Text Generation
Transformers
PyTorch
Safetensors
English
i3
i3-architecture
hybrid-model
rwkv-mamba
custom_code
FlameF0X commited on
Commit
725812c
·
verified ·
1 Parent(s): 22165c1

Create example_run.py

Browse files
Files changed (1) hide show
  1. example_run.py +39 -0
example_run.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # example_run.py
2
+ from i3_model import i3Model, ChunkTokenizer
3
+ from modeling_i3 import I3ForCausalLM, I3Config
4
+ from tokenizer_i3 import I3Tokenizer
5
+ import torch
6
+
7
+ # Path to local model files (current folder)
8
+ model_path = "."
9
+
10
+ # Load tokenizer
11
+ tokenizer = I3Tokenizer(vocab_file=f"{model_path}/chunk_vocab_combined.json")
12
+
13
+ # Load HF-style model
14
+ model = I3ForCausalLM.from_pretrained(model_path)
15
+ model.eval()
16
+
17
+ # Example prompt
18
+ prompt = "hello, how are you"
19
+
20
+ # Encode text
21
+ input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long)
22
+
23
+ # Optional: move to GPU if available
24
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
25
+ model.to(device)
26
+ input_ids = input_ids.to(device)
27
+
28
+ # Generate tokens
29
+ with torch.no_grad():
30
+ generated_ids = model.i3.generate(
31
+ input_ids,
32
+ max_new_tokens=50,
33
+ temperature=0.8,
34
+ top_k=40
35
+ )
36
+
37
+ # Decode generated text
38
+ generated_text = tokenizer.decode(generated_ids[0].cpu().tolist())
39
+ print("Generated text:", generated_text)