bweng commited on
Commit
ee09c56
·
verified ·
1 Parent(s): 9785ec7

Single step joint decision

Browse files
JointDecision.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:143471b632ec97bd3ba14a87e0379518c447a051f54f2a13fe19dca31d66df74
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1183ba213bb94a918c8d2cad19ab045320618f97f6ca662245b3936d7b090f7
3
  size 243
JointDecision.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9bb6435264cd09ac30a66791736b2da6c4709667e7767ca0cfae78ad0eed4695
3
- size 532
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2c6752f1c8cf2d3f6f26ec93195c9bfa759ad59edf9f806696a138154f96f11
3
+ size 534
JointDecision.mlmodelc/metadata.json CHANGED
@@ -1,15 +1,15 @@
1
  [
2
  {
3
  "metadataOutputVersion" : "3.0",
4
- "shortDescription" : "Parakeet joint + decision head (split, softmax, argmax)",
5
  "outputSchema" : [
6
  {
7
  "hasShapeFlexibility" : "0",
8
  "isOptional" : "0",
9
  "dataType" : "Int32",
10
- "formattedType" : "MultiArray (Int32 1 × 188 × 1)",
11
  "shortDescription" : "",
12
- "shape" : "[1, 188, 1]",
13
  "name" : "token_id",
14
  "type" : "MultiArray"
15
  },
@@ -17,9 +17,9 @@
17
  "hasShapeFlexibility" : "0",
18
  "isOptional" : "0",
19
  "dataType" : "Float32",
20
- "formattedType" : "MultiArray (Float32 1 × 188 × 1)",
21
  "shortDescription" : "",
22
- "shape" : "[1, 188, 1]",
23
  "name" : "token_prob",
24
  "type" : "MultiArray"
25
  },
@@ -27,9 +27,9 @@
27
  "hasShapeFlexibility" : "0",
28
  "isOptional" : "0",
29
  "dataType" : "Int32",
30
- "formattedType" : "MultiArray (Int32 1 × 188 × 1)",
31
  "shortDescription" : "",
32
- "shape" : "[1, 188, 1]",
33
  "name" : "duration",
34
  "type" : "MultiArray"
35
  }
@@ -74,10 +74,10 @@
74
  "hasShapeFlexibility" : "0",
75
  "isOptional" : "0",
76
  "dataType" : "Float32",
77
- "formattedType" : "MultiArray (Float32 1 × 1024 × 188)",
78
  "shortDescription" : "",
79
- "shape" : "[1, 1024, 188]",
80
- "name" : "encoder",
81
  "type" : "MultiArray"
82
  },
83
  {
@@ -87,7 +87,7 @@
87
  "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
88
  "shortDescription" : "",
89
  "shape" : "[1, 640, 1]",
90
- "name" : "decoder",
91
  "type" : "MultiArray"
92
  }
93
  ],
@@ -97,7 +97,7 @@
97
  "com.github.apple.coremltools.version" : "9.0b1",
98
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
99
  },
100
- "generatedClassName" : "parakeet_joint_decision",
101
  "method" : "predict"
102
  }
103
  ]
 
1
  [
2
  {
3
  "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "Parakeet single-step joint decision (current frame)",
5
  "outputSchema" : [
6
  {
7
  "hasShapeFlexibility" : "0",
8
  "isOptional" : "0",
9
  "dataType" : "Int32",
10
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
11
  "shortDescription" : "",
12
+ "shape" : "[1, 1, 1]",
13
  "name" : "token_id",
14
  "type" : "MultiArray"
15
  },
 
17
  "hasShapeFlexibility" : "0",
18
  "isOptional" : "0",
19
  "dataType" : "Float32",
20
+ "formattedType" : "MultiArray (Float32 1 × 1 × 1)",
21
  "shortDescription" : "",
22
+ "shape" : "[1, 1, 1]",
23
  "name" : "token_prob",
24
  "type" : "MultiArray"
25
  },
 
