Init
Browse files- README.md +410 -0
- config.json +33 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +746 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
README.md
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
quantized_by: FlorianJc
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
inference: false
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
## Model infos:
|
| 9 |
+
[MegaBeam-Mistral-7B-300k](https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k) quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.1.
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Original model README.md file:
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# MegaBeam-Mistral-7B-300k Model
|
| 16 |
+
|
| 17 |
+
MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below:
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|Model|Max context length| rope_theta| prompt template|
|
| 21 |
+
|----------|-------------:|------------:|------------:|
|
| 22 |
+
| [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)|
|
| 23 |
+
| MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE|
|
| 24 |
+
|
| 25 |
+
## Evaluations
|
| 26 |
+
|
| 27 |
+
**[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)**
|
| 28 |
+
|
| 29 |
+
_InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below.
|
| 30 |
+
|
| 31 |
+
| Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K |
|
| 32 |
+
| ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------|
|
| 33 |
+
| Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% |
|
| 34 |
+
| Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% |
|
| 35 |
+
| Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% |
|
| 36 |
+
| En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% |
|
| 37 |
+
| En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% |
|
| 38 |
+
| En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% |
|
| 39 |
+
| En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% |
|
| 40 |
+
| Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% |
|
| 41 |
+
| Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% |
|
| 42 |
+
| Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
| 43 |
+
| Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
| 44 |
+
| Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% |
|
| 45 |
+
| **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% |
|
| 46 |
+
|
| 47 |
+
The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench)))
|
| 48 |
+
| Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description |
|
| 49 |
+
| -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- |
|
| 50 |
+
| En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. |
|
| 51 |
+
| En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. |
|
| 52 |
+
| En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. |
|
| 53 |
+
| En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. |
|
| 54 |
+
| Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. |
|
| 55 |
+
| Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). |
|
| 56 |
+
| Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. |
|
| 57 |
+
| Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. |
|
| 58 |
+
| Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. |
|
| 59 |
+
| Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. |
|
| 60 |
+
| Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. |
|
| 61 |
+
| Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. |
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Serve MegaBeam-Mistral-7B-300k on EC2 instances ##
|
| 65 |
+
On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/).
|
| 66 |
+
|
| 67 |
+
### Start the server
|
| 68 |
+
```shell
|
| 69 |
+
python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8
|
| 70 |
+
```
|
| 71 |
+
**Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU).
|
| 72 |
+
|
| 73 |
+
On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process.
|
| 74 |
+
|
| 75 |
+
### Run the client
|
| 76 |
+
```python
|
| 77 |
+
from openai import OpenAI
|
| 78 |
+
|
| 79 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
| 80 |
+
openai_api_key = "EMPTY"
|
| 81 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 82 |
+
|
| 83 |
+
client = OpenAI(
|
| 84 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
| 85 |
+
api_key=openai_api_key,
|
| 86 |
+
base_url=openai_api_base,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
models = client.models.list()
|
| 90 |
+
model = models.data[0].id
|
| 91 |
+
|
| 92 |
+
chat_completion = client.chat.completions.create(
|
| 93 |
+
messages = [
|
| 94 |
+
{"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
|
| 95 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 96 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
|
| 97 |
+
],
|
| 98 |
+
model=model,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
print("Chat completion results:")
|
| 102 |
+
print(chat_completion)
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
### Deploy the model on a SageMaker Endpoint ###
|
| 106 |
+
To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html).
|
| 107 |
+
|
| 108 |
+
Run the following Python code in a SageMaker notebook (with each block running in a separate cell)
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
import sagemaker
|
| 112 |
+
from sagemaker import Model, image_uris, serializers, deserializers
|
| 113 |
+
|
| 114 |
+
sagemaker_session = sagemaker.Session()
|
| 115 |
+
region = sagemaker_session.boto_region_name
|
| 116 |
+
role = sagemaker.get_execution_role()
|
| 117 |
+
|
| 118 |
+
%%writefile serving.properties
|
| 119 |
+
engine=Python
|
| 120 |
+
option.model_id=amazon/MegaBeam-Mistral-7B-300k
|
| 121 |
+
option.dtype=bf16
|
| 122 |
+
option.task=text-generation
|
| 123 |
+
option.rolling_batch=vllm
|
| 124 |
+
option.tensor_parallel_degree=8
|
| 125 |
+
option.device_map=auto
|
| 126 |
+
|
| 127 |
+
%%sh
|
| 128 |
+
mkdir mymodel
|
| 129 |
+
mv serving.properties mymodel/
|
| 130 |
+
tar czvf mymodel.tar.gz mymodel/
|
| 131 |
+
rm -rf mymodel
|
| 132 |
+
|
| 133 |
+
image_uri = image_uris.retrieve(
|
| 134 |
+
framework="djl-deepspeed",
|
| 135 |
+
region=region,
|
| 136 |
+
version="0.27.0"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
s3_code_prefix = "megaBeam-mistral-7b-300k/code"
|
| 140 |
+
bucket = sagemaker_session.default_bucket() # bucket to house artifacts
|
| 141 |
+
code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
|
| 142 |
+
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
|
| 143 |
+
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
|
| 144 |
+
|
| 145 |
+
instance_type = "ml.g5.48xlarge"
|
| 146 |
+
endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k")
|
| 147 |
+
model.deploy(initial_instance_count=1,
|
| 148 |
+
instance_type=instance_type,
|
| 149 |
+
endpoint_name=endpoint_name
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# our requests and responses will be in json format so we specify the serializer and the deserializer
|
| 153 |
+
predictor = sagemaker.Predictor(
|
| 154 |
+
endpoint_name=endpoint_name,
|
| 155 |
+
sagemaker_session=sagemaker_session,
|
| 156 |
+
serializer=serializers.JSONSerializer(),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# test the endpoint
|
| 160 |
+
input_str = """<s>[INST] What is your favourite condiment? [/INST]
|
| 161 |
+
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
| 162 |
+
[INST] Do you have mayonnaise recipes? [/INST]"""
|
| 163 |
+
predictor.predict(
|
| 164 |
+
{"inputs": input_str, "parameters": {"max_new_tokens": 75}}
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### Invoke the model on a SageMaker Endpoint ###
|
| 170 |
+
To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example:
|
| 171 |
+
|
| 172 |
+
```python
|
| 173 |
+
import boto3
|
| 174 |
+
import json
|
| 175 |
+
|
| 176 |
+
def call_endpoint(text:str, endpoint_name:str):
|
| 177 |
+
client = boto3.client("sagemaker-runtime")
|
| 178 |
+
|
| 179 |
+
parameters = {
|
| 180 |
+
"max_new_tokens": 450,
|
| 181 |
+
"do_sample": True,
|
| 182 |
+
"temperature": 0.7,
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
payload = {"inputs": text, "parameters": parameters}
|
| 186 |
+
|
| 187 |
+
response = client.invoke_endpoint(
|
| 188 |
+
EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
output = json.loads(response["Body"].read().decode())
|
| 192 |
+
|
| 193 |
+
result = output["generated_text"]
|
| 194 |
+
return result
|
| 195 |
+
|
| 196 |
+
# please insert your long prompt/document content here
|
| 197 |
+
prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]"""
|
| 198 |
+
|
| 199 |
+
#print(prompt)
|
| 200 |
+
endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name
|
| 201 |
+
result = call_endpoint(prompt, endpoint_name)
|
| 202 |
+
print(result)
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
## Limitations ##
|
| 207 |
+
Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
|
| 208 |
+
|
| 209 |
+
## The AWS Contributors ##
|
| 210 |
+
Chen Wu, Yin Song, Verdi March, Eden Duthi---
|
| 211 |
+
license: apache-2.0
|
| 212 |
+
inference: false
|
| 213 |
+
---
|
| 214 |
+
|
| 215 |
+
# MegaBeam-Mistral-7B-300k Model
|
| 216 |
+
|
| 217 |
+
MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below:
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|Model|Max context length| rope_theta| prompt template|
|
| 221 |
+
|----------|-------------:|------------:|------------:|
|
| 222 |
+
| [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)|
|
| 223 |
+
| MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE|
|
| 224 |
+
|
| 225 |
+
## Evaluations
|
| 226 |
+
|
| 227 |
+
**[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)**
|
| 228 |
+
|
| 229 |
+
_InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below.
|
| 230 |
+
|
| 231 |
+
| Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K |
|
| 232 |
+
| ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------|
|
| 233 |
+
| Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% |
|
| 234 |
+
| Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% |
|
| 235 |
+
| Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% |
|
| 236 |
+
| En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% |
|
| 237 |
+
| En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% |
|
| 238 |
+
| En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% |
|
| 239 |
+
| En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% |
|
| 240 |
+
| Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% |
|
| 241 |
+
| Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% |
|
| 242 |
+
| Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
| 243 |
+
| Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% |
|
| 244 |
+
| Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% |
|
| 245 |
+
| **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% |
|
| 246 |
+
|
| 247 |
+
The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench)))
|
| 248 |
+
| Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description |
|
| 249 |
+
| -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- |
|
| 250 |
+
| En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. |
|
| 251 |
+
| En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. |
|
| 252 |
+
| En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. |
|
| 253 |
+
| En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. |
|
| 254 |
+
| Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. |
|
| 255 |
+
| Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). |
|
| 256 |
+
| Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. |
|
| 257 |
+
| Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. |
|
| 258 |
+
| Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. |
|
| 259 |
+
| Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. |
|
| 260 |
+
| Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. |
|
| 261 |
+
| Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. |
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
## Serve MegaBeam-Mistral-7B-300k on EC2 instances ##
|
| 265 |
+
On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/).
|
| 266 |
+
|
| 267 |
+
### Start the server
|
| 268 |
+
```shell
|
| 269 |
+
python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8
|
| 270 |
+
```
|
| 271 |
+
**Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU).
|
| 272 |
+
|
| 273 |
+
On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process.
|
| 274 |
+
|
| 275 |
+
### Run the client
|
| 276 |
+
```python
|
| 277 |
+
from openai import OpenAI
|
| 278 |
+
|
| 279 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
| 280 |
+
openai_api_key = "EMPTY"
|
| 281 |
+
openai_api_base = "http://localhost:8000/v1"
|
| 282 |
+
|
| 283 |
+
client = OpenAI(
|
| 284 |
+
# defaults to os.environ.get("OPENAI_API_KEY")
|
| 285 |
+
api_key=openai_api_key,
|
| 286 |
+
base_url=openai_api_base,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
models = client.models.list()
|
| 290 |
+
model = models.data[0].id
|
| 291 |
+
|
| 292 |
+
chat_completion = client.chat.completions.create(
|
| 293 |
+
messages = [
|
| 294 |
+
{"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
|
| 295 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 296 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
|
| 297 |
+
],
|
| 298 |
+
model=model,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
print("Chat completion results:")
|
| 302 |
+
print(chat_completion)
|
| 303 |
+
```
|
| 304 |
+
|
| 305 |
+
### Deploy the model on a SageMaker Endpoint ###
|
| 306 |
+
To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html).
|
| 307 |
+
|
| 308 |
+
Run the following Python code in a SageMaker notebook (with each block running in a separate cell)
|
| 309 |
+
|
| 310 |
+
```python
|
| 311 |
+
import sagemaker
|
| 312 |
+
from sagemaker import Model, image_uris, serializers, deserializers
|
| 313 |
+
|
| 314 |
+
sagemaker_session = sagemaker.Session()
|
| 315 |
+
region = sagemaker_session.boto_region_name
|
| 316 |
+
role = sagemaker.get_execution_role()
|
| 317 |
+
|
| 318 |
+
%%writefile serving.properties
|
| 319 |
+
engine=Python
|
| 320 |
+
option.model_id=amazon/MegaBeam-Mistral-7B-300k
|
| 321 |
+
option.dtype=bf16
|
| 322 |
+
option.task=text-generation
|
| 323 |
+
option.rolling_batch=vllm
|
| 324 |
+
option.tensor_parallel_degree=8
|
| 325 |
+
option.device_map=auto
|
| 326 |
+
|
| 327 |
+
%%sh
|
| 328 |
+
mkdir mymodel
|
| 329 |
+
mv serving.properties mymodel/
|
| 330 |
+
tar czvf mymodel.tar.gz mymodel/
|
| 331 |
+
rm -rf mymodel
|
| 332 |
+
|
| 333 |
+
image_uri = image_uris.retrieve(
|
| 334 |
+
framework="djl-deepspeed",
|
| 335 |
+
region=region,
|
| 336 |
+
version="0.27.0"
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
s3_code_prefix = "megaBeam-mistral-7b-300k/code"
|
| 340 |
+
bucket = sagemaker_session.default_bucket() # bucket to house artifacts
|
| 341 |
+
code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
|
| 342 |
+
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")
|
| 343 |
+
model = Model(image_uri=image_uri, model_data=code_artifact, role=role)
|
| 344 |
+
|
| 345 |
+
instance_type = "ml.g5.48xlarge"
|
| 346 |
+
endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k")
|
| 347 |
+
model.deploy(initial_instance_count=1,
|
| 348 |
+
instance_type=instance_type,
|
| 349 |
+
endpoint_name=endpoint_name
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# our requests and responses will be in json format so we specify the serializer and the deserializer
|
| 353 |
+
predictor = sagemaker.Predictor(
|
| 354 |
+
endpoint_name=endpoint_name,
|
| 355 |
+
sagemaker_session=sagemaker_session,
|
| 356 |
+
serializer=serializers.JSONSerializer(),
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# test the endpoint
|
| 360 |
+
input_str = """<s>[INST] What is your favourite condiment? [/INST]
|
| 361 |
+
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
| 362 |
+
[INST] Do you have mayonnaise recipes? [/INST]"""
|
| 363 |
+
predictor.predict(
|
| 364 |
+
{"inputs": input_str, "parameters": {"max_new_tokens": 75}}
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
```
|
| 368 |
+
|
| 369 |
+
### Invoke the model on a SageMaker Endpoint ###
|
| 370 |
+
To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example:
|
| 371 |
+
|
| 372 |
+
```python
|
| 373 |
+
import boto3
|
| 374 |
+
import json
|
| 375 |
+
|
| 376 |
+
def call_endpoint(text:str, endpoint_name:str):
|
| 377 |
+
client = boto3.client("sagemaker-runtime")
|
| 378 |
+
|
| 379 |
+
parameters = {
|
| 380 |
+
"max_new_tokens": 450,
|
| 381 |
+
"do_sample": True,
|
| 382 |
+
"temperature": 0.7,
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
payload = {"inputs": text, "parameters": parameters}
|
| 386 |
+
|
| 387 |
+
response = client.invoke_endpoint(
|
| 388 |
+
EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json"
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
output = json.loads(response["Body"].read().decode())
|
| 392 |
+
|
| 393 |
+
result = output["generated_text"]
|
| 394 |
+
return result
|
| 395 |
+
|
| 396 |
+
# please insert your long prompt/document content here
|
| 397 |
+
prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]"""
|
| 398 |
+
|
| 399 |
+
#print(prompt)
|
| 400 |
+
endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name
|
| 401 |
+
result = call_endpoint(prompt, endpoint_name)
|
| 402 |
+
print(result)
|
| 403 |
+
```
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
## Limitations ##
|
| 407 |
+
Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
|
| 408 |
+
|
| 409 |
+
## The AWS Contributors ##
|
| 410 |
+
Chen Wu, Yin Song, Verdi March, Eden Duthie
|
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "amazon/MegaBeam-Mistral-7B-300k",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MistralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 288800,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"quantization_config": {
|
| 19 |
+
"activation_scheme": "static",
|
| 20 |
+
"ignored_layers": [
|
| 21 |
+
"lm_head"
|
| 22 |
+
],
|
| 23 |
+
"quant_method": "fp8"
|
| 24 |
+
},
|
| 25 |
+
"rms_norm_eps": 1e-05,
|
| 26 |
+
"rope_theta": 25000000.0,
|
| 27 |
+
"sliding_window": null,
|
| 28 |
+
"tie_word_embeddings": false,
|
| 29 |
+
"torch_dtype": "float16",
|
| 30 |
+
"transformers_version": "4.42.3",
|
| 31 |
+
"use_cache": false,
|
| 32 |
+
"vocab_size": 32000
|
| 33 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.42.3"
|
| 6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b855f18e3f53965a71236bd703c5cd639cefd39fa1c9986cbb2d0d1fb29fbda
|
| 3 |
+
size 4943385232
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c9963f1644f9b253e2b50912947db42a0513cad6b0caf73b0d80e46b4449558
|
| 3 |
+
size 2560836920
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 7504144128
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.0.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.0.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.0.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.1.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.1.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.1.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.1.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.1.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.1.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.1.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.1.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.1.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.1.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.1.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.1.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.1.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.1.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.10.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.10.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.10.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.10.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.10.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.10.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.10.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.10.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.10.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.10.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.10.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.10.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.10.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.10.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.11.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.11.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.11.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.11.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.11.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.11.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.11.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.11.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.11.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.11.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.11.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.11.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.11.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.11.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.12.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.12.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.12.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.12.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.12.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.12.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.12.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.12.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.12.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.12.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.12.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.12.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.12.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.12.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.13.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.13.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.13.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.13.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.13.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.13.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.13.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.13.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.13.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.13.