |
+
weight_decay=0.0,
|
| 634 |
+
start_preconditioning_step=5,
|
| 635 |
+
preconditioning_compute_steps=1,
|
| 636 |
+
statistics_compute_steps=1,
|
| 637 |
+
best_effort_shape_interpretation=True,
|
| 638 |
+
graft_type=GraftingType.SGD,
|
| 639 |
+
nesterov=True,
|
| 640 |
+
exponent_override=0,
|
| 641 |
+
# Pass pmap 'batch axis name' in pmap mode.
|
| 642 |
+
batch_axis_name=None,
|
| 643 |
+
### Only set following 3 params in pjit/spmd mode.
|
| 644 |
+
### WARNING: Experimental
|
| 645 |
+
mesh_axis_names=None,
|
| 646 |
+
num_devices_for_pjit=None,
|
| 647 |
+
shard_optimizer_states=False,
|
| 648 |
+
###
|
| 649 |
+
### Experimental memory reduction mode
|
| 650 |
+
best_effort_memory_usage_reduction=False,
|
| 651 |
+
###
|
| 652 |
+
inverse_failure_threshold=0.1,
|
| 653 |
+
moving_average_for_momentum=False,
|
| 654 |
+
skip_preconditioning_dim_size_gt=4096,
|
| 655 |
+
clip_by_scaled_gradient_norm=None,
|
| 656 |
+
precision=lax.Precision.HIGHEST):
|
| 657 |
+
"""Distributed Shampoo optimizer.
|
| 658 |
+
|
| 659 |
+
Distributed Shampoo is a second-order preconditioned method (concretely, a
|
| 660 |
+
variant of full-matrix Adagrad), that provides significant convergence and
|
| 661 |
+
wall-clock time improvements compared to conventional first-order methods,
|
| 662 |
+
and that has been shown to scale to large state-of-the-art deep learning
|
| 663 |
+
models.
|
| 664 |
+
|
| 665 |
+
References:
|
| 666 |
+
Scalable Second Order Optimization for Deep Learning,
|
| 667 |
+
Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
| 668 |
+
|
| 669 |
+
Preprint: https://arxiv.org/abs/2002.09018
|
| 670 |
+
|
| 671 |
+
Args:
|
| 672 |
+
learning_rate: the step size used to update the parameters.
|
| 673 |
+
block_size: Block size for large layers (if > 0). Preconditioning compute
|
| 674 |
+
operation is cubic in the dimension of the tensor. Block size allows us to
|
| 675 |
+
chunk the layers into sub-layers of maximal dimension dictated by this
|
| 676 |
+
value. Use 128 as default (increase if you have compute budget).
|
| 677 |
+
beta1: momentum parameter.
|
| 678 |
+
beta2: second moment averaging parameter.
|
| 679 |
+
diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting
|
| 680 |
+
to AdaGrad is enabled).
|
| 681 |
+
matrix_epsilon: epsilon to add to statistics before computing inverse pth
|
| 682 |
+
root. If you are running in f32 precision for inverse pth root
|
| 683 |
+
(recommended today) this can go upto 1e-6. If you have latest hardware
|
| 684 |
+
with native f64 precision, set this upto 1e-12.
|
| 685 |
+
weight_decay: Weight decay for regularization.
|
| 686 |
+
start_preconditioning_step: When to start Shampoo update before which
|
| 687 |
+
diagonal update is used. This is because we dont have enough information
|
| 688 |
+
to do stable inverse.
|
| 689 |
+
preconditioning_compute_steps: How often to compute preconditioner.
|
| 690 |
+
Performance tuning params for controlling memory and compute requirements.
|
| 691 |
+
Ideally set this and statistics_compute_steps params to 1.
|
| 692 |
+
statistics_compute_steps: How often to compute statistics.
|
| 693 |
+
best_effort_shape_interpretation: If there are some small dimensions,
|
| 694 |
+
collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if
|
| 695 |
+
block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
| 696 |
+
graft_type: Grafting is a technique to fix the layerwise scale of Shampoo
|
| 697 |
+
optimizer. This allows us to plugin the Shampoo optimizer into settings
|
| 698 |
+
where SGD/AdaGrad is already well tuned. Available options are:
|
| 699 |
+
GraftingType.SGD and GraftingType.ADAGRAD.
|
| 700 |
+
nesterov: Nesterov momentum.
|
| 701 |
+
exponent_override: Override the exponent used in matrix inverse.
|
| 702 |
+
batch_axis_name: labeled axis over pmap for data-parallel training the
|
| 703 |
+
optimizer used for.
|
| 704 |
+
mesh_axis_names: Axis names for the mesh (used in pjit).
|
| 705 |
+
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
| 706 |
+
shard_optimizer_states: Shard optimizer states to save memory in model
|
| 707 |
+
parallel training.
|
| 708 |
+
best_effort_memory_usage_reduction: Best effort memory usage reduction.
|
| 709 |
+
diagonal_statistics -> jnp.bfloat16
|
| 710 |
+
momentum buffers (2x) -> jnp.int8
|
| 711 |
+
statistics, preconditioners -> jnp.int16 + diagonals
|
| 712 |
+
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
| 713 |
+
determine that using this threshold.
|
| 714 |
+
moving_average_for_momentum: Whether to use moving average for momentum
|
| 715 |
+
instead of exponential moving average.
|
| 716 |
+
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
| 717 |
+
greater than this value.
|
| 718 |
+
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful
|
| 719 |
+
when using RMSProp Grafting).
|
| 720 |
+
precision: precision XLA related flag, the available options are: a)
|
| 721 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
| 722 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
| 723 |
+
(best possible precision, slowest)
|
| 724 |
+
|
| 725 |
+
Returns:
|
| 726 |
+
a GradientTransformation.
|
| 727 |
+
"""
|
| 728 |
+
|
| 729 |
+
def quantized_dtype_for_momentum_buffers():
|
| 730 |
+
return jnp.int8 if best_effort_memory_usage_reduction else jnp.float32
|
| 731 |
+
|
| 732 |
+
# TODO(rohananil): Explore int8-16 quantization with non-linear bucket sizes.
|
| 733 |
+
def quantized_dtype_for_diagonal_statistics_buffers():
|
| 734 |
+
return jnp.bfloat16 if best_effort_memory_usage_reduction else jnp.float32
|
| 735 |
+
|
| 736 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
| 737 |
+
# We take out the diagonal to make quantization easier.
|
| 738 |
+
def quantized_dtype_for_second_moment_statistics_buffers():