27
  "hasShapeFlexibility" : "0",
28
  "isOptional" : "0",
29
  "dataType" : "Int32",
30
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
31
  "shortDescription" : "",
32
+ "shape" : "[1, 1, 1]",
33
  "name" : "duration",
34
  "type" : "MultiArray"
35
  }
 
74
  "hasShapeFlexibility" : "0",
75
  "isOptional" : "0",
76
  "dataType" : "Float32",
77
+ "formattedType" : "MultiArray (Float32 1 × 1024 × 1)",
78
  "shortDescription" : "",
79
+ "shape" : "[1, 1024, 1]",
80
+ "name" : "encoder_step",
81
  "type" : "MultiArray"
82
  },
83
  {
 
87
  "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
88
  "shortDescription" : "",
89
  "shape" : "[1, 640, 1]",
90
+ "name" : "decoder_step",
91
  "type" : "MultiArray"
92
  }
93
  ],
 
97
  "com.github.apple.coremltools.version" : "9.0b1",
98
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
99
  },
100
+ "generatedClassName" : "parakeet_joint_decision_single_step",
101
  "method" : "predict"
102
  }
103
  ]
JointDecision.mlmodelc/model.mil CHANGED
@@ -1,58 +1,58 @@
1
  program(1.0)
2
  [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
  {
4
- func main<ios17>(tensor<fp32, [1, 640, 1]> decoder, tensor<fp32, [1, 1024, 188]> encoder) {
5
  tensor<int32, [3]> input_1_perm_0 = const()[name = tensor<string, []>("input_1_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
6
- tensor<string, []> encoder_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
  tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
8
- tensor<string, []> decoder_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
  tensor<fp16, [640, 1024]> joint_module_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
10
  tensor<fp16, [640]> joint_module_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
11
- tensor<fp16, [1, 1024, 188]> encoder_to_fp16 = cast(dtype = encoder_to_fp16_dtype_0, x = encoder)[name = tensor<string, []>("cast_3")];
12
- tensor<fp16, [1, 188, 1024]> input_1_cast_fp16 = transpose(perm = input_1_perm_0, x = encoder_to_fp16)[name = tensor<string, []>("transpose_1")];
13
- tensor<fp16, [1, 188, 640]> linear_0_cast_fp16 = linear(bias = joint_module_enc_bias_to_fp16, weight = joint_module_enc_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
14
  tensor<fp16, [640, 640]> joint_module_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
15
  tensor<fp16, [640]> joint_module_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
16
- tensor<fp16, [1, 640, 1]> decoder_to_fp16 = cast(dtype = decoder_to_fp16_dtype_0, x = decoder)[name = tensor<string, []>("cast_2")];
17
- tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = decoder_to_fp16)[name = tensor<string, []>("transpose_0")];
18
  tensor<fp16, [1, 1, 640]> linear_1_cast_fp16 = linear(bias = joint_module_pred_bias_to_fp16, weight = joint_module_pred_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
19
  tensor<int32, [1]> var_23_axes_0 = const()[name = tensor<string, []>("op_23_axes_0"), val = tensor<int32, [1]>([2])];
20
- tensor<fp16, [1, 188, 1, 640]> var_23_cast_fp16 = expand_dims(axes = var_23_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("op_23_cast_fp16")];
21
  tensor<int32, [1]> var_24_axes_0 = const()[name = tensor<string, []>("op_24_axes_0"), val = tensor<int32, [1]>([1])];
22
  tensor<fp16, [1, 1, 1, 640]> var_24_cast_fp16 = expand_dims(axes = var_24_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
23
- tensor<fp16, [1, 188, 1, 640]> input_5_cast_fp16 = add(x = var_23_cast_fp16, y = var_24_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
24
- tensor<fp16, [1, 188, 1, 640]> input_7_cast_fp16 = relu(x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
25
  tensor<fp16, [1030, 640]> joint_module_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_weight_to_fp16"), val = tensor<fp16, [1030, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
26
  tensor<fp16, [1030]> joint_module_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_bias_to_fp16"), val = tensor<fp16, [1030]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3451264)))];