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.13.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.13.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.13.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.13.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.14.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.14.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.14.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.14.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.14.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.14.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.14.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.14.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.14.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.14.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.14.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.14.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.14.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.14.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.15.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.15.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.15.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.15.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.15.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.15.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.15.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.15.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.15.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.15.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.15.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.15.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.15.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.15.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.16.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.16.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.16.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.16.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.16.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.16.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.16.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.16.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.16.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.16.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.16.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.16.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.16.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.16.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.17.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.17.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.17.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.17.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.17.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.17.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.17.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.17.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.17.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.17.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.17.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.17.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.17.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.17.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.18.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.18.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.18.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.18.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.18.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.18.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.18.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.18.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.18.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.18.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.18.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.18.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.18.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.18.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.19.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.19.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.19.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.19.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.19.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.19.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.19.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.19.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.19.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.19.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.19.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.19.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.19.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.19.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.2.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.2.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.2.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.2.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.2.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.2.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.2.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 297 |
+
"model.layers.2.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 298 |
+
"model.layers.2.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 299 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"model.layers.2.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 301 |
+
"model.layers.2.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 302 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"model.layers.2.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 304 |
+
"model.layers.2.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 305 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"model.layers.2.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 307 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"model.layers.20.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 309 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.20.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.20.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 312 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"model.layers.20.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.20.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.20.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.20.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.20.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.20.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"model.layers.20.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 324 |
+
"model.layers.20.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"model.layers.20.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 327 |
+
"model.layers.20.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"model.layers.20.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 330 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.21.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.21.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.21.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 335 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"model.layers.21.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 337 |
+
"model.layers.21.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.21.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.21.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.layers.21.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 344 |
+
"model.layers.21.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 345 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"model.layers.21.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 347 |
+
"model.layers.21.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 348 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"model.layers.21.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 350 |
+
"model.layers.21.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 351 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.layers.21.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"model.layers.22.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 355 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"model.layers.22.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 357 |
+
"model.layers.22.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 358 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"model.layers.22.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 360 |
+
"model.layers.22.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 361 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"model.layers.22.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 363 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"model.layers.22.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 365 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"model.layers.22.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 367 |
