Create example_run.py
Browse files- example_run.py +39 -0
example_run.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# example_run.py
|
| 2 |
+
from i3_model import i3Model, ChunkTokenizer
|
| 3 |
+
from modeling_i3 import I3ForCausalLM, I3Config
|
| 4 |
+
from tokenizer_i3 import I3Tokenizer
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Path to local model files (current folder)
|
| 8 |
+
model_path = "."
|
| 9 |
+
|
| 10 |
+
# Load tokenizer
|
| 11 |
+
tokenizer = I3Tokenizer(vocab_file=f"{model_path}/chunk_vocab_combined.json")
|
| 12 |
+
|
| 13 |
+
# Load HF-style model
|
| 14 |
+
model = I3ForCausalLM.from_pretrained(model_path)
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
# Example prompt
|
| 18 |
+
prompt = "hello, how are you"
|
| 19 |
+
|
| 20 |
+
# Encode text
|
| 21 |
+
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long)
|
| 22 |
+
|
| 23 |
+
# Optional: move to GPU if available
|
| 24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
model.to(device)
|
| 26 |
+
input_ids = input_ids.to(device)
|
| 27 |
+
|
| 28 |
+
# Generate tokens
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
generated_ids = model.i3.generate(
|
| 31 |
+
input_ids,
|
| 32 |
+
max_new_tokens=50,
|
| 33 |
+
temperature=0.8,
|
| 34 |
+
top_k=40
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Decode generated text
|
| 38 |
+
generated_text = tokenizer.decode(generated_ids[0].cpu().tolist())
|
| 39 |
+
print("Generated text:", generated_text)
|