File size: 11,429 Bytes
f55f78d 08031f8 f55f78d fc7bf8d f55f78d fc7bf8d f55f78d fc7bf8d f55f78d fc7bf8d f55f78d 08031f8 f55f78d fc7bf8d f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d 08031f8 f55f78d fc7bf8d f55f78d fc7bf8d f55f78d 139facd f55f78d fc7bf8d f55f78d fc7bf8d f55f78d fc7bf8d f55f78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
---
language:
- 'no'
- nn
- nb
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- loss:CachedMultipleNegativesRankingLoss
base_model:
- ltg/norbert4-base
widget:
- source_sentence: Inne i igloen gjør den unge mannen seg klar for sitt overnattingsopphold.
sentences:
- Folk danser i gaten.
- Den unge mannen gjør seg klar for sitt overnattingsopphold.
- Den unge mannen gjør seg klar til å dra.
- source_sentence: >-
En kvinne i rullestol snakker med vennen sin mens hun er omgitt av andre
mennesker som går i parken.
sentences:
- Barna blir fotografert.
- Kvinnen er utendørs.
- Kvinnen spiser en pølse midt i soverommet sitt.
- source_sentence: En kvinne løper langs en steinete strand.
sentences:
- En mann og en kvinne ser på frukt og grønnsaker.
- En kvinne løper.
- En kvinne sitter ved et piknikbord nær den steinete kysten.
- source_sentence: >-
To basketballspillere i svart og hvitt antrekk står på en basketballbane og
snakker.
sentences:
- De to basketballspillerne snakker sammen.
- Den unge gutten multitasker.
- De to basketballspillerne sitter på benken.
- source_sentence: En mann lager et sandmaleri på gulvet.
sentences:
- En mann lager kunst.
- På fornøyelsesturen var det to jenter som smilte og lo
- En kvinne ødelegger et sandmaleri.
datasets:
- Fremtind/all-nli-norwegian
- NbAiLab/ndla_parallel_paragraphs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on NorBERT4-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: nob all nli test
type: nob_all_nli_test
metrics:
- type: cosine_accuracy
value: 0.9470000267028809
name: Cosine Accuracy
license: apache-2.0
---
# SentenceTransformer based on NorBERT4-base
NorSBERT4-base is a [Sentence Transformer](https://www.SBERT.net) model finetuned from [ltg/norbert4-base](https://huggingface.co/ltg/norbert4-base).
The model maps sentences (and paragraphs) to a 960-dimensional dense vector space and can be used for semantic textual similarity, semantic search,
text classification, clustering, among other tasks.
Note: While the fine-tuned sentence-transformer model has a `max_seq_length` of 75 tokens, the base model does not.
This means that the sequence length can be increased to 16384 (which is the max length in the base model).
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference. Note that you should load the model with `trust_remote_code=True` because it needs a custom wrapper (see the [base model](https://huggingface.co/ltg/norbert4-base/blob/main/modeling_gptbert.py) for more details).
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Fremtind/norsbert4-base", trust_remote_code=True)
# Run inference
sentences = [
'To personer, en i lyse jeans og en stripete skjorte, spiller biljard.',
'Folk spiller biljard',
'folk løper',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 960]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7294, 0.1690],
# [0.7294, 1.0000, 0.2412],
# [0.1690, 0.2412, 1.0000]])
```
## Evaluation
To verify the utility of our models, we evaluated them on a selection of classification and clustering tasks for Norwegian from [MTEBv2](https://embeddings-benchmark.github.io/mteb/).
The heatmap below shows the results of evaluating five sentence-transformers on ten different tasks;
three of the sentence-transformer models we have fine-tuned ([Fremtind/norsbert4-large](https://huggingface.co/Fremtind/norsbert4-large), [Fremtind/norsbert4-base](https://huggingface.co/Fremtind/norsbert4-base), [Fremtind/mmBERT-base-norwegian](https://huggingface.co/Fremtind/mmBERT-base-norwegian))
and the other two are relatively popular (and comparable) sentence similarity models ([FFI/SimCSE-NB-BERT-large](https://huggingface.co/FFI/SimCSE-NB-BERT-large) and [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base)).

We ranked the models using **Borda count** (which is used in MTEB), where each model was assigned a number of points based on its relative performance across all evaluated tasks.
| Rank | Model | Borda Points |
|:----:|:--------------------------------|:-------------:|
| 1 | **[Fremtind/norsbert4-large](https://huggingface.co/Fremtind/norsbert4-large)** | **44** |
| 2 | [FFI/SimCSE-NB-BERT-large](https://huggingface.co/FFI/SimCSE-NB-BERT-large) | 40 |
| 3 | [Fremtind/norsbert4-base](https://huggingface.co/Murhaf/norsbert4-base) | 24 |
| 4 | [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) | 15 |
| 5 | [Fremtind/mmBERT-base-norwegian](https://huggingface.co/Fremtind/mmBERT-base-norwegian) | 7 |
## Training Details
The model was fine-tuned in two stages.
In the **first stage**, it was trained in an unsupervised manner following the SimCSE method (Gao et al., 2021). In this setup, the same sentence is encoded twice, and due to dropout (in training mode), the model produces two slightly different embeddings. The training objective is to minimize the distance between these embeddings while maximizing the distance to embeddings of other sentences in the same batch.
For this stage, we created sentence pairs in three categories from the [NDLA Parallel Paragraphs dataset](https://huggingface.co/datasets/NbAiLab/ndla_parallel_paragraphs): (Bokmål, Bokmål), (Nynorsk, Nynorsk), and (Bokmål, Nynorsk). In the (Bokmål, Bokmål) and (Nynorsk, Nynorsk) pairs, each sentence was paired with itself, leveraging dropout to create embedding variation. In the (Bokmål, Nynorsk) category, cross-lingual sentence pairs were used to align the model’s semantic representations across the two language varieties.
In the **second stage**, the model was further fine-tuned on a natural language inference dataset, namely [Fremtind/all-nli-norwegian](https://huggingface.co/datasets/Fremtind/all-nli-norwegian). The dataset is formatted as triplets (anchor, positive, negative), where the _anchor_ is the premise, the _positive_ is an entailment hypothesis, and the _negative_ is a contradiction hypothesis. The objective is to minimize the distance between the anchor and positive while maximizing it between the anchor and negative. This fine-tuning stage follows the 'standard' supervised fine-tuning strategy introduced in Sentence-BERT.
### Training Hyperparameters
#### Non-Default Hyperparameters
<details><summary>Click to expand</summary>
- `eval_strategy`: steps
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
</details>
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Framework Versions
<details><summary>Click to expand</summary>
- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
</details>
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |