File size: 11,429 Bytes
f55f78d
 
 
08031f8
 
f55f78d
 
 
 
 
 
fc7bf8d
 
f55f78d
 
 
 
 
 
fc7bf8d
 
 
f55f78d
 
 
 
 
 
 
 
 
fc7bf8d
 
 
f55f78d
 
 
 
 
 
 
 
 
 
fc7bf8d
 
f55f78d
 
 
 
 
08031f8
f55f78d
 
 
 
 
 
 
 
 
 
 
fc7bf8d
f55f78d
 
08031f8
f55f78d
08031f8
 
 
f55f78d
 
08031f8
 
f55f78d
 
 
 
 
 
 
 
 
 
 
08031f8
f55f78d
 
 
 
08031f8
f55f78d
 
08031f8
 
 
f55f78d
 
 
08031f8
f55f78d
 
 
 
08031f8
 
 
f55f78d
 
 
 
 
08031f8
f55f78d
08031f8
 
 
f55f78d
 
08031f8
f55f78d
08031f8
f55f78d
08031f8
 
 
 
 
 
 
 
 
f55f78d
08031f8
f55f78d
08031f8
f55f78d
08031f8
 
f55f78d
08031f8
f55f78d
 
 
fc7bf8d
f55f78d
 
 
 
 
 
 
fc7bf8d
f55f78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139facd
f55f78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7bf8d
f55f78d
 
 
fc7bf8d
 
f55f78d
 
 
 
 
 
 
 
fc7bf8d
f55f78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
---
language:
- 'no'
- nn
- nb
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- loss:CachedMultipleNegativesRankingLoss
base_model:
- ltg/norbert4-base
widget:
- source_sentence: Inne i igloen gjør den unge mannen seg klar for sitt overnattingsopphold.
  sentences:
  - Folk danser i gaten.
  - Den unge mannen gjør seg klar for sitt overnattingsopphold.
  - Den unge mannen gjør seg klar til å dra.
- source_sentence: >-
    En kvinne i rullestol snakker med vennen sin mens hun er omgitt av andre
    mennesker som går i parken.
  sentences:
  - Barna blir fotografert.
  - Kvinnen er utendørs.
  - Kvinnen spiser en pølse midt i soverommet sitt.
- source_sentence: En kvinne løper langs en steinete strand.
  sentences:
  - En mann og en kvinne ser  frukt og grønnsaker.
  - En kvinne løper.
  - En kvinne sitter ved et piknikbord nær den steinete kysten.
- source_sentence: >-
    To basketballspillere i svart og hvitt antrekk står på en basketballbane og
    snakker.
  sentences:
  - De to basketballspillerne snakker sammen.
  - Den unge gutten multitasker.
  - De to basketballspillerne sitter  benken.
- source_sentence: En mann lager et sandmaleri  gulvet.
  sentences:
  - En mann lager kunst.
  -  fornøyelsesturen var det to jenter som smilte og lo
  - En kvinne ødelegger et sandmaleri.
datasets:
- Fremtind/all-nli-norwegian
- NbAiLab/ndla_parallel_paragraphs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on NorBERT4-base
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: nob all nli test
      type: nob_all_nli_test
    metrics:
    - type: cosine_accuracy
      value: 0.9470000267028809
      name: Cosine Accuracy
license: apache-2.0
---

# SentenceTransformer based on NorBERT4-base

NorSBERT4-base is a [Sentence Transformer](https://www.SBERT.net) model finetuned from [ltg/norbert4-base](https://huggingface.co/ltg/norbert4-base). 
The model maps sentences (and paragraphs) to a 960-dimensional dense vector space and can be used for semantic textual similarity, semantic search, 
text classification, clustering, among other tasks.


Note: While the fine-tuned sentence-transformer model has a `max_seq_length` of 75 tokens, the base model does not. 
This means that the sequence length can be increased to 16384 (which is the max length in the base model).

