Duplicate from fixie-ai/ultravox-v0_5-llama-3_1-8b
Browse filesCo-authored-by: Zhongqiang Huang <[email protected]>
- .gitattributes +36 -0
- README.md +144 -0
- config.json +76 -0
- generation_config.json +11 -0
- model.safetensors +3 -0
- preprocessor_config.json +14 -0
- processor_config.json +11 -0
- special_tokens_map.json +17 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2064 -0
- ultravox_config.py +173 -0
- ultravox_model.py +858 -0
- ultravox_pipeline.py +128 -0
- ultravox_processing.py +379 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ar
|
| 4 |
+
- be
|
| 5 |
+
- bg
|
| 6 |
+
- bn
|
| 7 |
+
- cs
|
| 8 |
+
- cy
|
| 9 |
+
- da
|
| 10 |
+
- de
|
| 11 |
+
- el
|
| 12 |
+
- en
|
| 13 |
+
- es
|
| 14 |
+
- et
|
| 15 |
+
- fa
|
| 16 |
+
- fi
|
| 17 |
+
- fr
|
| 18 |
+
- gl
|
| 19 |
+
- hi
|
| 20 |
+
- hu
|
| 21 |
+
- it
|
| 22 |
+
- ja
|
| 23 |
+
- ka
|
| 24 |
+
- lt
|
| 25 |
+
- lv
|
| 26 |
+
- mk
|
| 27 |
+
- mr
|
| 28 |
+
- nl
|
| 29 |
+
- pl
|
| 30 |
+
- pt
|
| 31 |
+
- ro
|
| 32 |
+
- ru
|
| 33 |
+
- sk
|
| 34 |
+
- sl
|
| 35 |
+
- sr
|
| 36 |
+
- sv
|
| 37 |
+
- sw
|
| 38 |
+
- ta
|
| 39 |
+
- th
|
| 40 |
+
- tr
|
| 41 |
+
- uk
|
| 42 |
+
- ur
|
| 43 |
+
- vi
|
| 44 |
+
- zh
|
| 45 |
+
library_name: transformers
|
| 46 |
+
license: mit
|
| 47 |
+
metrics:
|
| 48 |
+
- bleu
|
| 49 |
+
pipeline_tag: audio-text-to-text
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
# Model Card for Ultravox
|
| 53 |
+
|
| 54 |
+
Ultravox is a multimodal Speech LLM built around a pretrained [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) and [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) backbone.
|
| 55 |
+
|
| 56 |
+
See https://ultravox.ai for the GitHub repo and more information.
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
## Model Details
|
| 60 |
+
|
| 61 |
+
### Model Description
|
| 62 |
+
|
| 63 |
+
Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message).
|
| 64 |
+
The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio.
|
| 65 |
+
Using the merged embeddings as input, the model will then generate output text as usual.
|
| 66 |
+
|
| 67 |
+
In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output.
|
| 68 |
+
No preference tuning has been applied to this revision of the model.
|
| 69 |
+
|
| 70 |
+
- **Developed by:** Fixie.ai
|
| 71 |
+
- **License:** MIT
|
| 72 |
+
|
| 73 |
+
### Model Sources
|
| 74 |
+
|
| 75 |
+
- **Repository:** https://ultravox.ai
|
| 76 |
+
- **Demo:** See repo
|
| 77 |
+
|
| 78 |
+
## Usage
|
| 79 |
+
|
| 80 |
+
Think of the model as an LLM that can also hear and understand speech. As such, it can be used as a voice agent, and also to do speech-to-speech translation, analysis of spoken audio, etc.
|
| 81 |
+
|
| 82 |
+
To use the model, try the following:
|
| 83 |
+
```python
|
| 84 |
+
# pip install transformers peft librosa
|
| 85 |
+
|
| 86 |
+
import transformers
|
| 87 |
+
import numpy as np
|
| 88 |
+
import librosa
|
| 89 |
+
|
| 90 |
+
pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_5-llama-3_1-8b', trust_remote_code=True)
|
| 91 |
+
|
| 92 |
+
path = "<path-to-input-audio>" # TODO: pass the audio here
|
| 93 |
+
audio, sr = librosa.load(path, sr=16000)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
turns = [
|
| 97 |
+
{
|
| 98 |
+
"role": "system",
|
| 99 |
+
"content": "You are a friendly and helpful character. You love to answer questions for people."
|
| 100 |
+
},
|
| 101 |
+
]
|
| 102 |
+
pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=30)
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
## Training Details
|
| 107 |
+
|
| 108 |
+
The model uses a pre-trained [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) backbone as well as the encoder part of [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo).
|
| 109 |
+
|
| 110 |
+
The multi-modal adapter is trained, the Whisper encoder is fine-tuned, while the Llama model is kept frozen.
|
| 111 |
+
|
| 112 |
+
We use a knowledge-distillation loss where Ultravox is trying to match the logits of the text-based Llama backbone.
|
| 113 |
+
|
| 114 |
+
### Training Data
|
| 115 |
+
|
| 116 |
+
The training dataset is a mix of ASR datasets, extended with continuations generated by Llama 3.1 8B, and speech translation datasets, which yield a modest improvement in translation evaluations.
|
| 117 |
+
|
| 118 |
+
### Training Procedure
|
| 119 |
+
|
| 120 |
+
Supervised speech instruction finetuning via knowledge-distillation. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py).
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
#### Training Hyperparameters
|
| 124 |
+
|
| 125 |
+
- **Training regime:** BF16 mixed precision training
|
| 126 |
+
- **Hardward used:** 8x H100 GPUs
|
| 127 |
+
|
| 128 |
+
#### Speeds, Sizes, Times
|
| 129 |
+
|
| 130 |
+
The current version of Ultravox, when invoked with audio content, has a time-to-first-token (TTFT) of approximately 150ms, and a tokens-per-second rate of ~50-100 when using an A100-40GB GPU, all using a Llama 3.1 8B backbone.
|
| 131 |
+
|
| 132 |
+
Check out the audio tab on [TheFastest.ai](https://thefastest.ai/?m=audio) for daily benchmarks and a comparison with other existing models.
|
| 133 |
+
|
| 134 |
+
## Evaluation
|
| 135 |
+
|
| 136 |
+
| | Ultravox 0.4 8B | Ultravox 0.4.1 8B | **Ultravox 0.5 8B** |
|
| 137 |
+
| --- | ---: | ---: | ---: |
|
| 138 |
+
| **covost2 en_ar** | 11.17 | 12.28 | 12.99 |
|
| 139 |
+
| **covost2 en_ca** | 27.46 | 29.94 | 31.54 |
|
| 140 |
+
| **covost2 en_de** | 25.47 | 27.13 | 28.70 |
|
| 141 |
+
| **covost2 es_en** | 37.11 | 39.16 | 40.19 |
|
| 142 |
+
| **covost2 ru_en** | 38.96 | 39.65 | 42.13 |
|
| 143 |
+
| **covost2 zh_en** | 10.08 | 14.55 | 17.22 |
|
| 144 |
+
| **big bench audio**| - | 63.20 | 66.54 |
|
config.json
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/Users/zhuang/repos/ultravox-omni/artifacts/model-zhuang.2025-01-08-v0_5.llama3_1-8b-3d.20345bc:v6",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"UltravoxModel"
|
| 5 |
+
],
|
| 6 |
+
"audio_config": {
|
| 7 |
+
"_name_or_path": "openai/whisper-large-v3-turbo",
|
| 8 |
+
"activation_dropout": 0.0,
|
| 9 |
+
"activation_function": "gelu",
|
| 10 |
+
"apply_spec_augment": false,
|
| 11 |
+
"architectures": [
|
| 12 |
+
"WhisperForConditionalGeneration"
|
| 13 |
+
],
|
| 14 |
+
"attention_dropout": 0.0,
|
| 15 |
+
"begin_suppress_tokens": [
|
| 16 |
+
220,
|
| 17 |
+
50256
|
| 18 |
+
],
|
| 19 |
+
"bos_token_id": 50257,
|
| 20 |
+
"d_model": 1280,
|
| 21 |
+
"decoder_attention_heads": 20,
|
| 22 |
+
"decoder_ffn_dim": 5120,
|
| 23 |
+
"decoder_layerdrop": 0.0,
|
| 24 |
+
"decoder_layers": 4,
|
| 25 |
+
"decoder_start_token_id": 50258,
|
| 26 |
+
"dropout": 0.0,
|
| 27 |
+
"encoder_attention_heads": 20,
|
| 28 |
+
"encoder_ffn_dim": 5120,
|
| 29 |
+
"encoder_layerdrop": 0.0,
|
| 30 |
+
"encoder_layers": 32,
|
| 31 |
+
"eos_token_id": 50257,
|
| 32 |
+
"init_std": 0.02,
|
| 33 |
+
"is_encoder_decoder": true,
|
| 34 |
+
"max_source_positions": 1500,
|
| 35 |
+
"max_target_positions": 448,
|
| 36 |
+
"median_filter_width": 7,
|
| 37 |
+
"model_type": "whisper",
|
| 38 |
+
"num_hidden_layers": 32,
|
| 39 |
+
"num_mel_bins": 128,
|
| 40 |
+
"pad_token_id": 50257,
|
| 41 |
+
"scale_embedding": false,
|
| 42 |
+
"torch_dtype": "float16",
|
| 43 |
+
"use_cache": true,
|
| 44 |
+
"vocab_size": 51866
|
| 45 |
+
},
|
| 46 |
+
"audio_latency_block_size": null,
|
| 47 |
+
"audio_model_id": null,
|
| 48 |
+
"auto_map": {
|
| 49 |
+
"AutoConfig": "ultravox_config.UltravoxConfig",
|
| 50 |
+
"AutoModel": "ultravox_model.UltravoxModel",
|
| 51 |
+
"AutoProcessor": "ultravox_processing.UltravoxProcessor"
|
| 52 |
+
},
|
| 53 |
+
"custom_pipelines": {
|
| 54 |
+
"ultravox-pipeline": {
|
| 55 |
+
"impl": "ultravox_pipeline.UltravoxPipeline",
|
| 56 |
+
"pt": [
|
| 57 |
+
"AutoModel"
|
| 58 |
+
],
|
| 59 |
+
"tf": [],
|
| 60 |
+
"type": "multimodal"
|
| 61 |
+
}
|
| 62 |
+
},
|
| 63 |
+
"hidden_size": 4096,
|
| 64 |
+
"ignore_index": -100,
|
| 65 |
+
"initializer_range": 0.02,
|
| 66 |
+
"model_type": "ultravox",
|
| 67 |
+
"norm_init": 0.4,
|
| 68 |
+
"pad_token_id": 128009,
|
| 69 |
+
"projector_act": "swiglu",
|
| 70 |
+
"projector_ln_mid": true,
|
| 71 |
+
"stack_factor": 8,
|
| 72 |
+
"text_model_id": "meta-llama/Llama-3.1-8B-Instruct",
|
| 73 |
+
"torch_dtype": "bfloat16",
|
| 74 |
+
"transformers_version": "4.48.1",
|
| 75 |
+
"vocab_size": 128256
|
| 76 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 128000,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
128001,
|
| 6 |
+
128008,
|
| 7 |
+
128009
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 128009,
|
| 10 |
+
"transformers_version": "4.48.1"
|
| 11 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03a1d38de8d3e6ab5423e4fba58d97acf3224dfde4227d1ad0243354b5322165
|
| 3 |
+
size 1374682344
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chunk_length": 30,
|
| 3 |
+
"feature_extractor_type": "WhisperFeatureExtractor",
|
| 4 |
+
"feature_size": 80,
|
| 5 |
+
"hop_length": 160,
|
| 6 |
+
"n_fft": 400,
|
| 7 |
+
"n_samples": 480000,
|
| 8 |
+
"nb_max_frames": 3000,
|
| 9 |
+
"padding_side": "right",
|
| 10 |
+
"padding_value": 0.0,
|
| 11 |
+
"processor_class": "WhisperProcessor",
|
| 12 |
+
"return_attention_mask": false,
|
| 13 |
+
"sampling_rate": 16000
|
| 14 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"audio_context_size": 3000,
|
| 3 |
+
"audio_padding": "longest",
|
| 4 |
+
"audio_placeholder": "<|audio|>",
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoProcessor": "ultravox_processing.UltravoxProcessor"
|
| 7 |
+
},
|
| 8 |
+
"encoder_ds_factor": 2,
|
| 9 |
+
"processor_class": "UltravoxProcessor",
|
| 10 |
+
"stack_factor": 8
|
| 11 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|eot_id|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|eot_id|>"
|
| 17 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
| 3 |
+
size 17209920
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|finetune_right_pad_id|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_2|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|eom_id|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|python_tag|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_3|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_4|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_5|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_6|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_7|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_8|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_9|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_10|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_11|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_12|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_13|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_14|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_15|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_16|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_17|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_18|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_19|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_20|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_21|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_22|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_23|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_24|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_25|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_26|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_27|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_28|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_29|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_30|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_31|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_32|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_33|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_34|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_35|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_36|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_37|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_38|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_39|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_40|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_41|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_42|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_43|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_44|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_45|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_46|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_47|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_48|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_49|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_50|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_51|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_52|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_53|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_54|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_55|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_56|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_57|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_58|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_59|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_60|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_61|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_62|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_63|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_64|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_65|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_66|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_67|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_68|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_69|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_70|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_71|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_72|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_73|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_74|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_75|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_76|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_77|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_78|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_79|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_80|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_81|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_82|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_83|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_84|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_85|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_86|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_87|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_88|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_89|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_90|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_91|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_92|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_93|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_94|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_95|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_96|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_97|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_98|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_99|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_100|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_101|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_102|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_103|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_104|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_105|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_106|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_107|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_108|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_109|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_110|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_111|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_112|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_113|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_114|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_115|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_116|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_117|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_118|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_119|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_120|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_121|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_122|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_123|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_124|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_125|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_126|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_127|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_128|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_129|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_130|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_131|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_132|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_133|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_134|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_135|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_136|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_137|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_138|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_139|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_140|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_141|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_142|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_143|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_144|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_145|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_146|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_147|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_148|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_149|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_150|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_151|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_152|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_153|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_154|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_155|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_156|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_157|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_158|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_159|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_160|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_161|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_162|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_163|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_164|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_165|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_166|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_167|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_168|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_169|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_170|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_171|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_172|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_173|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_174|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_175|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_176|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_177|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_178|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_179|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_180|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_181|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_182|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_183|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_184|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_185|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_186|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_187|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_188|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_189|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_190|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_191|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_192|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_193|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_194|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_195|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_196|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_197|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_198|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_199|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|reserved_special_token_200|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|reserved_special_token_201|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|reserved_special_token_202|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|reserved_special_token_203|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|reserved_special_token_204|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|reserved_special_token_205|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|reserved_special_token_206|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|reserved_special_token_207|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|reserved_special_token_208|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_209|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_210|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_211|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_212|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_213|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_214|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_215|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_216|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_217|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_218|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_219|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_220|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_221|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_222|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_223|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_224|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_225|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_226|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_227|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_228|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_229|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_230|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_231|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_232|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_233|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_234|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_235|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_236|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_237|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_238|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_239|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_240|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_241|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_242|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_243|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_244|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_245|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_246|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_247|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
| 2054 |
+
"clean_up_tokenization_spaces": true,
|
| 2055 |
+
"eos_token": "<|eot_id|>",
|
| 2056 |
+
"extra_special_tokens": {},
|
| 2057 |
+
"model_input_names": [
|
| 2058 |
+
"input_ids",
|
| 2059 |
+
"attention_mask"
|
| 2060 |
+
],
|
| 2061 |
+
"model_max_length": 131072,
|
| 2062 |
+
"pad_token": "<|eot_id|>",
|
| 2063 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2064 |
+
}
|
ultravox_config.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dataclasses
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from typing import Any, Dict, List, Optional
|
| 4 |
+
|
| 5 |
+
import transformers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclasses.dataclass
|
| 9 |
+
class LoraConfigSimplified:
|
| 10 |
+
"""
|
| 11 |
+
Low Rank Approximation (LoRA) configuration.
|
| 12 |
+
|
| 13 |
+
Used for language and audio models separately.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
# The rank of the approximation
|
| 17 |
+
r: int = 0
|
| 18 |
+
lora_alpha: float = 8
|
| 19 |
+
target_modules: Optional[List[str]] = dataclasses.field(
|
| 20 |
+
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
|
| 21 |
+
)
|
| 22 |
+
# A list of module names regex patterns to unfreeze. Only used if r == 0.
|
| 23 |
+
unfreeze_layers: Optional[List[str]] = None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class LossFunction(str, Enum):
|
| 27 |
+
CrossEntropy = "ce"
|
| 28 |
+
KL_Divergence = "kl"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclasses.dataclass
|
| 32 |
+
class LossConfig:
|
| 33 |
+
loss_function: LossFunction = LossFunction.CrossEntropy
|
| 34 |
+
kl_temperature: float = 2.0
|
| 35 |
+
|
| 36 |
+
@property
|
| 37 |
+
def requires_alt_fields(self):
|
| 38 |
+
return self.loss_function == LossFunction.KL_Divergence
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class UltravoxConfig(transformers.PretrainedConfig):
|
| 42 |
+
r"""
|
| 43 |
+
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
|
| 44 |
+
Ultravox model according to the specified arguments, defining the model architecture.
|
| 45 |
+
|
| 46 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 47 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
audio_config (`Wav2Vec2Config`, *optional*):
|
| 51 |
+
Custom audio config or dict
|
| 52 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
| 53 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
| 54 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
| 55 |
+
The ignore index for the loss function.
|
| 56 |
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
| 57 |
+
The audio token index to encode the audio prompt.
|
| 58 |
+
stack_factor (`int`, *optional*, defaults to 8):
|
| 59 |
+
Audio downsampling factor for the multimodal projector.
|
| 60 |
+
norm_init (`float`, *optional*, defaults to 0.4):
|
| 61 |
+
The initialization value for the layer normalization.
|
| 62 |
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
| 63 |
+
The activation function used by the multimodal projector.
|
| 64 |
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
| 65 |
+
The LoRA configuration for finetuning the text model.
|
| 66 |
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
| 67 |
+
The LoRA configuration for finetuning the audio model.
|
| 68 |
+
audio_latency_block_size (`int`, *optional*, defaults to `None`):
|
| 69 |
+
The latency block size for simulating audio streaming.
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
Example:
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
>>> from transformers import UltravoxModel, Wav2Vec2Config, UltravoxConfig, LlamaConfig
|
| 76 |
+
|
| 77 |
+
>>> # Initializing an audio encoder config
|
| 78 |
+
>>> audio_config = Wav2Vec2Config()
|
| 79 |
+
|
| 80 |
+
>>> # Initializing a Llama config
|
| 81 |
+
>>> text_config = LlamaConfig()
|
| 82 |
+
|
| 83 |
+
>>> # Initializing a default configuration
|
| 84 |
+
>>> configuration = UltravoxConfig(audio_config, text_config)
|
| 85 |
+
|
| 86 |
+
>>> # Initializing a completely untrained model from the configuration
|
| 87 |
+
>>> model = UltravoxModel(configuration)
|
| 88 |
+
|
| 89 |
+
>>> # Accessing the model configuration
|
| 90 |
+
>>> configuration = model.config
|
| 91 |
+
|
| 92 |
+
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
| 93 |
+
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
| 94 |
+
```"""
|
| 95 |
+
|
| 96 |
+
model_type = "ultravox"
|
| 97 |
+
is_composition = False
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
audio_config: Optional[Dict[str, Any]] = None,
|
| 102 |
+
text_config: Optional[Dict[str, Any]] = None,
|
| 103 |
+
audio_model_id: Optional[str] = None,
|
| 104 |
+
text_model_id: Optional[str] = None,
|
| 105 |
+
ignore_index: int = -100,
|
| 106 |
+
hidden_size: int = 4096,
|
| 107 |
+
stack_factor: int = 8,
|
| 108 |
+
norm_init: float = 0.4,
|
| 109 |
+
projector_act: str = "swiglu",
|
| 110 |
+
projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
|
| 111 |
+
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
| 112 |
+
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
| 113 |
+
audio_latency_block_size: Optional[int] = None,
|
| 114 |
+
**kwargs,
|
| 115 |
+
):
|
| 116 |
+
self.ignore_index = ignore_index
|
| 117 |
+
|
| 118 |
+
self.audio_model_id = audio_model_id
|
| 119 |
+
self.text_model_id = text_model_id
|
| 120 |
+
|
| 121 |
+
self.hidden_size = hidden_size
|
| 122 |
+
self.stack_factor = stack_factor
|
| 123 |
+
self.norm_init = norm_init
|
| 124 |
+
self.projector_act = projector_act
|
| 125 |
+
self.projector_ln_mid = projector_ln_mid
|
| 126 |
+
if text_model_id is not None:
|
| 127 |
+
self.text_config: transformers.LlamaConfig = (
|
| 128 |
+
transformers.AutoConfig.from_pretrained(text_model_id)
|
| 129 |
+
)
|
| 130 |
+
else:
|
| 131 |
+
text_config = text_config or {}
|
| 132 |
+
self.text_config = transformers.CONFIG_MAPPING[
|
| 133 |
+
text_config.get("model_type", "llama")
|
| 134 |
+
](**text_config)
|
| 135 |
+
|
| 136 |
+
if audio_model_id is not None:
|
| 137 |
+
self.audio_config: transformers.PretrainedConfig = (
|
| 138 |
+
transformers.AutoConfig.from_pretrained(audio_model_id)
|
| 139 |
+
)
|
| 140 |
+
else:
|
| 141 |
+
audio_config = audio_config or {}
|
| 142 |
+
self.audio_config = transformers.CONFIG_MAPPING[
|
| 143 |
+
audio_config.get("model_type", "wav2vec2")
|
| 144 |
+
](**audio_config)
|
| 145 |
+
|
| 146 |
+
self.text_model_lora_config = (
|
| 147 |
+
text_model_lora_config
|
| 148 |
+
if isinstance(text_model_lora_config, dict)
|
| 149 |
+
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
|
| 150 |
+
)
|
| 151 |
+
self.audio_model_lora_config = (
|
| 152 |
+
audio_model_lora_config
|
| 153 |
+
if isinstance(audio_model_lora_config, dict)
|
| 154 |
+
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
| 155 |
+
)
|
| 156 |
+
self.audio_latency_block_size = audio_latency_block_size
|
| 157 |
+
|
| 158 |
+
self.vocab_size = self.text_config.vocab_size
|
| 159 |
+
|
| 160 |
+
self.initializer_range = self.text_config.initializer_range
|
| 161 |
+
|
| 162 |
+
super().__init__(**kwargs)
|
| 163 |
+
|
| 164 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
| 165 |
+
diff_dict = super().to_diff_dict()
|
| 166 |
+
|
| 167 |
+
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
| 168 |
+
if self.text_model_id is not None:
|
| 169 |
+
diff_dict.pop("text_config", None)
|
| 170 |
+
if self.audio_model_id is not None:
|
| 171 |
+
diff_dict.pop("audio_config", None)
|
| 172 |
+
|
| 173 |
+
return diff_dict
|
ultravox_model.py
ADDED
|
@@ -0,0 +1,858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import re
|
| 3 |
+
from typing import Any, Dict, Generator, Optional, Set, Tuple, TypeVar, Union
|
| 4 |
+
|
| 5 |
+
import peft
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import transformers
|
| 10 |
+
import transformers.activations
|
| 11 |
+
import transformers.modeling_outputs
|
| 12 |
+
import transformers.models
|
| 13 |
+
from transformers.generation.utils import GenerationMixin
|
| 14 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
| 15 |
+
|
| 16 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
| 17 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
| 18 |
+
from .ultravox_config import LossConfig
|
| 19 |
+
from .ultravox_config import LossFunction
|
| 20 |
+
from .ultravox_config import UltravoxConfig
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class UltravoxModel(transformers.LlamaPreTrainedModel, GenerationMixin):
|
| 24 |
+
"""
|
| 25 |
+
The Ultravox model which consists of an audio encoder and a language model.
|
| 26 |
+
|
| 27 |
+
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
| 28 |
+
projected to the language model's embedding space using a few linear layers.
|
| 29 |
+
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
| 30 |
+
|
| 31 |
+
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
| 32 |
+
|
| 33 |
+
Parameters:
|
| 34 |
+
config: Model configuration class with all the parameters of the model.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
config_class = UltravoxConfig
|
| 38 |
+
config: UltravoxConfig # for type hinting
|
| 39 |
+
# Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
|
| 40 |
+
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
|
| 41 |
+
# Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
|
| 42 |
+
# see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
|
| 43 |
+
accepts_loss_kwargs = False
|
| 44 |
+
|
| 45 |
+
def __init__(self, config: UltravoxConfig):
|
| 46 |
+
super().__init__(config)
|
| 47 |
+
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
| 48 |
+
|
| 49 |
+
self.keep_params: Set[str] = set()
|
| 50 |
+
self.vocab_size = config.vocab_size
|
| 51 |
+
|
| 52 |
+
self.audio_tower = self._create_audio_tower(config)
|
| 53 |
+
self.audio_tower_context_length: Optional[int] = None
|
| 54 |
+
self.audio_tower_context_length = self.audio_tower.max_context_length
|
| 55 |
+
|
| 56 |
+
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
| 57 |
+
self.language_model = self._create_language_model(config)
|
| 58 |
+
|
| 59 |
+
if self.language_model._tied_weights_keys is not None:
|
| 60 |
+
self._tied_weights_keys = [
|
| 61 |
+
f"language_model.{k}" for k in self.language_model._tied_weights_keys
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
|
| 65 |
+
# FSDP throws an error if some of the layer types are not found in the model.
|
| 66 |
+
# This would be something like ["LlamaDecoderLayer"] as we don't split audio encoder layers.
|
| 67 |
+
self._no_split_modules = self.language_model._no_split_modules
|
| 68 |
+
|
| 69 |
+
self.loss_config = LossConfig()
|
| 70 |
+
self.post_init()
|
| 71 |
+
|
| 72 |
+
@classmethod
|
| 73 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
| 74 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
|
| 75 |
+
model._load_child_model_weights(*args, **kwargs)
|
| 76 |
+
return model
|
| 77 |
+
|
| 78 |
+
def _load_child_model_weights(self, *args, **kwargs) -> "UltravoxModel":
|
| 79 |
+
if "torch_dtype" in kwargs:
|
| 80 |
+
self.config.torch_dtype = kwargs.pop("torch_dtype")
|
| 81 |
+
|
| 82 |
+
kwargs.pop("config", None)
|
| 83 |
+
|
| 84 |
+
if (
|
| 85 |
+
self.config.text_model_id is not None
|
| 86 |
+
and self.language_model.device.type == "meta"
|
| 87 |
+
):
|
| 88 |
+
# Load the language model weights
|
| 89 |
+
self.language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 90 |
+
self.config.text_model_id,
|
| 91 |
+
torch_dtype=self.config.torch_dtype,
|
| 92 |
+
*args,
|
| 93 |
+
**kwargs,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if (
|
| 97 |
+
self.config.audio_model_id is not None
|
| 98 |
+
and self.audio_tower.device.type == "meta"
|
| 99 |
+
):
|
| 100 |
+
# Load the audio tower weights
|
| 101 |
+
self.audio_tower = transformers.AutoModel.from_pretrained(
|
| 102 |
+
self.config.audio_model_id,
|
| 103 |
+
torch_dtype=self.config.torch_dtype,
|
| 104 |
+
*args,
|
| 105 |
+
**kwargs,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
return self
|
| 109 |
+
|
| 110 |
+
def get_input_embeddings(self):
|
| 111 |
+
return self.language_model.get_input_embeddings()
|
| 112 |
+
|
| 113 |
+
def set_input_embeddings(self, value):
|
| 114 |
+
self.language_model.set_input_embeddings(value)
|
| 115 |
+
|
| 116 |
+
def get_output_embeddings(self):
|
| 117 |
+
return self.language_model.get_output_embeddings()
|
| 118 |
+
|
| 119 |
+
def set_output_embeddings(self, new_embeddings):
|
| 120 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 121 |
+
|
| 122 |
+
def set_decoder(self, decoder):
|
| 123 |
+
self.language_model.set_decoder(decoder)
|
| 124 |
+
|
| 125 |
+
def get_decoder(self):
|
| 126 |
+
return self.language_model.get_decoder()
|
| 127 |
+
|
| 128 |
+
def tie_weights(self):
|
| 129 |
+
return self.language_model.tie_weights()
|
| 130 |
+
|
| 131 |
+
def set_loss_config(self, loss_config: LossConfig):
|
| 132 |
+
self.loss_config = loss_config
|
| 133 |
+
|
| 134 |
+
def _setup_cache(
|
| 135 |
+
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
| 136 |
+
):
|
| 137 |
+
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
| 138 |
+
|
| 139 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 140 |
+
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
| 141 |
+
|
| 142 |
+
def resize_token_embeddings(
|
| 143 |
+
self,
|
| 144 |
+
new_num_tokens: Optional[int] = None,
|
| 145 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 146 |
+
) -> nn.Embedding:
|
| 147 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
| 148 |
+
new_num_tokens, pad_to_multiple_of
|
| 149 |
+
)
|
| 150 |
+
# update vocab size
|
| 151 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 152 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
| 153 |
+
self.vocab_size = model_embeds.num_embeddings
|
| 154 |
+
return model_embeds
|
| 155 |
+
|
| 156 |
+
def _get_prediction_mask(self, labels: Optional[torch.Tensor]) -> torch.Tensor:
|
| 157 |
+
"""Get a boolean mask for positions where we want to compute KL divergence.
|
| 158 |
+
|
| 159 |
+
For each label position, we want the position before it since that's where
|
| 160 |
+
the model makes the prediction for that label.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
labels: Tensor of shape (B, T) where B is batch size and T is sequence length,
|
| 164 |
+
with -100 for masked positions and token ids for label positions
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
Boolean tensor of shape (B, T) that's True for positions where we want to compute KL divergence
|
| 168 |
+
"""
|
| 169 |
+
if labels is None:
|
| 170 |
+
raise ValueError("labels must be provided")
|
| 171 |
+
# Shift the label mask right by 1 along the sequence dimension
|
| 172 |
+
# This gives us positions where we make predictions for the next token
|
| 173 |
+
label_mask = labels != -100
|
| 174 |
+
pred_mask = torch.zeros_like(label_mask)
|
| 175 |
+
pred_mask[:, :-1] = label_mask[
|
| 176 |
+
:, 1:
|
| 177 |
+
] # shift right by 1 along sequence dimension
|
| 178 |
+
return pred_mask
|
| 179 |
+
|
| 180 |
+
def _compute_kl_loss(
|
| 181 |
+
self,
|
| 182 |
+
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
| 183 |
+
labels: Optional[torch.Tensor] = None,
|
| 184 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
| 185 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
| 186 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
| 187 |
+
alt_labels: Optional[torch.Tensor] = None,
|
| 188 |
+
**kwargs,
|
| 189 |
+
):
|
| 190 |
+
# disable gradient computation for the teacher model
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
# compute the teacher (text-only) model's distribution
|
| 193 |
+
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
| 194 |
+
alt_lm_output = self.language_model.forward(
|
| 195 |
+
inputs_embeds=alt_inputs_embeds,
|
| 196 |
+
labels=alt_labels,
|
| 197 |
+
attention_mask=alt_attention_mask,
|
| 198 |
+
past_key_values=past_key_values,
|
| 199 |
+
**kwargs,
|
| 200 |
+
)
|
| 201 |
+
# compute the KL divergence loss between the two models
|
| 202 |
+
kl_loss = F.kl_div(
|
| 203 |
+
F.log_softmax(
|
| 204 |
+
lm_output.logits[self._get_prediction_mask(labels)]
|
| 205 |
+
/ self.loss_config.kl_temperature,
|
| 206 |
+
dim=-1,
|
| 207 |
+
),
|
| 208 |
+
F.softmax(
|
| 209 |
+
alt_lm_output.logits[self._get_prediction_mask(alt_labels)]
|
| 210 |
+
/ self.loss_config.kl_temperature,
|
| 211 |
+
dim=-1,
|
| 212 |
+
),
|
| 213 |
+
reduction="batchmean",
|
| 214 |
+
)
|
| 215 |
+
return {"loss": kl_loss}
|
| 216 |
+
|
| 217 |
+
def _audio_iter(
|
| 218 |
+
self, audio_batch_size: torch.Tensor
|
| 219 |
+
) -> Generator[Tuple[int, int], None, None]:
|
| 220 |
+
"""
|
| 221 |
+
Iterate over the audio batch size and yield the batch index and audio index of each audio item.