+
"model.layers.22.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 368 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 369 |
+
"model.layers.22.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 370 |
+
"model.layers.22.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 371 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 372 |
+
"model.layers.22.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 373 |
+
"model.layers.22.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 374 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 375 |
+
"model.layers.22.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 376 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 377 |
+
"model.layers.23.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 378 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 379 |
+
"model.layers.23.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 380 |
+
"model.layers.23.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 381 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 382 |
+
"model.layers.23.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 383 |
+
"model.layers.23.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 384 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 385 |
+
"model.layers.23.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 386 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 387 |
+
"model.layers.23.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 388 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 389 |
+
"model.layers.23.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 390 |
+
"model.layers.23.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 391 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 392 |
+
"model.layers.23.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 393 |
+
"model.layers.23.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 394 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 395 |
+
"model.layers.23.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 396 |
+
"model.layers.23.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 397 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 398 |
+
"model.layers.23.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 399 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 400 |
+
"model.layers.24.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 401 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 402 |
+
"model.layers.24.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 403 |
+
"model.layers.24.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 404 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 405 |
+
"model.layers.24.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 406 |
+
"model.layers.24.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 407 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 408 |
+
"model.layers.24.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 409 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 410 |
+
"model.layers.24.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 411 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 412 |
+
"model.layers.24.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 413 |
+
"model.layers.24.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 414 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 415 |
+
"model.layers.24.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 416 |
+
"model.layers.24.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 417 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 418 |
+
"model.layers.24.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 419 |
+
"model.layers.24.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 420 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 421 |
+
"model.layers.24.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 422 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 423 |
+
"model.layers.25.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 424 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 425 |
+
"model.layers.25.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 426 |
+
"model.layers.25.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 427 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 428 |
+
"model.layers.25.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 429 |
+
"model.layers.25.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 430 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 431 |
+
"model.layers.25.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 432 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 433 |
+
"model.layers.25.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 434 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 435 |
+
"model.layers.25.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 436 |
+
"model.layers.25.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 437 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 438 |
+
"model.layers.25.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 439 |
+
"model.layers.25.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 440 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 441 |
+
"model.layers.25.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 442 |
+
"model.layers.25.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 443 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 444 |
+
"model.layers.25.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 445 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 446 |
+
"model.layers.26.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 447 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 448 |
+
"model.layers.26.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 449 |
+
"model.layers.26.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 450 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"model.layers.26.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 452 |
+
"model.layers.26.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 453 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 454 |
+
"model.layers.26.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 455 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 456 |
+
"model.layers.26.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 457 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 458 |
+
"model.layers.26.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 459 |
+
"model.layers.26.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 460 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 461 |
+
"model.layers.26.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 462 |
+
"model.layers.26.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 463 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 464 |
+
"model.layers.26.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 465 |
+
"model.layers.26.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 466 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 467 |
+
"model.layers.26.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 468 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 469 |
+
"model.layers.27.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 470 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 471 |
+
"model.layers.27.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 472 |
+
"model.layers.27.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 473 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 474 |
+
"model.layers.27.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 475 |
+
"model.layers.27.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 476 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 477 |
+
"model.layers.27.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 478 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 479 |
+
"model.layers.27.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 480 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 481 |
+
"model.layers.27.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 482 |
+
"model.layers.27.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 483 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 484 |
+
"model.layers.27.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 485 |
+
"model.layers.27.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 486 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 487 |
+
"model.layers.27.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 488 |
+
"model.layers.27.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 489 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 490 |
+
"model.layers.27.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 491 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 492 |
+
"model.layers.28.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 493 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 494 |
+