|
| 739 |
+
return jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32
|
| 740 |
+
|
| 741 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
| 742 |
+
# We take out the diagonal to make quantization easier.
|
| 743 |
+
def quantized_dtype_for_second_moment_preconditioner_buffers():
|
| 744 |
+
return jnp.int16 if best_effort_memory_usage_reduction and batch_axis_name else jnp.float32
|
| 745 |
+
|
| 746 |
+
def _to_float(maybe_quantized):
|
| 747 |
+
if isinstance(maybe_quantized, QuantizedValue):
|
| 748 |
+
return maybe_quantized.to_float()
|
| 749 |
+
else:
|
| 750 |
+
return maybe_quantized
|
| 751 |
+
|
| 752 |
+
def _maybe_quantize_statistics(statistics_list):
|
| 753 |
+
return _maybe_quantize_matrices_with_dtype(
|
| 754 |
+
statistics_list, quantized_dtype_for_second_moment_statistics_buffers())
|
| 755 |
+
|
| 756 |
+
def _maybe_quantize_preconditioners(statistics_list):
|
| 757 |
+
return _maybe_quantize_matrices_with_dtype(
|
| 758 |
+
statistics_list,
|
| 759 |
+
quantized_dtype_for_second_moment_preconditioner_buffers())
|
| 760 |
+
|
| 761 |
+
def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
| 762 |
+
if quantized_dtype != jnp.float32:
|
| 763 |
+
return ([
|
| 764 |
+
QuantizedValue.from_float_value(
|
| 765 |
+
s, quantized_dtype, extract_diagonal=True)
|
| 766 |
+
for s in statistics_list
|
| 767 |
+
])
|
| 768 |
+
else:
|
| 769 |
+
return statistics_list
|
| 770 |
+
|
| 771 |
+
def _maybe_dequantize_preconditioners(preconditioner_list):
|
| 772 |
+
return _maybe_dequantize_matrices_with_dtype(
|
| 773 |
+
preconditioner_list,
|
| 774 |
+
quantized_dtype_for_second_moment_preconditioner_buffers())
|
| 775 |
+
|
| 776 |
+
def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
| 777 |
+
if quantized_dtype != jnp.float32:
|
| 778 |
+
return [s.to_float() for s in statistics_list]
|
| 779 |
+
else:
|
| 780 |
+
return statistics_list
|
| 781 |
+
|
| 782 |
+
def _quantize_diagonal_statistics(diagonal_statistics):
|
| 783 |
+
return QuantizedValue.from_float_value(
|
| 784 |
+
diagonal_statistics, quantized_dtype_for_diagonal_statistics_buffers())
|
| 785 |
+
|
| 786 |
+
def _quantize_momentum(momentum_statistics):
|
| 787 |
+
return QuantizedValue.from_float_value(
|
| 788 |
+
momentum_statistics, quantized_dtype_for_momentum_buffers())
|
| 789 |
+
|
| 790 |
+
def sharded_init_fn(params):
|
| 791 |
+
params_flat, treedef = jax.tree_flatten(params)
|
| 792 |
+
# Find max size to pad to.
|
| 793 |
+
max_size = 0
|
| 794 |
+
for param in params_flat:
|
| 795 |
+
preconditioner = Preconditioner(param, block_size,
|
| 796 |
+
best_effort_shape_interpretation)
|
| 797 |
+
if not _skip_preconditioning(param):
|
| 798 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 799 |
+
sizes = [s[0] for s in shapes]
|
| 800 |
+
max_size = max(max(sizes), max_size)
|
| 801 |
+
|
| 802 |
+
padded_statistics = []
|
| 803 |
+
padded_preconditioners = []
|
| 804 |
+
local_stats_flat = []
|
| 805 |
+
for param in params_flat:
|
| 806 |
+
preconditioner = Preconditioner(param, block_size,
|
| 807 |
+
best_effort_shape_interpretation)
|
| 808 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 809 |
+
sizes = []
|
| 810 |
+
|
| 811 |
+
statistics = []
|
| 812 |
+
preconditioners = []
|
| 813 |
+
index_start = len(padded_statistics)
|
| 814 |
+
if not _skip_preconditioning(param):
|
| 815 |
+
sizes = [s[0] for s in shapes]
|
| 816 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 817 |
+
statistics = [matrix_epsilon * jnp.eye(max_size) for s in shapes]
|
| 818 |
+
preconditioners = [jnp.eye(max_size) for s in shapes]
|
| 819 |
+
padded_statistics.extend(statistics)
|
| 820 |
+
padded_preconditioners.extend(preconditioners)
|
| 821 |
+
|
| 822 |
+
diagonal_statistics = []
|
| 823 |
+
if graft_type != GraftingType.SGD:
|
| 824 |
+
diagonal_statistics = jnp.zeros_like(param)
|
| 825 |
+
local_stats_flat.append(
|
| 826 |
+
LocalShardedParameterStats(
|
| 827 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
| 828 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
| 829 |
+
_quantize_momentum(jnp.zeros_like(param)), index_start, sizes))
|
| 830 |
+
|
| 831 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
| 832 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
| 833 |
+
# num devices.
|
| 834 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
| 835 |
+
# is split on.
|
| 836 |
+
to_pad = -len(padded_statistics) % num_devices_for_pjit
|
| 837 |
+
padded_statistics.extend([
|
| 838 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
| 839 |
+
for _ in range(to_pad)
|
| 840 |
+
])
|
| 841 |
+
padded_preconditioners.extend([
|
| 842 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
| 843 |
+
for _ in range(to_pad)
|
| 844 |
+
])
|
| 845 |
+
global_stats = GlobalShardedParameterStats(
|
| 846 |
+
jnp.stack(padded_statistics), jnp.stack(padded_preconditioners))
|
| 847 |
+
return ShampooState(
|
| 848 |
+
count=jnp.zeros([], jnp.int32),
|
| 849 |
+
stats=ShardedShampooStats(global_stats, local_stats))
|
| 850 |
+
|
| 851 |
+
def sharded_update_fn(grads, state, params):
|
| 852 |
+
"""Transform the input gradient and update all statistics in sharded mode.
|
| 853 |
+
|
| 854 |
+
Args:
|
| 855 |
+
grads: the gradient tensors for the parameters.
|
| 856 |
+
state: a named tuple containing the state of the optimizer
|
| 857 |
+
params: the parameters that should be updated.
|
| 858 |
+
|
| 859 |
+
Returns:
|
| 860 |
+
A tuple containing the new parameters and the new optimizer state.
|
| 861 |
+
"""
|
| 862 |
+
params_flat, treedef = jax.tree_flatten(params)
|
| 863 |
+
grads_flat = treedef.flatten_up_to(grads)
|
| 864 |
+
|
| 865 |
+
global_stats = state.stats.global_stats
|
| 866 |
+
local_stats_flat = treedef.flatten_up_to(state.stats.local_stats)
|
| 867 |
+
stats_flat = [
|
| 868 |
+
_convert_to_parameter_stats(global_stats, local_stat)
|
| 869 |
+
for local_stat in local_stats_flat
|
| 870 |
+
]
|
| 871 |
+
new_stats_flat = jax.tree_multimap(
|
| 872 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat,
|
| 873 |
+
stats_flat, params_flat)
|
| 874 |
+
|
| 875 |
+
exponents = []
|
| 876 |
+
for stat, param in zip(new_stats_flat, params_flat):
|
| 877 |
+
num_statistics = len(stat.statistics)
|
| 878 |
+
if num_statistics > 0:
|
| 879 |
+
preconditioner = Preconditioner(param, block_size,
|
| 880 |
+
best_effort_shape_interpretation)
|
| 881 |
+
exponent = (
|
| 882 |
+
preconditioner.exponent_for_preconditioner()
|
| 883 |
+
if exponent_override == 0 else exponent_override)
|
| 884 |
+
exponents.extend([exponent] * num_statistics)
|
| 885 |
+
|
| 886 |
+
outputs = jax.tree_multimap(
|
| 887 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat,
|
| 888 |
+
new_stats_flat, params_flat)
|
| 889 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
| 890 |
+
|
| 891 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
| 892 |
+
# Create new local_stats
|
| 893 |
+
new_local_stats_flat = [
|
| 894 |
+
_convert_from_parameter_stats(new_stat, local_stat)
|
| 895 |
+
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
| 896 |
+
]
|
| 897 |
+
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
| 898 |
+
|
| 899 |
+
max_size = global_stats.statistics.shape[1]
|
| 900 |
+
new_padded_statistics = []
|
| 901 |
+
for stat in new_stats_flat:
|
| 902 |
+
new_padded_statistics.extend(
|
| 903 |
+
[pad_matrix(stat, max_size) for stat in stat.statistics])