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
audio_batch_size: A tensor of shape (B,) where B is the batch size.
|
| 225 |
+
|
| 226 |
+
Returns:
|
| 227 |
+
A generator that yields a tuple of (start index, length) for each audio item.
|
| 228 |
+
"""
|
| 229 |
+
audio_index = 0
|
| 230 |
+
for i_b, batch_count in enumerate(audio_batch_size):
|
| 231 |
+
for _ in range(batch_count):
|
| 232 |
+
yield i_b, audio_index
|
| 233 |
+
audio_index += 1
|
| 234 |
+
|
| 235 |
+
def forward(
|
| 236 |
+
self,
|
| 237 |
+
input_ids: torch.Tensor,
|
| 238 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
| 239 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 240 |
+
labels: Optional[torch.Tensor] = None,
|
| 241 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 242 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
| 243 |
+
audio_lens: Optional[torch.Tensor] = None,
|
| 244 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
| 245 |
+
audio_batch_size: Optional[torch.Tensor] = None,
|
| 246 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
| 247 |
+
# the alt_* fields are needed for KL divergence loss
|
| 248 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
| 249 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
| 250 |
+
alt_labels: Optional[torch.Tensor] = None,
|
| 251 |
+
**kwargs,
|
| 252 |
+
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
| 253 |
+
"""
|
| 254 |
+
Forward pass for the Ultravox model.
|
| 255 |
+
|
| 256 |
+
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
| 257 |
+
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
| 258 |
+
projected to the language model's embedding space using a few linear layers.
|
| 259 |
+
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
| 260 |
+
of the audio embeddings in the merged embeddings.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
input_ids: The tokenized text input.
|
| 264 |
+
audio_values: The processed audio values.
|
| 265 |
+
inputs_embeds: The embeddings for the input tokens.
|
| 266 |
+
labels: The tokenized text labels.
|
| 267 |
+
attention_mask: The attention mask for the input.
|
| 268 |
+
position_ids: The position ids for the input.
|
| 269 |
+
past_key_values: The past key value cache for the language model attention layers.
|
| 270 |
+
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
| 271 |
+
"""
|
| 272 |
+
if inputs_embeds is None:
|
| 273 |
+
# B x T -> B x T x D
|
| 274 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
| 275 |
+
|
| 276 |
+
if audio_values is not None and len(audio_values) > 0:
|
| 277 |
+
assert (
|
| 278 |
+
audio_token_start_idx is not None
|
| 279 |
+
and audio_token_len is not None
|
| 280 |
+
and audio_lens is not None
|
| 281 |
+
and audio_batch_size is not None
|
| 282 |
+
), "audio_token_start_idx/audio_token_len/audio_lens must be provided if audio_values are provided."
|
| 283 |
+
assert (
|
| 284 |
+
len(audio_token_start_idx)
|
| 285 |
+
== len(audio_token_len)
|
| 286 |
+
== len(audio_lens)
|
| 287 |
+
== len(audio_values)
|
| 288 |
+
), "audio_token_start_idx/audio_token_len/audio_lens/audio_values must have the same batch size."
|
| 289 |
+
assert len(audio_batch_size) == len(
|
| 290 |
+
inputs_embeds
|
| 291 |
+
), "audio_batch_size and inputs_embeds must have the same batch size."
|
| 292 |
+
|
| 293 |
+
# B x A/3200 x (D=max-audio-length-in-batch)
|
| 294 |
+
audio_tower_output = self.audio_tower.forward(
|
| 295 |
+
audio_values.to(self.audio_tower.dtype),
|
| 296 |
+
audio_len=audio_lens,
|
| 297 |
+
).last_hidden_state
|
| 298 |
+
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
| 299 |
+
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
| 300 |
+
|
| 301 |
+
# combine audio and text embeddings
|
| 302 |
+
for i_b, i_a in self._audio_iter(audio_batch_size):
|
| 303 |
+
start_idx = audio_token_start_idx[i_a]
|
| 304 |
+
token_len = audio_token_len[i_a]
|
| 305 |
+
item_embedding = audio_embeds[i_a][:token_len]
|
| 306 |
+
inputs_embeds[i_b][start_idx : start_idx + token_len] = item_embedding
|
| 307 |
+
|
| 308 |
+
lm_output = self.language_model.forward(
|
| 309 |
+
inputs_embeds=inputs_embeds,
|
| 310 |
+
labels=labels,
|
| 311 |
+
attention_mask=attention_mask,
|
| 312 |
+
past_key_values=past_key_values,
|
| 313 |
+
**kwargs,
|
| 314 |
+
)
|
| 315 |
+
if self.training:
|
| 316 |
+
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
| 317 |
+
return lm_output
|
| 318 |
+
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
| 319 |
+
return self._compute_kl_loss(
|
| 320 |
+
lm_output=lm_output,
|
| 321 |
+
labels=labels,
|
| 322 |
+
past_key_values=past_key_values,
|
| 323 |
+
alt_input_ids=alt_input_ids,
|
| 324 |
+
alt_attention_mask=alt_attention_mask,
|
| 325 |
+
alt_labels=alt_labels,
|
| 326 |
+
**kwargs,
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
raise ValueError(
|
| 330 |
+
f"Unsupported loss function: {self.loss_config.loss_function}"
|
| 331 |
+
)
|
| 332 |
+
else:
|
| 333 |
+
return lm_output
|
| 334 |
+
|
| 335 |
+
def prepare_inputs_for_generation(
|
| 336 |
+
self,
|
| 337 |
+
input_ids: torch.Tensor,
|
| 338 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
| 339 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
| 340 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
| 341 |
+
audio_lens: Optional[torch.Tensor] = None,
|
| 342 |
+
audio_batch_size: Optional[torch.Tensor] = None,
|
| 343 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
| 344 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 345 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 346 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 347 |
+
**kwargs,
|
| 348 |
+
) -> Dict[str, Any]:
|
| 349 |
+
model_input = self.language_model.prepare_inputs_for_generation(
|
| 350 |
+
input_ids=input_ids,
|
| 351 |
+
past_key_values=past_key_values,
|
| 352 |
+
attention_mask=attention_mask,
|
| 353 |
+
inputs_embeds=inputs_embeds,
|
| 354 |
+
cache_position=cache_position,
|
| 355 |
+
**kwargs,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# include audio information in model_input only when it is needed during prefilling
|
| 359 |
+
# audio_token_start_idx should always be relative to the current cache position
|
| 360 |
+
prefill_start_idx: int | torch.Tensor = (
|
| 361 |
+
0 if cache_position is None else cache_position[0]
|
| 362 |
+
)
|
| 363 |
+
if (
|
| 364 |
+
audio_values is not None
|
| 365 |
+
and audio_token_start_idx is not None
|
| 366 |
+
and prefill_start_idx <= torch.max(audio_token_start_idx)
|
| 367 |
+
):
|
| 368 |
+
model_input["audio_values"] = audio_values
|
| 369 |
+
model_input["audio_token_start_idx"] = (
|
| 370 |
+
audio_token_start_idx - prefill_start_idx
|
| 371 |
+
)
|
| 372 |
+
model_input["audio_token_len"] = audio_token_len
|
| 373 |
+
model_input["audio_batch_size"] = audio_batch_size
|
| 374 |
+
model_input["audio_lens"] = audio_lens
|
| 375 |
+
|
| 376 |
+
return model_input
|
| 377 |
+
|
| 378 |
+
@classmethod
|
| 379 |
+
def _create_multi_modal_projector(
|
| 380 |
+
cls, config: UltravoxConfig
|
| 381 |
+
) -> "UltravoxProjector":
|
| 382 |
+
projector = UltravoxProjector(config)
|
| 383 |
+
projector.to(config.torch_dtype)
|
| 384 |
+
return projector
|
| 385 |
+
|
| 386 |
+
@classmethod
|
| 387 |
+
def _create_audio_tower(
|
| 388 |
+
cls, config: UltravoxConfig
|
| 389 |
+
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
| 390 |
+
with transformers.modeling_utils.no_init_weights():
|
| 391 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
| 392 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
| 393 |
+
if "whisper" in config.audio_config._name_or_path.lower():
|
| 394 |
+
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
| 395 |
+
audio_tower.init_latency_mask(
|
| 396 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
| 397 |
+
)
|
| 398 |
+
else:
|
| 399 |
+
assert config.audio_latency_block_size in (
|
| 400 |
+
None,
|
| 401 |
+
0,
|
| 402 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
| 403 |
+
audio_tower = transformers.AutoModel.from_config(config.audio_config)
|
| 404 |
+
|
| 405 |
+
if isinstance(
|
| 406 |
+
audio_tower,
|
| 407 |
+
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
| 408 |
+
):
|
| 409 |
+
# For these models we only need the encoder part
|
| 410 |
+
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
|
| 411 |
+
# WhisperModel -> WhisperEncoder
|
| 412 |
+
audio_tower = audio_tower.encoder
|
| 413 |
+
|
| 414 |
+
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
| 415 |
+
return audio_tower
|
| 416 |
+
|
| 417 |
+
@classmethod
|
| 418 |
+
def _create_language_model(
|
| 419 |
+
cls, config: UltravoxConfig
|
| 420 |
+
) -> transformers.LlamaForCausalLM:
|
| 421 |
+
with transformers.modeling_utils.no_init_weights():
|
| 422 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
| 423 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
| 424 |
+
language_model = transformers.AutoModelForCausalLM.from_config(
|
| 425 |
+
config.text_config,
|
| 426 |
+
attn_implementation=config.text_config._attn_implementation,
|
| 427 |
+
torch_dtype=config.torch_dtype,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
language_model = apply_lora(language_model, config.text_model_lora_config)
|
| 431 |
+
return language_model
|
| 432 |
+
|
| 433 |
+
def merge_and_unload(self):
|
| 434 |
+
if isinstance(self.language_model, peft.PeftModel):
|
| 435 |
+
self.language_model = self.language_model.merge_and_unload()
|
| 436 |
+
# no need to download base language model weights anymore, so we can remove the id
|
| 437 |
+
self.config.text_model_id = None
|
| 438 |
+
self.keep_params.update(
|
| 439 |
+
set(
|
| 440 |
+
[
|
| 441 |
+
f"language_model.{name}"
|
| 442 |
+
for name, _ in self.language_model.named_parameters()
|
| 443 |
+
]
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
if isinstance(self.audio_tower, peft.PeftModel):
|
| 448 |
+
self.audio_tower = self.audio_tower.merge_and_unload()
|
| 449 |
+
# no need to download base audio model weights anymore, so we can remove the id
|
| 450 |
+
self.config.audio_model_id = None
|
| 451 |
+
self.keep_params.update(
|
| 452 |
+
set(
|
| 453 |
+
[
|
| 454 |
+
f"audio_tower.{name}"
|
| 455 |
+
for name, _ in self.audio_tower.named_parameters()
|
| 456 |
+
]
|
| 457 |
+
)
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
| 461 |
+
if hasattr(self.config, param):
|
| 462 |
+
delattr(self.config, param)
|
| 463 |
+
|
| 464 |
+
def push_to_hub(self, *args, **kwargs):
|
| 465 |
+
self.merge_and_unload()
|
| 466 |
+
return super().push_to_hub(*args, **kwargs)
|
| 467 |
+
|
| 468 |
+
def diff_state_dict(
|
| 469 |
+
self, state_dict: Optional[Dict[str, Any]] = None
|
| 470 |
+
) -> Dict[str, Any]:
|
| 471 |
+
if state_dict is None:
|
| 472 |
+
state_dict = super().state_dict()
|
| 473 |
+
|
| 474 |
+
trainable_params = {k for k, v in self.named_parameters() if v.requires_grad}
|
| 475 |
+
# normalize the keys to match the original model
|
| 476 |
+
# Example: audio_tower.base_model.model.layers.0._fsdp_wrapped_module.self_attn.k_proj.lora_B.default.weight
|
| 477 |
+
trainable_params = {
|
| 478 |
+
k.replace("_fsdp_wrapped_module.", "") for k in trainable_params
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
state_dict = {
|
| 482 |
+
k: v
|
| 483 |
+
for k, v in state_dict.items()
|
| 484 |
+
if k in self.keep_params or k in trainable_params
|
| 485 |
+
}
|
| 486 |
+
|
| 487 |
+
return state_dict
|
| 488 |
+
|
| 489 |
+
def save_pretrained(
|
| 490 |
+
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
| 491 |
+
):
|
| 492 |
+
state_dict = self.diff_state_dict(state_dict)
|
| 493 |
+
|
| 494 |
+
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
| 495 |
+
|
| 496 |
+
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
| 497 |
+
self.keep_params.update(set(state_dict.keys()))
|
| 498 |
+
|
| 499 |
+
def print_trainable_parameters(self):
|
| 500 |
+
"""
|
| 501 |
+
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
| 502 |
+
"""
|
| 503 |
+
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
| 504 |
+
|
| 505 |
+
trainable_params, all_param = count_params(self)
|
| 506 |
+
|
| 507 |
+
logging.info(
|
| 508 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
| 509 |
+
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
| 513 |
+
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
| 514 |
+
|
| 515 |
+
projector_trainable_params = (
|
| 516 |
+
trainable_params - lm_trainable_params - audio_trainable_params
|
| 517 |
+
)
|
| 518 |
+
projector_all_params = all_param - lm_all_params - audio_all_params
|
| 519 |
+
|
| 520 |
+
logging.info(
|
| 521 |
+
f"Trainable%: "
|
| 522 |
+
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
| 523 |
+
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
| 524 |
+
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
# TODO: refactor common parts to a shared module
|
| 529 |
+
def is_cache_empty(
|
| 530 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
|
| 531 |
+
) -> bool:
|
| 532 |
+
"""
|
| 533 |
+
Check if the cache is empty.