"model.layers.28.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 495 |
+
"model.layers.28.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 496 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 497 |
+
"model.layers.28.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 498 |
+
"model.layers.28.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 499 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 500 |
+
"model.layers.28.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 501 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 502 |
+
"model.layers.28.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 503 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 504 |
+
"model.layers.28.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 505 |
+
"model.layers.28.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 506 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 507 |
+
"model.layers.28.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 508 |
+
"model.layers.28.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 509 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 510 |
+
"model.layers.28.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 511 |
+
"model.layers.28.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 512 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 513 |
+
"model.layers.28.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 514 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 515 |
+
"model.layers.29.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 516 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 517 |
+
"model.layers.29.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 518 |
+
"model.layers.29.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 519 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 520 |
+
"model.layers.29.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 521 |
+
"model.layers.29.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 522 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 523 |
+
"model.layers.29.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 524 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 525 |
+
"model.layers.29.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 526 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 527 |
+
"model.layers.29.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 528 |
+
"model.layers.29.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 529 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 530 |
+
"model.layers.29.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 531 |
+
"model.layers.29.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 532 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 533 |
+
"model.layers.29.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 534 |
+
"model.layers.29.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 535 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 536 |
+
"model.layers.29.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 537 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"model.layers.3.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 539 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"model.layers.3.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 541 |
+
"model.layers.3.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 542 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 543 |
+
"model.layers.3.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 544 |
+
"model.layers.3.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 545 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"model.layers.3.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 547 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"model.layers.3.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 549 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"model.layers.3.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 551 |
+
"model.layers.3.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 552 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 553 |
+
"model.layers.3.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 554 |
+
"model.layers.3.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 555 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"model.layers.3.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 557 |
+
"model.layers.3.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 558 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 559 |
+
"model.layers.3.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 560 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 561 |
+
"model.layers.30.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 562 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 563 |
+
"model.layers.30.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 564 |
+
"model.layers.30.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 565 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 566 |
+
"model.layers.30.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 567 |
+
"model.layers.30.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 568 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 569 |
+
"model.layers.30.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 570 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 571 |
+
"model.layers.30.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 572 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 573 |
+
"model.layers.30.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 574 |
+
"model.layers.30.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 575 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 576 |
+
"model.layers.30.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 577 |
+
"model.layers.30.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 578 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 579 |
+
"model.layers.30.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 580 |
+
"model.layers.30.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 581 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 582 |
+
"model.layers.30.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 583 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 584 |
+
"model.layers.31.mlp.down_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 585 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 586 |
+
"model.layers.31.mlp.down_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 587 |
+
"model.layers.31.mlp.gate_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 588 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 589 |
+
"model.layers.31.mlp.gate_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 590 |
+
"model.layers.31.mlp.up_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 591 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 592 |
+
"model.layers.31.mlp.up_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 593 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 594 |
+
"model.layers.31.self_attn.k_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 595 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 596 |
+
"model.layers.31.self_attn.k_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 597 |
+
"model.layers.31.self_attn.o_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 598 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 599 |
+
"model.layers.31.self_attn.o_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 600 |
+
"model.layers.31.self_attn.q_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 601 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 602 |
+
"model.layers.31.self_attn.q_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 603 |
+
"model.layers.31.self_attn.v_proj.input_scale": "model-00002-of-00002.safetensors",
|
| 604 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 605 |
+
"model.layers.31.self_attn.v_proj.weight_scale": "model-00002-of-00002.safetensors",
|
| 606 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 607 |
+
"model.layers.4.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 608 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 609 |
+
"model.layers.4.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 610 |
+
"model.layers.4.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 611 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"model.layers.4.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 613 |
+
"model.layers.4.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 614 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 615 |
+
"model.layers.4.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 616 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 617 |
+
"model.layers.4.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 618 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 619 |
+
"model.layers.4.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 620 |
+
"model.layers.4.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 621 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"model.layers.4.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 623 |