|
| 904 |
+
|
| 905 |
+
# Create global stats
|
| 906 |
+
# TODO(rohananil): Preconditioner is not updated every step, so cost of
|
| 907 |
+
# stack/pad can be obviated away.
|
| 908 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
| 909 |
+
# num devices.
|
| 910 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
| 911 |
+
# is split on.
|
| 912 |
+
to_pad = -len(new_padded_statistics) % num_devices_for_pjit
|
| 913 |
+
new_padded_statistics.extend([
|
| 914 |
+
jnp.eye(max_size, dtype=new_padded_statistics[0].dtype)
|
| 915 |
+
for _ in range(to_pad)
|
| 916 |
+
])
|
| 917 |
+
exponents.extend([1 for _ in range(to_pad)])
|
| 918 |
+
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
| 919 |
+
new_stacked_exponents = jnp.stack(exponents)
|
| 920 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
| 921 |
+
mi_pth_root = functools.partial(
|
| 922 |
+
matrix_inverse_pth_root,
|
| 923 |
+
ridge_epsilon=matrix_epsilon,
|
| 924 |
+
precision=precision)
|
| 925 |
+
preconditioners, errors = jax.vmap(mi_pth_root)(xs, ps)
|
| 926 |
+
return preconditioners, errors
|
| 927 |
+
|
| 928 |
+
def _internal_inverse_pth_root_all():
|
| 929 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
| 930 |
+
new_stacked_padded_statistics, new_stacked_exponents)
|
| 931 |
+
return preconditioners, errors
|
| 932 |
+
|
| 933 |
+
if preconditioning_compute_steps == 1:
|
| 934 |
+
new_preconditioners, errors = _internal_inverse_pth_root_all()
|
| 935 |
+
else:
|
| 936 |
+
# Passing statistics instead of preconditioners as they are similarly
|
| 937 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 938 |
+
# a large init value for error.
|
| 939 |
+
preconditioners_init = new_stacked_padded_statistics
|
| 940 |
+
errors_init = np.stack([inverse_failure_threshold] * len(exponents))
|
| 941 |
+
init_state = [preconditioners_init, errors_init]
|
| 942 |
+
perform_step = state.count % preconditioning_compute_steps == 0
|
| 943 |
+
new_preconditioners, errors = efficient_cond(
|
| 944 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
| 945 |
+
|
| 946 |
+
errors = errors.reshape((-1, 1, 1))
|
| 947 |
+
predicate = jnp.logical_or(
|
| 948 |
+
jnp.isnan(errors),
|
| 949 |
+
errors >= inverse_failure_threshold).astype(new_preconditioners.dtype)
|
| 950 |
+
# TODO(rohananil): Check for numerical instabilities.
|
| 951 |
+
new_conditional_preconditioners = (
|
| 952 |
+
predicate * global_stats.preconditioners +
|
| 953 |
+
(1.0 - predicate) * new_preconditioners)
|
| 954 |
+
new_global_stats = GlobalShardedParameterStats(
|
| 955 |
+
new_stacked_padded_statistics, new_conditional_preconditioners)
|
| 956 |
+
new_shampoo_state = ShampooState(
|
| 957 |
+
count=state.count + 1,
|
| 958 |
+
stats=ShardedShampooStats(new_global_stats, new_local_stats))
|
| 959 |
+
return updates, new_shampoo_state
|
| 960 |
+
|
| 961 |
+
def init_fn(params):
|
| 962 |
+
"""Initialise the optimiser's state."""
|
| 963 |
+
|
| 964 |
+
def _init(param):
|
| 965 |
+
preconditioner = Preconditioner(param, block_size,
|
| 966 |
+
best_effort_shape_interpretation)
|
| 967 |
+
statistics = []
|
| 968 |
+
preconditioners = []
|
| 969 |
+
if not _skip_preconditioning(param):
|
| 970 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 971 |
+
statistics = [matrix_epsilon * jnp.eye(s[0]) for s in shapes]
|
| 972 |
+
preconditioners = [jnp.eye(s[0]) for s in shapes]
|
| 973 |
+
|
| 974 |
+
diagonal_statistics = []
|
| 975 |
+
if graft_type != GraftingType.SGD:
|
| 976 |
+
diagonal_statistics = jnp.zeros_like(param)
|
| 977 |
+
return ParameterStats(
|
| 978 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
| 979 |
+
_maybe_quantize_statistics(statistics),
|
| 980 |
+
_maybe_quantize_preconditioners(preconditioners),
|
| 981 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
| 982 |
+
_quantize_momentum(jnp.zeros_like(param)))
|
| 983 |
+
return ShampooState(
|
| 984 |
+
count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params))
|
| 985 |
+
|
| 986 |
+
def _skip_preconditioning(param):
|
| 987 |
+
return len(param.shape) < 1 or any(
|
| 988 |
+
[s > skip_preconditioning_dim_size_gt for s in param.shape])
|
| 989 |
+
|
| 990 |
+
def _compute_stats(grad, state, param, step):
|
| 991 |
+
"""Compute per-parameter statistics."""
|
| 992 |
+
preconditioner = Preconditioner(param, block_size,
|
| 993 |
+
best_effort_shape_interpretation)
|
| 994 |
+
new_statistics = [[]] * len(state.statistics)
|
| 995 |
+
w1 = beta2
|
| 996 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
| 997 |
+
if not _skip_preconditioning(param):
|
| 998 |
+
|
| 999 |
+
def compute_updated_statistics():
|
| 1000 |
+
new_stats = preconditioner.statistics_from_grad(grad)
|
| 1001 |
+
new_stats_accumulators = []
|
| 1002 |
+
for stat, stat_accumulator in zip(new_stats, state.statistics):
|
| 1003 |
+
new_stats_accumulators.append(w1 * _to_float(stat_accumulator) +
|
| 1004 |
+
w2 * stat)
|
| 1005 |
+
return _maybe_quantize_statistics(new_stats_accumulators)
|
| 1006 |
+
|
| 1007 |
+
if statistics_compute_steps > 1:
|
| 1008 |
+
perform_step = step % statistics_compute_steps == 0
|
| 1009 |
+
init_state = state.statistics
|
| 1010 |
+
new_statistics = list(
|
| 1011 |
+
efficient_cond(perform_step, compute_updated_statistics,
|
| 1012 |
+
init_state))
|
| 1013 |
+
else:
|
| 1014 |
+
new_statistics = compute_updated_statistics()
|
| 1015 |
+
return ParameterStats(state.diagonal_statistics, new_statistics,
|
| 1016 |
+
state.preconditioners, state.diagonal_momentum,
|
| 1017 |
+
state.momentum)
|
| 1018 |
+
|
| 1019 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
| 1020 |
+
mi_pth_root = functools.partial(
|
| 1021 |
+
matrix_inverse_pth_root,
|
| 1022 |
+
ridge_epsilon=matrix_epsilon,
|
| 1023 |
+
precision=precision)
|
| 1024 |
+
return jax.vmap(mi_pth_root)(xs, ps)
|
| 1025 |
+
|
| 1026 |
+
def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps):
|
| 1027 |
+
|
| 1028 |
+
def _quantized_to_float(qx, qd, qb):
|
| 1029 |
+
qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape))
|
| 1030 |
+
return qv.to_float()
|
| 1031 |
+
|
| 1032 |
+
def matrix_inverse_pth_root_wrapper(qx, qd, qb, p):
|
| 1033 |
+
v = _quantized_to_float(qx, qd, qb)
|
| 1034 |
+
preconditioner, error = matrix_inverse_pth_root(
|
| 1035 |
+
v, p, ridge_epsilon=matrix_epsilon, precision=precision)
|
| 1036 |
+
qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True)
|
| 1037 |
+
return qp.quantized, qp.diagonal, qp.bucket_size, error
|
| 1038 |
+
|
| 1039 |
+
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
| 1040 |
+
|
| 1041 |
+
def _matrix_inverse_pth_root_pjit(xs, ps):
|
| 1042 |
+
mesh_axis_names_tuple = tuple(mesh_axis_names)