27
- tensor<fp16, [1, 188, 1, 1030]> linear_2_cast_fp16 = linear(bias = joint_module_joint_net_2_bias_to_fp16, weight = joint_module_joint_net_2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
28
  tensor<int32, [4]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
29
- tensor<int32, [4]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [4]>([1, 188, 1, 1025])];
30
  tensor<bool, [4]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
31
- tensor<fp16, [1, 188, 1, 1025]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
32
  tensor<int32, [4]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 1025])];
33
- tensor<int32, [4]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [4]>([1, 188, 1, 1030])];
34
  tensor<bool, [4]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
35
- tensor<fp16, [1, 188, 1, 5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
36
  tensor<int32, []> var_43_axis_0 = const()[name = tensor<string, []>("op_43_axis_0"), val = tensor<int32, []>(-1)];
37
  tensor<bool, []> var_43_keep_dims_0 = const()[name = tensor<string, []>("op_43_keep_dims_0"), val = tensor<bool, []>(false)];
38
  tensor<string, []> var_43_output_dtype_0 = const()[name = tensor<string, []>("op_43_output_dtype_0"), val = tensor<string, []>("int32")];
39
- tensor<int32, [1, 188, 1]> token_id = reduce_argmax(axis = var_43_axis_0, keep_dims = var_43_keep_dims_0, output_dtype = var_43_output_dtype_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
40
  tensor<int32, []> var_49 = const()[name = tensor<string, []>("op_49"), val = tensor<int32, []>(-1)];
41
- tensor<fp16, [1, 188, 1, 1025]> token_probs_all_cast_fp16 = softmax(axis = var_49, x = token_logits_cast_fp16)[name = tensor<string, []>("token_probs_all_cast_fp16")];
42
  tensor<int32, [1]> var_58_axes_0 = const()[name = tensor<string, []>("op_58_axes_0"), val = tensor<int32, [1]>([-1])];
43
- tensor<int32, [1, 188, 1, 1]> var_58 = expand_dims(axes = var_58_axes_0, x = token_id)[name = tensor<string, []>("op_58")];
44
  tensor<int32, []> var_59 = const()[name = tensor<string, []>("op_59"), val = tensor<int32, []>(-1)];
45
  tensor<bool, []> var_61_validate_indices_0 = const()[name = tensor<string, []>("op_61_validate_indices_0"), val = tensor<bool, []>(false)];
46
  tensor<string, []> var_58_to_int16_dtype_0 = const()[name = tensor<string, []>("op_58_to_int16_dtype_0"), val = tensor<string, []>("int16")];
47
- tensor<int16, [1, 188, 1, 1]> var_58_to_int16 = cast(dtype = var_58_to_int16_dtype_0, x = var_58)[name = tensor<string, []>("cast_1")];
48
- tensor<fp16, [1, 188, 1, 1]> var_61_cast_fp16_cast_int16 = gather_along_axis(axis = var_59, indices = var_58_to_int16, validate_indices = var_61_validate_indices_0, x = token_probs_all_cast_fp16)[name = tensor<string, []>("op_61_cast_fp16_cast_int16")];
49
  tensor<int32, [1]> var_63_axes_0 = const()[name = tensor<string, []>("op_63_axes_0"), val = tensor<int32, [1]>([-1])];
50
- tensor<fp16, [1, 188, 1]> var_63_cast_fp16 = squeeze(axes = var_63_axes_0, x = var_61_cast_fp16_cast_int16)[name = tensor<string, []>("op_63_cast_fp16")];
51
  tensor<string, []> var_63_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_63_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
52
  tensor<int32, []> var_66_axis_0 = const()[name = tensor<string, []>("op_66_axis_0"), val = tensor<int32, []>(-1)];
53
  tensor<bool, []> var_66_keep_dims_0 = const()[name = tensor<string, []>("op_66_keep_dims_0"), val = tensor<bool, []>(false)];
54
  tensor<string, []> var_66_output_dtype_0 = const()[name = tensor<string, []>("op_66_output_dtype_0"), val = tensor<string, []>("int32")];
55
- tensor<int32, [1, 188, 1]> duration = reduce_argmax(axis = var_66_axis_0, keep_dims = var_66_keep_dims_0, output_dtype = var_66_output_dtype_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_66_cast_fp16")];
56
- tensor<fp32, [1, 188, 1]> token_prob = cast(dtype = var_63_cast_fp16_to_fp32_dtype_0, x = var_63_cast_fp16)[name = tensor<string, []>("cast_0")];
57
  } -> (token_id, token_prob, duration);
58
  }
 