|
| 534 |
+
"""
|
| 535 |
+
if past_key_values is None:
|
| 536 |
+
return True
|
| 537 |
+
if isinstance(past_key_values, tuple):
|
| 538 |
+
return all(len(c) == 0 for c in past_key_values)
|
| 539 |
+
return past_key_values.get_seq_length() == 0
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
T = TypeVar("T", bound=torch.nn.Module)
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def apply_lora(model: T, lora_config: dict) -> T:
|
| 546 |
+
"""
|
| 547 |
+
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
| 548 |
+
"""
|
| 549 |
+
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
|
| 550 |
+
lora_config = peft.LoraConfig(**lora_config or {})
|
| 551 |
+
|
| 552 |
+
if lora_config.r == 0:
|
| 553 |
+
# freeze the model entirely, except for the specified layers
|
| 554 |
+
for name, param in model.named_parameters():
|
| 555 |
+
if not unfreeze_layers or not any(
|
| 556 |
+
re.match(layer, name) for layer in unfreeze_layers
|
| 557 |
+
):
|
| 558 |
+
param.requires_grad = False
|
| 559 |
+
else:
|
| 560 |
+
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
|
| 561 |
+
else:
|
| 562 |
+
model = peft.get_peft_model(model, lora_config)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
class StackAudioFrames(nn.Module):
|
| 568 |
+
"""
|
| 569 |
+
Stack the audio embedding frames to reduce the sequence length by a factor
|
| 570 |
+
of `stack_factor`.
|
| 571 |
+
"""
|
| 572 |
+
|
| 573 |
+
def __init__(self, stack_factor: int = 8):
|
| 574 |
+
super().__init__()
|
| 575 |
+
self.stack_factor = stack_factor
|
| 576 |
+
|
| 577 |
+
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
| 578 |
+
B, T, C = audio_embeds.shape
|
| 579 |
+
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
| 580 |
+
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
|
| 581 |
+
B, T, C = audio_embeds.shape
|
| 582 |
+
audio_embeds = audio_embeds.view(
|
| 583 |
+
B, T // self.stack_factor, C * self.stack_factor
|
| 584 |
+
)
|
| 585 |
+
return audio_embeds
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
| 589 |
+
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
| 590 |
+
super().__init__(hidden_size=hidden_size, eps=eps)
|
| 591 |
+
self.weight.data.fill_(init)
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
class SwiGLU(nn.Module):
|
| 595 |
+
def forward(self, x):
|
| 596 |
+
x, gate = x.chunk(2, dim=-1)
|
| 597 |
+
return F.silu(gate) * x
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class UltravoxProjector(nn.Module):
|
| 601 |
+
def __init__(self, config: UltravoxConfig):
|
| 602 |
+
super().__init__()
|
| 603 |
+
self.hidden_dim = config.hidden_size
|
| 604 |
+
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
| 605 |
+
dim_in = config.audio_config.hidden_size * config.stack_factor
|
| 606 |
+
self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
|
| 607 |
+
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
|
| 608 |
+
dim_mid = self.hidden_dim
|
| 609 |
+
self.act = transformers.activations.get_activation(config.projector_act)
|
| 610 |
+
dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
|
| 611 |
+
dim_out = config.text_config.hidden_size
|
| 612 |
+
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
|
| 613 |
+
|
| 614 |
+
# Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
|
| 615 |
+
# while v0.5.0 and above uses layer_norm after the first linear layer.
|
| 616 |
+
if config.projector_ln_mid:
|
| 617 |
+
self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
|
| 618 |
+
self.ln_post: nn.Module = nn.Identity()
|
| 619 |
+
else:
|
| 620 |
+
self.ln_mid = nn.Identity()
|
| 621 |
+
self.ln_post = RMSNorm(dim_out, init=config.norm_init)
|
| 622 |
+
|
| 623 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
| 624 |
+
"""
|
| 625 |
+
Takes in audio features from the audio tower and projects them to the text model's embedding space.
|
| 626 |
+
It reduces the number of frames by a factor of `stack_factor` and increases the number of channels by the same factor.
|
| 627 |
+
If the number of audio frames are not a multiple of the stack factor, the last few frames will be padded with zeros.
|
| 628 |
+
|
| 629 |
+
Input shape:
|
| 630 |
+
audio_features: B, T*S, C
|
| 631 |
+
Output shape:
|
| 632 |
+
hidden_states: B, T, D
|
| 633 |
+
Where:
|
| 634 |
+
B: batch size
|
| 635 |
+
F: number of frames in the audio tower
|
| 636 |
+
T: number of output embeddings
|
| 637 |
+
T = ceil(F / S)
|
| 638 |
+
S: stack factor
|
| 639 |
+
C: number of channels out of the encoder (aka audio tower)
|
| 640 |
+
H: hidden size of the projector (config.hidden_size)
|
| 641 |
+
D: dimension of the text model (config.text_config.hidden_size)
|
| 642 |
+
|
| 643 |
+
"""
|
| 644 |
+
# B, F, C -> B, T, C*S
|
| 645 |
+
audio_features = self._pad_and_stack(audio_features)
|
| 646 |
+
audio_features = self.ln_pre(audio_features)
|
| 647 |
+
# B, T, C*S -> B, T, H
|
| 648 |
+
hidden_states = self.linear_1(audio_features)
|
| 649 |
+
# B, T, H -> B, T, H/2 (assuming swiglu)
|
| 650 |
+
hidden_states = self.act(hidden_states)
|
| 651 |
+
hidden_states = self.ln_mid(hidden_states)
|
| 652 |
+
# B, T, H/2 -> B, T, D
|
| 653 |
+
hidden_states = self.linear_2(hidden_states)
|
| 654 |
+
hidden_states = self.ln_post(hidden_states)
|
| 655 |
+
return hidden_states
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
class ModifiedWhisperEncoder(
|
| 659 |
+
whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
|
| 660 |
+
):
|
| 661 |
+
"""
|
| 662 |
+
Encoder portion of OpenAI's Whisper model.
|
| 663 |
+
|
| 664 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
| 665 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
| 666 |
+
2. allow less than 30 second of audio padding to be passed in:
|
| 667 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
| 668 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
| 669 |
+
|
| 670 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
| 671 |
+
"""
|
| 672 |
+
|
| 673 |
+
base_model_prefix = "model.encoder"
|
| 674 |
+
_no_split_modules = ["WhisperEncoderLayer"]
|
| 675 |
+
_keys_to_ignore_on_load_unexpected = ["model.decoder.*"]
|
| 676 |
+
|
| 677 |
+
def __init__(self, config: transformers.WhisperConfig):
|
| 678 |
+
super().__init__(config)
|
| 679 |
+
self.config.is_decoder = False
|
| 680 |
+
|
| 681 |
+
@property
|
| 682 |
+
def max_context_length(self):
|
| 683 |
+
return (
|
| 684 |
+
self.config.max_source_positions
|
| 685 |
+
* self.conv1.stride[0]
|
| 686 |
+
* self.conv2.stride[0]
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
def init_latency_mask(
|
| 690 |
+
self, audio_latency_block_size: int | None, dtype: torch.dtype
|
| 691 |
+
):
|
| 692 |
+
if audio_latency_block_size is None:
|
| 693 |
+
self.audio_streaming_mask = None
|
| 694 |
+
return
|
| 695 |
+
|
| 696 |
+
# Use max_context_length directly in the calculation
|
| 697 |
+
max_seqlen = self.max_context_length
|
| 698 |
+
assert (
|
| 699 |
+
max_seqlen > 0
|
| 700 |
+
), f"maximum sequence length must be positive, got {max_seqlen}"