|
| 1043 |
+
# Partition the concatenated statistics matrix across all cores.
|
| 1044 |
+
partitioned_xs, partitioned_ps = pjit.pjit(
|
| 1045 |
+
lambda x, y: (x, y),
|
| 1046 |
+
in_axis_resources=None,
|
| 1047 |
+
out_axis_resources=pjit.PartitionSpec(mesh_axis_names_tuple,))(xs, ps)
|
| 1048 |
+
# Run matrix inverse pth root on each shard.
|
| 1049 |
+
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
| 1050 |
+
partitioned_xs, partitioned_ps)
|
| 1051 |
+
# Recombine the outputs at each core.
|
| 1052 |
+
preconditioners, errors = pjit.pjit(
|
| 1053 |
+
lambda x, y: (x, y),
|
| 1054 |
+
in_axis_resources=(pjit.PartitionSpec(mesh_axis_names_tuple,),
|
| 1055 |
+
pjit.PartitionSpec(mesh_axis_names_tuple,)),
|
| 1056 |
+
out_axis_resources=(None, None))(partitioned_preconditioners,
|
| 1057 |
+
partitioned_errors)
|
| 1058 |
+
return preconditioners, errors
|
| 1059 |
+
|
| 1060 |
+
def _pmap_compute_preconditioners(states, step, statistics,
|
| 1061 |
+
num_statistics_per_state, original_shapes,
|
| 1062 |
+
exponents, max_size, prev_preconditioners):
|
| 1063 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
| 1064 |
+
|
| 1065 |
+
Args:
|
| 1066 |
+
states: A list of optimizer states.
|
| 1067 |
+
step: Current step number
|
| 1068 |
+
statistics: A list of statistics for all variables (for every dim)
|
| 1069 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
| 1070 |
+
output states.
|
| 1071 |
+
original_shapes: A list of shapes of the statistics.
|
| 1072 |
+
exponents: Exponent power to use for inverse-pth roots.
|
| 1073 |
+
max_size: Maximum dim of the statistics to pad.
|
| 1074 |
+
prev_preconditioners: Previously available preconditioner.
|
| 1075 |
+
|
| 1076 |
+
Returns:
|
| 1077 |
+
New optimizer states after computing the preconditioner.
|
| 1078 |
+
"""
|
| 1079 |
+
num_devices = lax.psum(1, batch_axis_name)
|
| 1080 |
+
num_statistics = len(statistics)
|
| 1081 |
+
# Pad statistics and exponents to next multiple of num_devices.
|
| 1082 |
+
packed_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
| 1083 |
+
to_pad = -num_statistics % num_devices
|
| 1084 |
+
packed_statistics.extend([
|
| 1085 |
+
jnp.eye(max_size, dtype=packed_statistics[0].dtype)
|
| 1086 |
+
for _ in range(to_pad)
|
| 1087 |
+
])
|
| 1088 |
+
exponents.extend([1 for _ in range(to_pad)])
|
| 1089 |
+
|
| 1090 |
+
if not packed_statistics:
|
| 1091 |
+
return states
|
| 1092 |
+
|
| 1093 |
+
all_statistics = batch(packed_statistics, num_devices)
|
| 1094 |
+
all_exponents = batch(exponents, num_devices)
|
| 1095 |
+
|
| 1096 |
+
def _internal_inverse_pth_root_all():
|
| 1097 |
+
current_replica = lax.axis_index(batch_axis_name)
|
| 1098 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
| 1099 |
+
all_statistics[current_replica], all_exponents[current_replica])
|
| 1100 |
+
preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name)
|
| 1101 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
| 1102 |
+
preconditioners_flat = unbatch(preconditioners)
|
| 1103 |
+
errors_flat = unbatch(errors)
|
| 1104 |
+
return preconditioners_flat, errors_flat
|
| 1105 |
+
|
| 1106 |
+
if preconditioning_compute_steps == 1:
|
| 1107 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
| 1108 |
+
else:
|
| 1109 |
+
# Passing statistics instead of preconditioners as they are similarly
|
| 1110 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 1111 |
+
# a large init value for error.
|
| 1112 |
+
preconditioners_init = packed_statistics
|
| 1113 |
+
errors_init = ([inverse_failure_threshold] * len(packed_statistics))
|
| 1114 |
+
init_state = [preconditioners_init, errors_init]
|
| 1115 |
+
perform_step = step % preconditioning_compute_steps == 0
|
| 1116 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
| 1117 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
| 1118 |
+
|
| 1119 |
+
def _skip(error):
|
| 1120 |
+
condition = jnp.logical_or(
|
| 1121 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
| 1122 |
+
return condition.astype(error.dtype)
|
| 1123 |
+
|
| 1124 |
+
def _select_preconditioner(error, new_p, old_p):
|
| 1125 |
+
return lax.cond(
|
| 1126 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
| 1127 |
+
|
| 1128 |
+
new_preconditioners_flat = []
|
| 1129 |
+
for p, shape, prev_p, error in zip(preconditioners_flat, original_shapes,
|
| 1130 |
+
prev_preconditioners, errors_flat):
|
| 1131 |
+
new_preconditioners_flat.append(
|
| 1132 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]], prev_p))
|
| 1133 |
+
|
| 1134 |
+
assert len(states) == len(num_statistics_per_state)
|
| 1135 |
+
assert len(new_preconditioners_flat) == num_statistics
|
| 1136 |
+
|
| 1137 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1138 |
+
preconditioners_for_states = []
|
| 1139 |
+
idx = 0
|
| 1140 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1141 |
+
if num_statistics == 0:
|
| 1142 |
+
preconditioners_for_states.append([])
|
| 1143 |
+
else:
|
| 1144 |
+
preconditioners_for_state = new_preconditioners_flat[idx:idx +
|
| 1145 |
+
num_statistics]
|
| 1146 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1147 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
| 1148 |
+
idx += num_statistics
|
| 1149 |
+
new_states = []
|
| 1150 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
| 1151 |
+
new_states.append(
|
| 1152 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
| 1153 |
+
new_preconditioners, state.diagonal_momentum,
|
| 1154 |
+
state.momentum))
|
| 1155 |
+
|
| 1156 |
+
return new_states
|
| 1157 |
+
|
| 1158 |
+
def _pmap_quantized_compute_preconditioners(states, step, statistics,
|
| 1159 |
+
num_statistics_per_state,
|
| 1160 |
+
original_shapes, exponents,
|
| 1161 |
+
max_size, prev_preconditioners):
|
| 1162 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
| 1163 |
+
|
| 1164 |
+
For quantization, each statistic is represented by three values:
|
| 1165 |
+
quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots
|
| 1166 |
+
without ever recreating the original matrix in f32.
|
| 1167 |
+
|
| 1168 |
+
Args:
|
| 1169 |
+
states: A list of optimizer states.
|
| 1170 |
+
step: Current step number
|
| 1171 |
+
statistics: A list of statistics for all variables (for every dim)
|
| 1172 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
| 1173 |
+
output states.
|
| 1174 |
+
original_shapes: A list of shapes of the statistics.
|
| 1175 |
+
exponents: Exponent power to use for inverse-pth roots.
|
| 1176 |
+
max_size: Maximum dim of the statistics to pad.
|
| 1177 |
+
prev_preconditioners: Previously available preconditioner.
|
| 1178 |
+
|
| 1179 |
+
Returns:
|
| 1180 |
+
New optimizer states after computing the preconditioner.