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference. Note that you should load the model with `trust_remote_code=True` because it needs a custom wrapper (see the [base model](https://huggingface.co/ltg/norbert4-base/blob/main/modeling_gptbert.py) for more details).
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Fremtind/norsbert4-base", trust_remote_code=True)
# Run inference
sentences = [
    'To personer, en i lyse jeans og en stripete skjorte, spiller biljard.',
    'Folk spiller biljard',
    'folk løper',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 960]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7294, 0.1690],
#         [0.7294, 1.0000, 0.2412],
#         [0.1690, 0.2412, 1.0000]])
```


## Evaluation

To verify the utility of our models, we evaluated them on a selection of classification and clustering tasks for Norwegian from [MTEBv2](https://embeddings-benchmark.github.io/mteb/). 

The heatmap below shows the results of evaluating five sentence-transformers on ten different tasks; 
three of the sentence-transformer models we have fine-tuned ([Fremtind/norsbert4-large](https://huggingface.co/Fremtind/norsbert4-large), [Fremtind/norsbert4-base](https://huggingface.co/Fremtind/norsbert4-base), [Fremtind/mmBERT-base-norwegian](https://huggingface.co/Fremtind/mmBERT-base-norwegian)) 
and the other two are relatively popular (and comparable) sentence similarity models ([FFI/SimCSE-NB-BERT-large](https://huggingface.co/FFI/SimCSE-NB-BERT-large) and [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base)).


![newplot](https://cdn-uploads.huggingface.co/production/uploads/6179579cf08e328ce6c12c26/5N4zMC8AeETTRRig_UWsh.png)

We ranked the models using **Borda count** (which is used in MTEB), where each model was assigned a number of points based on its relative performance across all evaluated tasks. 

| Rank | Model | Borda Points |
|:----:|:--------------------------------|:-------------:|
| 1 | **[Fremtind/norsbert4-large](https://huggingface.co/Fremtind/norsbert4-large)** | **44** |
| 2 | [FFI/SimCSE-NB-BERT-large](https://huggingface.co/FFI/SimCSE-NB-BERT-large) | 40 |
| 3 | [Fremtind/norsbert4-base](https://huggingface.co/Murhaf/norsbert4-base) | 24 |
| 4 | [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) | 15 |
| 5 | [Fremtind/mmBERT-base-norwegian](https://huggingface.co/Fremtind/mmBERT-base-norwegian) | 7 |
 
 

## Training Details

The model was fine-tuned in two stages.

In the **first stage**, it was trained in an unsupervised manner following the SimCSE method (Gao et al., 2021). In this setup, the same sentence is encoded twice, and due to dropout (in training mode), the model produces two slightly different embeddings. The training objective is to minimize the distance between these embeddings while maximizing the distance to embeddings of other sentences in the same batch.
For this stage, we created sentence pairs in three categories from the [NDLA Parallel Paragraphs dataset](https://huggingface.co/datasets/NbAiLab/ndla_parallel_paragraphs): (Bokmål, Bokmål), (Nynorsk, Nynorsk), and (Bokmål, Nynorsk). In the (Bokmål, Bokmål) and (Nynorsk, Nynorsk) pairs, each sentence was paired with itself, leveraging dropout to create embedding variation. In the (Bokmål, Nynorsk) category, cross-lingual sentence pairs were used to align the model’s semantic representations across the two language varieties.

In the **second stage**, the model was further fine-tuned on a natural language inference dataset, namely [Fremtind/all-nli-norwegian](https://huggingface.co/datasets/Fremtind/all-nli-norwegian). The dataset is formatted as triplets (anchor, positive, negative), where the _anchor_ is the premise, the _positive_ is an entailment hypothesis, and the _negative_ is a contradiction hypothesis. The objective is to minimize the distance between the anchor and positive while maximizing it between the anchor and negative. This fine-tuning stage follows the 'standard' supervised fine-tuning strategy introduced in Sentence-BERT.

### Training Hyperparameters
#### Non-Default Hyperparameters
<details><summary>Click to expand</summary>

- `eval_strategy`: steps
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
</details>

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>




### Framework Versions
<details><summary>Click to expand</summary>

- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1

</details>


<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->