+
"model.layers.4.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 624 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 625 |
+
"model.layers.4.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 626 |
+
"model.layers.4.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 627 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"model.layers.4.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 629 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"model.layers.5.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 631 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"model.layers.5.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 633 |
+
"model.layers.5.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 634 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 635 |
+
"model.layers.5.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 636 |
+
"model.layers.5.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 637 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"model.layers.5.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 639 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"model.layers.5.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 641 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"model.layers.5.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 643 |
+
"model.layers.5.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 644 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 645 |
+
"model.layers.5.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 646 |
+
"model.layers.5.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 647 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"model.layers.5.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 649 |
+
"model.layers.5.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 650 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 651 |
+
"model.layers.5.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 652 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 653 |
+
"model.layers.6.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 654 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 655 |
+
"model.layers.6.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 656 |
+
"model.layers.6.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 657 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"model.layers.6.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 659 |
+
"model.layers.6.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 660 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 661 |
+
"model.layers.6.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 662 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 663 |
+
"model.layers.6.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 664 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 665 |
+
"model.layers.6.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 666 |
+
"model.layers.6.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 667 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"model.layers.6.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 669 |
+
"model.layers.6.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 670 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 671 |
+
"model.layers.6.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 672 |
+
"model.layers.6.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 673 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"model.layers.6.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 675 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"model.layers.7.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 677 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"model.layers.7.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 679 |
+
"model.layers.7.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 680 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 681 |
+
"model.layers.7.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 682 |
+
"model.layers.7.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 683 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"model.layers.7.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 685 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"model.layers.7.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 687 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"model.layers.7.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 689 |
+
"model.layers.7.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 690 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 691 |
+
"model.layers.7.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 692 |
+
"model.layers.7.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 693 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"model.layers.7.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 695 |
+
"model.layers.7.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 696 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 697 |
+
"model.layers.7.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 698 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 699 |
+
"model.layers.8.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 700 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 701 |
+
"model.layers.8.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 702 |
+
"model.layers.8.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 703 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"model.layers.8.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 705 |
+
"model.layers.8.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 706 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 707 |
+
"model.layers.8.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 708 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 709 |
+
"model.layers.8.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 710 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 711 |
+
"model.layers.8.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 712 |
+
"model.layers.8.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 713 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"model.layers.8.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 715 |
+
"model.layers.8.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 716 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 717 |
+
"model.layers.8.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 718 |
+
"model.layers.8.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 719 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"model.layers.8.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 721 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 722 |
+
"model.layers.9.mlp.down_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 723 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 724 |
+
"model.layers.9.mlp.down_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 725 |
+
"model.layers.9.mlp.gate_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 726 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 727 |
+
"model.layers.9.mlp.gate_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 728 |
+
"model.layers.9.mlp.up_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 729 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 730 |
+
"model.layers.9.mlp.up_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 731 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 732 |
+
"model.layers.9.self_attn.k_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 733 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 734 |
+
"model.layers.9.self_attn.k_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 735 |
+
"model.layers.9.self_attn.o_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 736 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 737 |
+
"model.layers.9.self_attn.o_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 738 |
+
"model.layers.9.self_attn.q_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 739 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 740 |
+
"model.layers.9.self_attn.q_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 741 |
+
"model.layers.9.self_attn.v_proj.input_scale": "model-00001-of-00002.safetensors",
|
| 742 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 743 |
+
"model.layers.9.self_attn.v_proj.weight_scale": "model-00001-of-00002.safetensors",
|
| 744 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 745 |
+
}
|
| 746 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"additional_special_tokens": [],
|
| 32 |
+
"bos_token": "<s>",
|
| 33 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
| 34 |
+
"clean_up_tokenization_spaces": false,
|
| 35 |
+
"eos_token": "</s>",
|
| 36 |
+
"legacy": true,
|
| 37 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 38 |
+
"pad_token": null,
|
| 39 |
+
"sp_model_kwargs": {},
|
| 40 |
+
"spaces_between_special_tokens": false,
|
| 41 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 42 |
+
"unk_token": "<unk>",
|
| 43 |
+
"use_default_system_prompt": false
|
| 44 |
+
}
|