|
| 1181 |
+
"""
|
| 1182 |
+
num_devices = lax.psum(1, batch_axis_name)
|
| 1183 |
+
num_statistics = len(statistics)
|
| 1184 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
| 1185 |
+
# Complexity here is around: shapes needing be statically shaped,
|
| 1186 |
+
# our custom quantization type requires a different type of packing.
|
| 1187 |
+
|
| 1188 |
+
# Parallel tensors:
|
| 1189 |
+
# quantized [dxd]
|
| 1190 |
+
# diagonals [d] f32
|
| 1191 |
+
# bucket_sizes [d] f32
|
| 1192 |
+
packed_quantized_statistics = [
|
| 1193 |
+
pad_matrix(stat.quantized, max_size) for stat in statistics
|
| 1194 |
+
]
|
| 1195 |
+
packed_quantized_diagonals = [
|
| 1196 |
+
pad_vector(stat.diagonal, max_size) for stat in statistics
|
| 1197 |
+
]
|
| 1198 |
+
packed_quantized_bucket_sizes = [
|
| 1199 |
+
pad_vector(stat.bucket_size, max_size) for stat in statistics
|
| 1200 |
+
]
|
| 1201 |
+
|
| 1202 |
+
to_pad = -num_statistics % num_devices
|
| 1203 |
+
padded_eye = jnp.eye(max_size, dtype=jnp.float32)
|
| 1204 |
+
quantized_eye = QuantizedValue.from_float_value(padded_eye, quantized_dtype,
|
| 1205 |
+
True)
|
| 1206 |
+
packed_quantized_statistics.extend(
|
| 1207 |
+
[quantized_eye.quantized for _ in range(to_pad)])
|
| 1208 |
+
packed_quantized_diagonals.extend(
|
| 1209 |
+
[quantized_eye.diagonal for _ in range(to_pad)])
|
| 1210 |
+
packed_quantized_bucket_sizes.extend(
|
| 1211 |
+
[quantized_eye.bucket_size for _ in range(to_pad)])
|
| 1212 |
+
exponents.extend([1 for _ in range(to_pad)])
|
| 1213 |
+
|
| 1214 |
+
if not packed_quantized_statistics:
|
| 1215 |
+
return states
|
| 1216 |
+
|
| 1217 |
+
all_quantized_statistics = batch(packed_quantized_statistics, num_devices)
|
| 1218 |
+
all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices)
|
| 1219 |
+
all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes,
|
| 1220 |
+
num_devices)
|
| 1221 |
+
all_exponents = batch(exponents, num_devices)
|
| 1222 |
+
|
| 1223 |
+
def _internal_inverse_pth_root_all():
|
| 1224 |
+
current_replica = lax.axis_index(batch_axis_name)
|
| 1225 |
+
quantized_preconditioners, quantized_diagonals, quantized_bucket_sizes, errors = (
|
| 1226 |
+
_quantized_matrix_inverse_pth_root_vmap(
|
| 1227 |
+
all_quantized_statistics[current_replica],
|
| 1228 |
+
all_quantized_diagonals[current_replica],
|
| 1229 |
+
all_quantized_bucket_sizes[current_replica],
|
| 1230 |
+
all_exponents[current_replica]))
|
| 1231 |
+
quantized_preconditioners = jax.lax.all_gather(quantized_preconditioners,
|
| 1232 |
+
batch_axis_name)
|
| 1233 |
+
quantized_diagonals = jax.lax.all_gather(quantized_diagonals,
|
| 1234 |
+
batch_axis_name)
|
| 1235 |
+
quantized_bucket_sizes = jax.lax.all_gather(quantized_bucket_sizes,
|
| 1236 |
+
batch_axis_name)
|
| 1237 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
| 1238 |
+
quantized_preconditioners_flat = unbatch(quantized_preconditioners)
|
| 1239 |
+
quantized_diagonals_flat = unbatch(quantized_diagonals)
|
| 1240 |
+
quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes)
|
| 1241 |
+
errors_flat = unbatch(errors)
|
| 1242 |
+
return (quantized_preconditioners_flat, quantized_diagonals_flat,
|
| 1243 |
+
quantized_bucket_sizes_flat, errors_flat)
|
| 1244 |
+
|
| 1245 |
+
if preconditioning_compute_steps == 1:
|
| 1246 |
+
(quantized_preconditioners_flat, quantized_diagonals_flat,
|
| 1247 |
+
quantized_bucket_sizes_flat, errors_flat) = (
|
| 1248 |
+
_internal_inverse_pth_root_all())
|
| 1249 |
+
else:
|
| 1250 |
+
# Passing statistics instead of preconditioners as they are similarly
|
| 1251 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 1252 |
+
# a large init value for error.
|
| 1253 |
+
quantized_preconditioners_init = packed_quantized_statistics
|
| 1254 |
+
quantized_diagonals_init = packed_quantized_diagonals
|
| 1255 |
+
quantized_bucket_sizes_init = packed_quantized_bucket_sizes
|
| 1256 |
+
errors_init = ([inverse_failure_threshold] *
|
| 1257 |
+
len(quantized_preconditioners_init))
|
| 1258 |
+
init_state = [
|
| 1259 |
+
quantized_preconditioners_init, quantized_diagonals_init,
|
| 1260 |
+
quantized_bucket_sizes_init, errors_init
|
| 1261 |
+
]
|
| 1262 |
+
perform_step = step % preconditioning_compute_steps == 0
|
| 1263 |
+
(quantized_preconditioners_flat, quantized_diagonals_flat,
|
| 1264 |
+
quantized_bucket_sizes_flat, errors_flat) = (
|
| 1265 |
+
efficient_cond(perform_step, _internal_inverse_pth_root_all,
|
| 1266 |
+
init_state))
|
| 1267 |
+
|
| 1268 |
+
def _skip(error):
|
| 1269 |
+
condition = jnp.logical_or(
|
| 1270 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
| 1271 |
+
return condition.astype(error.dtype)
|
| 1272 |
+
|
| 1273 |
+
def _select_preconditioner(error, new_p, old_p):
|
| 1274 |
+
return lax.cond(
|
| 1275 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
| 1276 |
+
|
| 1277 |
+
new_quantized_preconditioners_flat = []
|
| 1278 |
+
new_quantized_diagonals_flat = []
|
| 1279 |
+
new_quantized_bucket_sizes_flat = []
|
| 1280 |
+
for p, d, b, shape, prev_p, error in zip(quantized_preconditioners_flat,
|
| 1281 |
+
quantized_diagonals_flat,
|
| 1282 |
+
quantized_bucket_sizes_flat,
|
| 1283 |
+
original_shapes,
|
| 1284 |
+
prev_preconditioners, errors_flat):
|
| 1285 |
+
new_quantized_preconditioners_flat.append(
|
| 1286 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]],
|
| 1287 |
+
prev_p.quantized))
|
| 1288 |
+
new_quantized_diagonals_flat.append(
|
| 1289 |
+
_select_preconditioner(error, d[:shape[0]], prev_p.diagonal))
|
| 1290 |
+
new_quantized_bucket_sizes_flat.append(
|
| 1291 |
+
_select_preconditioner(error, b[:shape[0]], prev_p.bucket_size))
|
| 1292 |
+
|
| 1293 |
+
assert len(states) == len(num_statistics_per_state)
|
| 1294 |
+
assert len(new_quantized_preconditioners_flat) == num_statistics
|
| 1295 |
+
assert len(new_quantized_diagonals_flat) == num_statistics
|
| 1296 |
+
assert len(new_quantized_bucket_sizes_flat) == num_statistics
|
| 1297 |
+
|
| 1298 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1299 |
+
preconditioners_for_states = []
|
| 1300 |
+
idx = 0
|
| 1301 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1302 |
+
if num_statistics == 0:
|
| 1303 |
+
preconditioners_for_states.append([])
|
| 1304 |
+
else:
|
| 1305 |
+
quantized_preconditioners_for_state = new_quantized_preconditioners_flat[
|
| 1306 |
+
idx:idx + num_statistics]
|
| 1307 |
+
quantized_diagonals_for_state = new_quantized_diagonals_flat[
|
| 1308 |
+
idx:idx + num_statistics]
|
| 1309 |
+
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
| 1310 |
+
idx:idx + num_statistics]
|
| 1311 |
+
|
| 1312 |
+
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
| 1313 |
+
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
| 1314 |
+
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
| 1315 |
+
|
| 1316 |
+
quantized_preconditioners = []
|
| 1317 |
+
for qv, qd, qb in zip(quantized_preconditioners_for_state,
|
| 1318 |
+
quantized_diagonals_for_state,
|
| 1319 |
+
quantized_bucket_sizes_for_state):
|
| 1320 |
+
quantized_preconditioners.append(
|
| 1321 |
+
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape)))
|
| 1322 |
+
preconditioners_for_states.append(quantized_preconditioners)
|
| 1323 |
+
idx += num_statistics
|
| 1324 |
+
new_states = []
|
| 1325 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
| 1326 |
+
new_states.append(
|
| 1327 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
| 1328 |
+
new_preconditioners, state.diagonal_momentum,
|
| 1329 |
+
state.momentum))
|
| 1330 |
+
|
| 1331 |
+
return new_states
|
| 1332 |
+
|
| 1333 |
+
def _pjit_compute_preconditioners(states, step, statistics,
|
| 1334 |
+
num_statistics_per_state, original_shapes,
|
| 1335 |
+
exponents, max_size, prev_preconditioners):
|
| 1336 |
+
"""Computes preconditioners for given statistics in states in PJIT mode.