1
  program(1.0)
2
  [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
  {
4
+ func main<ios17>(tensor<fp32, [1, 640, 1]> decoder_step, tensor<fp32, [1, 1024, 1]> encoder_step) {
5
  tensor<int32, [3]> input_1_perm_0 = const()[name = tensor<string, []>("input_1_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
6
+ tensor<string, []> encoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
  tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
8
+ tensor<string, []> decoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
  tensor<fp16, [640, 1024]> joint_module_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
10
  tensor<fp16, [640]> joint_module_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
11
+ tensor<fp16, [1, 1024, 1]> encoder_step_to_fp16 = cast(dtype = encoder_step_to_fp16_dtype_0, x = encoder_step)[name = tensor<string, []>("cast_3")];
12
+ tensor<fp16, [1, 1, 1024]> input_1_cast_fp16 = transpose(perm = input_1_perm_0, x = encoder_step_to_fp16)[name = tensor<string, []>("transpose_1")];
13
+ tensor<fp16, [1, 1, 640]> linear_0_cast_fp16 = linear(bias = joint_module_enc_bias_to_fp16, weight = joint_module_enc_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
14
  tensor<fp16, [640, 640]> joint_module_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
15
  tensor<fp16, [640]> joint_module_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
16
+ tensor<fp16, [1, 640, 1]> decoder_step_to_fp16 = cast(dtype = decoder_step_to_fp16_dtype_0, x = decoder_step)[name = tensor<string, []>("cast_2")];
17
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = decoder_step_to_fp16)[name = tensor<string, []>("transpose_0")];
18
  tensor<fp16, [1, 1, 640]> linear_1_cast_fp16 = linear(bias = joint_module_pred_bias_to_fp16, weight = joint_module_pred_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
19
  tensor<int32, [1]> var_23_axes_0 = const()[name = tensor<string, []>("op_23_axes_0"), val = tensor<int32, [1]>([2])];
20
+ tensor<fp16, [1, 1, 1, 640]> var_23_cast_fp16 = expand_dims(axes = var_23_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("op_23_cast_fp16")];
21
  tensor<int32, [1]> var_24_axes_0 = const()[name = tensor<string, []>("op_24_axes_0"), val = tensor<int32, [1]>([1])];
22
  tensor<fp16, [1, 1, 1, 640]> var_24_cast_fp16 = expand_dims(axes = var_24_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
23
+ tensor<fp16, [1, 1, 1, 640]> input_5_cast_fp16 = add(x = var_23_cast_fp16, y = var_24_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
24
+ tensor<fp16, [1, 1, 1, 640]> input_7_cast_fp16 = relu(x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
25
  tensor<fp16, [1030, 640]> joint_module_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_weight_to_fp16"), val = tensor<fp16, [1030, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
26
  tensor<fp16, [1030]> joint_module_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_bias_to_fp16"), val = tensor<fp16, [1030]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3451264)))];
27
+ tensor<fp16, [1, 1, 1, 1030]> linear_2_cast_fp16 = linear(bias = joint_module_joint_net_2_bias_to_fp16, weight = joint_module_joint_net_2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
28
  tensor<int32, [4]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
29
+ tensor<int32, [4]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1025])];
30
  tensor<bool, [4]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
31
+ tensor<fp16, [1, 1, 1, 1025]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
32
  tensor<int32, [4]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 1025])];
33
+ tensor<int32, [4]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 1030])];
34
  tensor<bool, [4]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
35
+ tensor<fp16, [1, 1, 1, 5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
36
  tensor<int32, []> var_43_axis_0 = const()[name = tensor<string, []>("op_43_axis_0"), val = tensor<int32, []>(-1)];
37
  tensor<bool, []> var_43_keep_dims_0 = const()[name = tensor<string, []>("op_43_keep_dims_0"), val = tensor<bool, []>(false)];
38
  tensor<string, []> var_43_output_dtype_0 = const()[name = tensor<string, []>("op_43_output_dtype_0"), val = tensor<string, []>("int32")];
39
+ tensor<int32, [1, 1, 1]> token_id = reduce_argmax(axis = var_43_axis_0, keep_dims = var_43_keep_dims_0, output_dtype = var_43_output_dtype_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
40
  tensor<int32, []> var_49 = const()[name = tensor<string, []>("op_49"), val = tensor<int32, []>(-1)];
41
+ tensor<fp16, [1, 1, 1, 1025]> token_probs_all_cast_fp16 = softmax(axis = var_49, x = token_logits_cast_fp16)[name = tensor<string, []>("token_probs_all_cast_fp16")];
42
  tensor<int32, [1]> var_58_axes_0 = const()[name = tensor<string, []>("op_58_axes_0"), val = tensor<int32, [1]>([-1])];
43
+ tensor<int32, [1, 1, 1, 1]> var_58 = expand_dims(axes = var_58_axes_0, x = token_id)[name = tensor<string, []>("op_58")];
44
  tensor<int32, []> var_59 = const()[name = tensor<string, []>("op_59"), val = tensor<int32, []>(-1)];
45
  tensor<bool, []> var_61_validate_indices_0 = const()[name = tensor<string, []>("op_61_validate_indices_0"), val = tensor<bool, []>(false)];
46
  tensor<string, []> var_58_to_int16_dtype_0 = const()[name = tensor<string, []>("op_58_to_int16_dtype_0"), val = tensor<string, []>("int16")];
47
+ tensor<int16, [1, 1, 1, 1]> var_58_to_int16 = cast(dtype = var_58_to_int16_dtype_0, x = var_58)[name = tensor<string, []>("cast_1")];
48
+ tensor<fp16, [1, 1, 1, 1]> var_61_cast_fp16_cast_int16 = gather_along_axis(axis = var_59, indices = var_58_to_int16, validate_indices = var_61_validate_indices_0, x = token_probs_all_cast_fp16)[name = tensor<string, []>("op_61_cast_fp16_cast_int16")];
49
  tensor<int32, [1]> var_63_axes_0 = const()[name = tensor<string, []>("op_63_axes_0"), val = tensor<int32, [1]>([-1])];
50
+ tensor<fp16, [1, 1, 1]> var_63_cast_fp16 = squeeze(axes = var_63_axes_0, x = var_61_cast_fp16_cast_int16)[name = tensor<string, []>("op_63_cast_fp16")];
51
  tensor<string, []> var_63_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_63_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
52
  tensor<int32, []> var_66_axis_0 = const()[name = tensor<string, []>("op_66_axis_0"), val = tensor<int32, []>(-1)];
53
  tensor<bool, []> var_66_keep_dims_0 = const()[name = tensor<string, []>("op_66_keep_dims_0"), val = tensor<bool, []>(false)];
54
  tensor<string, []> var_66_output_dtype_0 = const()[name = tensor<string, []>("op_66_output_dtype_0"), val = tensor<string, []>("int32")];
55
+ tensor<int32, [1, 1, 1]> duration = reduce_argmax(axis = var_66_axis_0, keep_dims = var_66_keep_dims_0, output_dtype = var_66_output_dtype_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_66_cast_fp16")];
56
+ tensor<fp32, [1, 1, 1]> token_prob = cast(dtype = var_63_cast_fp16_to_fp32_dtype_0, x = var_63_cast_fp16)[name = tensor<string, []>("cast_0")];
57
  } -> (token_id, token_prob, duration);
58
  }