|
| 1337 |
+
|
| 1338 |
+
Args:
|
| 1339 |
+
states: A list of optimizer states.
|
| 1340 |
+
step: Current step number
|
| 1341 |
+
statistics: A list of statistics for all variables (for every dim)
|
| 1342 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
| 1343 |
+
output states.
|
| 1344 |
+
original_shapes: A list of shapes of the statistics.
|
| 1345 |
+
exponents: Exponent power to use for inverse-pth roots.
|
| 1346 |
+
max_size: Maximum dim of the statistics to pad.
|
| 1347 |
+
prev_preconditioners: Previously available preconditioner.
|
| 1348 |
+
|
| 1349 |
+
Returns:
|
| 1350 |
+
New optimizer states after computing the preconditioner.
|
| 1351 |
+
"""
|
| 1352 |
+
num_statistics = len(statistics)
|
| 1353 |
+
to_pad = -num_statistics % num_devices_for_pjit
|
| 1354 |
+
padded_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
| 1355 |
+
padded_statistics.extend([
|
| 1356 |
+
jnp.eye(max_size, dtype=padded_statistics[0].dtype)
|
| 1357 |
+
for _ in range(to_pad)
|
| 1358 |
+
])
|
| 1359 |
+
exponents.extend([1 for _ in range(to_pad)])
|
| 1360 |
+
all_statistics = jnp.stack(padded_statistics)
|
| 1361 |
+
all_exponents = jnp.stack(exponents)
|
| 1362 |
+
|
| 1363 |
+
def _internal_inverse_pth_root_all():
|
| 1364 |
+
preconditioners, errors = _matrix_inverse_pth_root_pjit(
|
| 1365 |
+
all_statistics, all_exponents)
|
| 1366 |
+
b1 = preconditioners.shape[0]
|
| 1367 |
+
|
| 1368 |
+
def split(batched_values):
|
| 1369 |
+
return [
|
| 1370 |
+
jnp.squeeze(v)
|
| 1371 |
+
for v in jnp.split(batched_values, indices_or_sections=b1, axis=0)
|
| 1372 |
+
]
|
| 1373 |
+
|
| 1374 |
+
return split(preconditioners), split(errors)
|
| 1375 |
+
|
| 1376 |
+
if preconditioning_compute_steps == 1:
|
| 1377 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
| 1378 |
+
else:
|
| 1379 |
+
# Passing statistics instead of preconditioners as they are similarly
|
| 1380 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 1381 |
+
# a large init value for error.
|
| 1382 |
+
preconditioners_init = padded_statistics
|
| 1383 |
+
errors_init = [inverse_failure_threshold] * len(padded_statistics)
|
| 1384 |
+
init_state = [preconditioners_init, errors_init]
|
| 1385 |
+
perform_step = step % preconditioning_compute_steps == 0
|
| 1386 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
| 1387 |
+
perform_step, _internal_inverse_pth_root_all, init_state)
|
| 1388 |
+
|
| 1389 |
+
def _skip(error):
|
| 1390 |
+
condition = jnp.logical_or(
|
| 1391 |
+
jnp.isnan(error), error >= inverse_failure_threshold)
|
| 1392 |
+
return condition.astype(error.dtype)
|
| 1393 |
+
|
| 1394 |
+
def _select_preconditioner(error, new_p, old_p):
|
| 1395 |
+
return lax.cond(
|
| 1396 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None)
|
| 1397 |
+
|
| 1398 |
+
new_preconditioners_flat = []
|
| 1399 |
+
for p, shape, prev_p, error in zip(preconditioners_flat, original_shapes,
|
| 1400 |
+
prev_preconditioners, errors_flat):
|
| 1401 |
+
new_preconditioners_flat.append(
|
| 1402 |
+
_select_preconditioner(error, p[:shape[0], :shape[1]], prev_p))
|
| 1403 |
+
|
| 1404 |
+
assert len(states) == len(num_statistics_per_state)
|
| 1405 |
+
assert len(new_preconditioners_flat) == num_statistics
|
| 1406 |
+
|
| 1407 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1408 |
+
preconditioners_for_states = []
|
| 1409 |
+
idx = 0
|
| 1410 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1411 |
+
if num_statistics == 0:
|
| 1412 |
+
preconditioners_for_states.append([])
|
| 1413 |
+
else:
|
| 1414 |
+
preconditioners_for_state = new_preconditioners_flat[idx:idx +
|
| 1415 |
+
num_statistics]
|
| 1416 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1417 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
| 1418 |
+
idx += num_statistics
|
| 1419 |
+
new_states = []
|
| 1420 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
| 1421 |
+
new_states.append(
|
| 1422 |
+
ParameterStats(state.diagonal_statistics, state.statistics,
|
| 1423 |
+
new_preconditioners, state.diagonal_momentum,
|
| 1424 |
+
state.momentum))
|
| 1425 |
+
|
| 1426 |
+
return new_states
|
| 1427 |
+
|
| 1428 |
+
def _compute_preconditioners(states, params, step):
|
| 1429 |
+
"""Computes preconditioners for given statistics in states.
|
| 1430 |
+
|
| 1431 |
+
Args:
|
| 1432 |
+
states: A list of optimizer states.
|
| 1433 |
+
params: A list of params.
|
| 1434 |
+
step: Current step number
|
| 1435 |
+
|
| 1436 |
+
Returns:
|
| 1437 |
+
New optimizer states after computing the preconditioner.
|
| 1438 |
+
"""
|
| 1439 |
+
statistics = []
|
| 1440 |
+
num_statistics_per_state = []
|
| 1441 |
+
original_shapes = []
|
| 1442 |
+
exponents = []
|
| 1443 |
+
max_size = 0
|
| 1444 |
+
prev_preconditioners = []
|
| 1445 |
+
|
| 1446 |
+
for state, param in zip(states, params):
|
| 1447 |
+
num_statistics = len(state.statistics)
|
| 1448 |
+
num_statistics_per_state.append(num_statistics)
|
| 1449 |
+
original_shapes_for_state = []
|
| 1450 |
+
if num_statistics > 0:
|
| 1451 |
+
preconditioner = Preconditioner(param, block_size,
|
| 1452 |
+
best_effort_shape_interpretation)
|
| 1453 |
+
for statistic in state.statistics:
|
| 1454 |
+
exponents.append(preconditioner.exponent_for_preconditioner(
|
| 1455 |
+
) if exponent_override == 0 else exponent_override)
|
| 1456 |
+
original_shapes_for_state.append(statistic.shape)
|
| 1457 |
+
max_size = max(max_size, statistic.shape[0])
|
| 1458 |
+
|
| 1459 |
+
statistics.extend(state.statistics)
|
| 1460 |
+
prev_preconditioners.extend(state.preconditioners)
|
| 1461 |
+
original_shapes.extend(original_shapes_for_state)
|
| 1462 |
+
|
| 1463 |
+
if batch_axis_name:
|
| 1464 |
+
# Quantization is only enabled if batch_axis_name is not set.
|
| 1465 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
| 1466 |
+
|
| 1467 |
+
if quantized_dtype == jnp.float32:
|
| 1468 |
+
return _pmap_compute_preconditioners(states, step, statistics,
|
| 1469 |
+
num_statistics_per_state,
|
| 1470 |
+
original_shapes, exponents,
|
| 1471 |
+
max_size, prev_preconditioners)
|
| 1472 |
+
else:
|
| 1473 |
+
return _pmap_quantized_compute_preconditioners(
|
| 1474 |
+
states, step, statistics, num_statistics_per_state, original_shapes,
|
| 1475 |
+
exponents, max_size, prev_preconditioners)
|
| 1476 |
+
|
| 1477 |
+
else:
|
| 1478 |
+
return _pjit_compute_preconditioners(states, step, statistics,
|
| 1479 |
+
num_statistics_per_state,
|
| 1480 |
+
original_shapes, exponents, max_size,
|
| 1481 |
+
prev_preconditioners)
|
| 1482 |
+
|
| 1483 |
+
def _transform_grad(grad, state, param, step):
|
| 1484 |
+
"""Transform per-parameter gradients."""
|
| 1485 |
+
preconditioner = Preconditioner(param, block_size,
|
| 1486 |
+
best_effort_shape_interpretation)
|
| 1487 |
+
sgd_update = grad
|
| 1488 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float()
|
| 1489 |
+
if graft_type == GraftingType.ADAGRAD:
|
| 1490 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float(
|
| 1491 |
+
) + jnp.square(grad)
|
| 1492 |
+
adagrad_update = grad / (
|
| 1493 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon)
|
| 1494 |
+
grafting_update = adagrad_update
|
| 1495 |
+
elif (graft_type == GraftingType.RMSPROP or
|
| 1496 |
+
graft_type == GraftingType.RMSPROP_NORMALIZED):
|
| 1497 |
+
|
| 1498 |
+
scaled_grad = grad
|
| 1499 |
+
if graft_type == GraftingType.RMSPROP_NORMALIZED:
|
| 1500 |
+
scaled_grad = grad / jnp.linalg.norm(grad)
|
| 1501 |
+
|
| 1502 |
+
w1 = beta2
|
| 1503 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
| 1504 |
+
|
| 1505 |
+
new_diagonal_statistics = (
|
| 1506 |
+
w1 * state.diagonal_statistics.to_float() +
|
| 1507 |
+
w2 * jnp.square(scaled_grad))
|
| 1508 |
+
rmsprop_update = scaled_grad / (
|
| 1509 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon)
|
| 1510 |
+
|
| 1511 |
+
if clip_by_scaled_gradient_norm:
|
| 1512 |
+
scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / (
|
| 1513 |
+
jnp.sqrt(float(rmsprop_update.size)))
|
| 1514 |
+
clipping_denom = jnp.maximum(
|
| 1515 |
+
1., scaled_grad_norm / clip_by_scaled_gradient_norm)
|
| 1516 |
+
rmsprop_update /= clipping_denom
|
| 1517 |
+
|
| 1518 |
+
grafting_update = rmsprop_update
|
| 1519 |
+
else:
|
| 1520 |
+
grafting_update = sgd_update
|
| 1521 |
+
|
| 1522 |
+
precond_grad = grad
|
| 1523 |
+
if not _skip_preconditioning(param):
|
| 1524 |
+
precond_grad = preconditioner.preconditioned_grad(
|
| 1525 |
+
precond_grad,
|
| 1526 |
+
_maybe_dequantize_preconditioners(state.preconditioners))
|
| 1527 |
+
else:
|
| 1528 |
+
precond_grad = grafting_update
|
| 1529 |
+
|
| 1530 |
+
grafting_update_norm = jnp.linalg.norm(grafting_update)
|
| 1531 |
+
precond_grad_norm = jnp.linalg.norm(precond_grad)
|
| 1532 |
+
|
| 1533 |
+
multiplier = (grafting_update_norm / (precond_grad_norm + 1e-16))
|
| 1534 |
+
shampoo_update = precond_grad * multiplier
|
| 1535 |
+
|
| 1536 |
+
shampoo_update_with_wd = shampoo_update
|
| 1537 |
+
grafting_update_with_wd = grafting_update
|
| 1538 |
+
if weight_decay != 0:
|
| 1539 |
+
shampoo_update_with_wd = shampoo_update + weight_decay * param
|
| 1540 |
+
grafting_update_with_wd = grafting_update + weight_decay * param
|
| 1541 |
+
|
| 1542 |
+
w = (1.0 - beta1) if moving_average_for_momentum else 1.0
|
| 1543 |
+
shampoo_update_with_wd_momentum = (
|
| 1544 |
+
state.momentum.to_float() * beta1 + w * shampoo_update_with_wd)
|
| 1545 |
+
grafting_update_with_wd_momentum = (
|
| 1546 |
+
state.diagonal_momentum.to_float() * beta1 +
|
| 1547 |
+
w * grafting_update_with_wd)
|
| 1548 |
+
|
| 1549 |
+
run_shampoo = (step >= start_preconditioning_step).astype(
|
| 1550 |
+
grafting_update_with_wd_momentum.dtype)
|
| 1551 |
+
|
| 1552 |
+
momentum_update = (
|
| 1553 |
+
run_shampoo * shampoo_update_with_wd_momentum +
|
| 1554 |
+
(1.0 - run_shampoo) * grafting_update_with_wd_momentum)
|
| 1555 |
+
|
| 1556 |
+
wd_update = (
|
| 1557 |
+
run_shampoo * shampoo_update_with_wd +
|
| 1558 |
+
(1.0 - run_shampoo) * grafting_update_with_wd)
|
| 1559 |
+
|
| 1560 |
+
if nesterov:
|
| 1561 |
+
momentum_update = w * wd_update + beta1 * momentum_update
|
| 1562 |
+
|
| 1563 |
+
lr = learning_rate
|
| 1564 |
+
if callable(learning_rate):
|
| 1565 |
+
lr = learning_rate(step)
|
| 1566 |
+
transformed_update = -1.0 * lr * momentum_update
|
| 1567 |
+
|
| 1568 |
+
param_stats = ParameterStats(
|
| 1569 |
+
_quantize_diagonal_statistics(new_diagonal_statistics),
|
| 1570 |
+
state.statistics, state.preconditioners,
|
| 1571 |
+
_quantize_momentum(grafting_update_with_wd_momentum),
|
| 1572 |
+
_quantize_momentum(shampoo_update_with_wd_momentum))
|
| 1573 |
+
return transformed_update, param_stats
|
| 1574 |
+
|
| 1575 |
+
def update_fn(grads, state, params):
|
| 1576 |
+
"""Transform the input gradient and update all statistics.
|
| 1577 |
+
|
| 1578 |
+
Args:
|
| 1579 |
+
grads: the gradient tensors for the parameters.
|
| 1580 |
+
state: a named tuple containing the state of the optimizer
|
| 1581 |
+
params: the parameters that should be updated.
|
| 1582 |
+
|
| 1583 |
+
Returns:
|
| 1584 |
+
A tuple containing the new parameters and the new optimizer state.
|
| 1585 |
+
"""
|
| 1586 |
+
params_flat, treedef = jax.tree_flatten(params)
|
| 1587 |
+
stats_flat = treedef.flatten_up_to(state.stats)
|
| 1588 |
+
grads_flat = treedef.flatten_up_to(grads)
|
| 1589 |
+
|
| 1590 |
+
new_stats_flat = jax.tree_multimap(
|
| 1591 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat,
|
| 1592 |
+
stats_flat, params_flat)
|
| 1593 |
+
new_stats_flat = _compute_preconditioners(new_stats_flat, params_flat,
|
| 1594 |
+
state.count)
|
| 1595 |
+
|
| 1596 |
+
outputs = jax.tree_multimap(
|
| 1597 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat,
|
| 1598 |
+
new_stats_flat, params_flat)
|
| 1599 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
| 1600 |
+
|
| 1601 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
| 1602 |
+
new_stats = jax.tree_unflatten(treedef, new_stats_flat)
|
| 1603 |
+
|
| 1604 |
+
new_state = ShampooState(
|
| 1605 |
+
count=state.count+1, stats=new_stats)
|
| 1606 |
+
return updates, new_state
|
| 1607 |
+
|
| 1608 |
+
if shard_optimizer_states:
|
| 1609 |
+
return optax.GradientTransformation(sharded_init_fn, sharded_update_fn)
|
| 1610 |
+
else:
|
| 1611 |
+
return optax.GradientTransformation(init_fn, update_fn)
|
flax_model.msgpack
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 497764120
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8785c0613f57cbd0fdb77c6d7cd033dcf7f09564f92d30a51b9adcf591da8ef6
|
| 3 |
size 497764120
|
run_clm_flax.py
CHANGED
|
@@ -61,6 +61,8 @@ from transformers import (
|
|
| 61 |
from transformers.file_utils import get_full_repo_name
|
| 62 |
from transformers.testing_utils import CaptureLogger
|
| 63 |
|
|
|
|
|
|
|
| 64 |
|
| 65 |
logger = logging.getLogger(__name__)
|
| 66 |
|
|
@@ -96,6 +98,9 @@ class TrainingArguments:
|
|
| 96 |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
| 97 |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
| 98 |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
|
|
|
|
|
|
|
|
|
| 99 |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
| 100 |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
| 101 |
warmup_ratio: float = field(default=0.0, metadata={"help": "Linear warmup ratio of total train steps."})
|
|
@@ -652,6 +657,33 @@ def main():
|
|
| 652 |
optimizer = optax.adafactor(
|
| 653 |
learning_rate=lr_schedule_fn,
|
| 654 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
else:
|
| 656 |
optimizer = optax.adamw(
|
| 657 |
learning_rate=lr_schedule_fn,
|
|
|
|
| 61 |
from transformers.file_utils import get_full_repo_name
|
| 62 |
from transformers.testing_utils import CaptureLogger
|
| 63 |
|
| 64 |
+
from distributed_shampoo import distributed_shampoo, GraftingType
|
| 65 |
+
|
| 66 |
|
| 67 |
logger = logging.getLogger(__name__)
|
| 68 |
|
|
|
|
| 98 |
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
| 99 |
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
| 100 |
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
| 101 |
+
distributed_shampoo: bool = field(
|
| 102 |
+
default=False, metadata={"help": "Use Distributed Shampoo optimizer instead of AdamW."},
|
| 103 |
+
)
|
| 104 |
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
| 105 |
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
| 106 |
warmup_ratio: float = field(default=0.0, metadata={"help": "Linear warmup ratio of total train steps."})
|
|
|
|
| 657 |
optimizer = optax.adafactor(
|
| 658 |
learning_rate=lr_schedule_fn,
|
| 659 |
)
|
| 660 |
+
|
| 661 |
+
elif training_args.distributed_shampoo:
|
| 662 |
+
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
|
| 663 |
+
# Notes:
|
| 664 |
+
# - mask for weight decay is not implemented but we don't use it anyway
|
| 665 |
+
optimizer = distributed_shampoo(
|
| 666 |
+
lr_schedule_fn,
|
| 667 |
+
block_size=1024, # recommended default for large LM is 1536
|
| 668 |
+
beta1=0.9,
|
| 669 |
+
beta2=0.999,
|
| 670 |
+
diagonal_epsilon=1e-10,
|
| 671 |
+
matrix_epsilon=1e-8,
|
| 672 |
+
weight_decay=0.0,
|
| 673 |
+
start_preconditioning_step=1001,
|
| 674 |
+
preconditioning_compute_steps=10,
|
| 675 |
+
statistics_compute_steps=1,
|
| 676 |
+
best_effort_shape_interpretation=True,
|
| 677 |
+
graft_type=GraftingType.RMSPROP_NORMALIZED,
|
| 678 |
+
nesterov=False,
|
| 679 |
+
exponent_override=0,
|
| 680 |
+
batch_axis_name="batch",
|
| 681 |
+
inverse_failure_threshold=0.1,
|
| 682 |
+
moving_average_for_momentum=True,
|
| 683 |
+
skip_preconditioning_dim_size_gt=4096,
|
| 684 |
+
clip_by_scaled_gradient_norm=None,
|
| 685 |
+
precision=jax.lax.Precision.HIGHEST,
|
| 686 |
+
)
|
| 687 |
else:
|
| 688 |
optimizer = optax.adamw(
|
| 689 |
learning_rate=lr_schedule_fn,
|
runs/events.out.tfevents.1642099734.t1v-n-42145f73-w-0.2317757.0.v2
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:dbbf5988858cf76da919fb1758c11b0ecc821048cb24a60adc8a53b7f332f86b
|
| 3 |
-
size 15255487
|
|
|
|
|
|
|
|
|
|
|
|
runs/{events.out.tfevents.1642208918.t1v-n-42145f73-w-0.2567321.0.v2 → events.out.tfevents.1642236904.t1v-n-42145f73-w-0.2775834.0.v2}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3e58f1ebeab5e80fee00375c5559d4f2276213fa5a9e715e12a9a59a491f1e0
|
| 3 |
+
size 1471449
|
start_train.sh
CHANGED
|
@@ -13,13 +13,10 @@ python3 run_clm_flax.py \
|
|
| 13 |
--per_device_train_batch_size="32" \
|
| 14 |
--per_device_eval_batch_size="32" \
|
| 15 |
--preprocessing_num_workers="1" \
|
| 16 |
-
--
|
| 17 |
-
--
|
|
|
|
| 18 |
--cosine_decay \
|
| 19 |
-
--adam_beta1="0.9" \
|
| 20 |
-
--adam_beta2="0.98" \
|
| 21 |
-
--adam_epsilon="1e-8" \
|
| 22 |
-
--weight_decay="0.01" \
|
| 23 |
--overwrite_output_dir \
|
| 24 |
--logging_steps="500" \
|
| 25 |
--eval_steps="10000" \
|
|
|
|
| 13 |
--per_device_train_batch_size="32" \
|
| 14 |
--per_device_eval_batch_size="32" \
|
| 15 |
--preprocessing_num_workers="1" \
|
| 16 |
+
--distributed_shampoo \
|
| 17 |
+
--learning_rate="1e-4" \
|
| 18 |
+
--warmup_steps="4000" \
|
| 19 |
--cosine_decay \
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
--overwrite_output_dir \
|
| 21 |
--logging_steps="500" \
|
| 22 |
--eval_steps="10000" \
|