|
| 701 |
+
assert (
|
| 702 |
+
max_seqlen % audio_latency_block_size == 0
|
| 703 |
+
), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
|
| 704 |
+
# Given the block size, we calculate number of blocks.
|
| 705 |
+
audio_latency_nblocks = max_seqlen // audio_latency_block_size
|
| 706 |
+
audio_streaming_mask = (
|
| 707 |
+
torch.tril(
|
| 708 |
+
torch.ones(audio_latency_nblocks, audio_latency_nblocks),
|
| 709 |
+
diagonal=0,
|
| 710 |
+
)
|
| 711 |
+
.repeat_interleave(audio_latency_block_size, dim=0)
|
| 712 |
+
.repeat_interleave(audio_latency_block_size, dim=1)
|
| 713 |
+
)
|
| 714 |
+
audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
|
| 715 |
+
audio_streaming_mask = audio_streaming_mask[None, None, :, :]
|
| 716 |
+
self.register_buffer(
|
| 717 |
+
"audio_streaming_mask", audio_streaming_mask, persistent=False
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
def forward(
|
| 721 |
+
self,
|
| 722 |
+
input_features,
|
| 723 |
+
audio_len=None,
|
| 724 |
+
head_mask=None,
|
| 725 |
+
output_attentions=None,
|
| 726 |
+
output_hidden_states=None,
|
| 727 |
+
return_dict=None,
|
| 728 |
+
):
|
| 729 |
+
expected_seq_length = self.max_context_length
|
| 730 |
+
if input_features.shape[-1] > expected_seq_length:
|
| 731 |
+
raise ValueError(
|
| 732 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
output_attentions = (
|
| 736 |
+
output_attentions
|
| 737 |
+
if output_attentions is not None
|
| 738 |
+
else self.config.output_attentions
|
| 739 |
+
)
|
| 740 |
+
output_hidden_states = (
|
| 741 |
+
output_hidden_states
|
| 742 |
+
if output_hidden_states is not None
|
| 743 |
+
else self.config.output_hidden_states
|
| 744 |
+
)
|
| 745 |
+
return_dict = (
|
| 746 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 747 |
+
)
|
| 748 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
| 749 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
| 750 |
+
|
| 751 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
| 752 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
| 753 |
+
|
| 754 |
+
hidden_states = inputs_embeds + embed_pos
|
| 755 |
+
hidden_states = nn.functional.dropout(
|
| 756 |
+
hidden_states, p=self.dropout, training=self.training
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
encoder_states = () if output_hidden_states else None
|
| 760 |
+
all_attentions = () if output_attentions else None
|
| 761 |
+
|
| 762 |
+
# Create attention mask based on audio lengths to mask out padding tokens
|
| 763 |
+
# For each sample in batch:
|
| 764 |
+
# - Convert raw audio length to feature length after convolutions
|
| 765 |
+
# - Create boolean mask that is True for valid positions and False for padding
|
| 766 |
+
# - Convert to extended attention mask format expected by transformer layers
|
| 767 |
+
# (1.0 for positions to attend to, large negative for positions to ignore)
|
| 768 |
+
# This masking ensures consistent behavior between training and inference
|
| 769 |
+
# by preventing the model from attending to padding tokens in both cases
|
| 770 |
+
attention_mask = None
|
| 771 |
+
if audio_len != None:
|
| 772 |
+
audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
|
| 773 |
+
max_seq_len = hidden_states.shape[1]
|
| 774 |
+
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
|
| 775 |
+
None, :
|
| 776 |
+
].lt(audio_feature_len.view(-1, 1))
|
| 777 |
+
attention_mask = self.get_extended_attention_mask(
|
| 778 |
+
attention_mask,
|
| 779 |
+
None,
|
| 780 |
+
dtype=hidden_states.dtype,
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
if self.audio_streaming_mask is not None:
|
| 784 |
+
seqlen = hidden_states.size(-2)
|
| 785 |
+
if attention_mask is not None:
|
| 786 |
+
attention_mask = torch.minimum(
|
| 787 |
+
self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
|
| 788 |
+
) # merge
|
| 789 |
+
else:
|
| 790 |
+
attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
|
| 791 |
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
| 792 |
+
|
| 793 |
+
# check if head_mask has a correct number of layers specified if desired
|
| 794 |
+
if head_mask is not None:
|
| 795 |
+
assert head_mask.size()[0] == (
|
| 796 |
+
len(self.layers)
|
| 797 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
| 798 |
+
|
| 799 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 800 |
+
if output_hidden_states:
|
| 801 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 802 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 803 |
+
to_drop = False
|
| 804 |
+
if self.training:
|
| 805 |
+
dropout_probability = torch.rand([])
|
| 806 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
| 807 |
+
to_drop = True
|
| 808 |
+
|
| 809 |
+
if to_drop:
|
| 810 |
+
layer_outputs = (None, None)
|
| 811 |
+
else:
|
| 812 |
+
if self.gradient_checkpointing and self.training:
|
| 813 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 814 |
+
encoder_layer.__call__,
|
| 815 |
+
hidden_states,
|
| 816 |
+
attention_mask,
|
| 817 |
+
(head_mask[idx] if head_mask is not None else None),
|
| 818 |
+
output_attentions,
|
| 819 |
+
)
|
| 820 |
+
else:
|
| 821 |
+
layer_outputs = encoder_layer(
|
| 822 |
+
hidden_states,
|
| 823 |
+
attention_mask,
|
| 824 |
+
layer_head_mask=(
|
| 825 |
+
head_mask[idx] if head_mask is not None else None
|
| 826 |
+
),
|
| 827 |
+
output_attentions=output_attentions,
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
hidden_states = layer_outputs[0]
|
| 831 |
+
|
| 832 |
+
if output_attentions:
|
| 833 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 834 |
+
|
| 835 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 836 |
+
if output_hidden_states:
|
| 837 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 838 |
+
|
| 839 |
+
if not return_dict:
|
| 840 |
+
return tuple(
|
| 841 |
+
v
|
| 842 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
| 843 |
+
if v is not None
|
| 844 |
+
)
|
| 845 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
| 846 |
+
last_hidden_state=hidden_states,
|
| 847 |
+
hidden_states=encoder_states,
|
| 848 |
+
attentions=all_attentions,
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
UltravoxConfig.register_for_auto_class()
|
| 853 |
+
UltravoxModel.register_for_auto_class()
|
| 854 |
+
|
| 855 |
+
transformers.AutoConfig.register("ultravox", UltravoxConfig)
|
| 856 |
+
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
|
| 857 |
+
|
| 858 |
+
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
ultravox_pipeline.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Any, Dict, List, Optional
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import transformers
|
| 6 |
+
|
| 7 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
| 8 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
| 9 |
+
from .ultravox_model import UltravoxModel
|
| 10 |
+
from .ultravox_processing import UltravoxProcessor
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class UltravoxPipeline(transformers.Pipeline):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
model: UltravoxModel,
|
| 17 |
+
tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
|
| 18 |
+
audio_processor: Optional[transformers.ProcessorMixin] = None,
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
if tokenizer is None:
|
| 22 |
+
try:
|
| 23 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 24 |
+
model.config._name_or_path
|
| 25 |
+
)
|
| 26 |
+
except:
|
| 27 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 28 |
+
model.config.text_model_id or model.config.text_config._name_or_path
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
if audio_processor is None:
|
| 32 |
+
audio_processor = transformers.AutoProcessor.from_pretrained(
|
| 33 |
+
model.config.audio_model_id or model.config.audio_config._name_or_path
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
super().__init__(model=model, tokenizer=tokenizer, **kwargs)
|
| 37 |
+
|
| 38 |
+
self.processor = UltravoxProcessor(
|
| 39 |
+
audio_processor=audio_processor,
|
| 40 |
+
tokenizer=tokenizer,
|
| 41 |
+
stack_factor=model.config.stack_factor,
|
| 42 |
+
audio_context_size=model.audio_tower_context_length,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
def _sanitize_parameters(self, **kwargs):
|
| 46 |
+
generation_keys = ["temperature", "max_new_tokens", "repetition_penalty"]
|
| 47 |
+
generation_kwargs = {k: kwargs[k] for k in kwargs if k in generation_keys}
|
| 48 |
+
return {}, generation_kwargs, {}
|
| 49 |
+
|
| 50 |
+
def preprocess(self, inputs: Dict[str, Any]):
|
| 51 |
+
turns: list = inputs.get("turns", [])
|
| 52 |
+
|
| 53 |
+
audio = inputs.get("audio", None)
|
| 54 |
+
# Convert to float32 if needed.
|
| 55 |
+
if isinstance(audio, np.ndarray):
|
| 56 |
+
if audio.dtype == np.float64:
|
| 57 |
+
audio = audio.astype(np.float32)
|
| 58 |
+
elif audio.dtype == np.int16:
|
| 59 |
+
audio = audio.astype(np.float32) / np.float32(32768.0)
|
| 60 |
+
elif audio.dtype == np.int32:
|
| 61 |
+
audio = audio.astype(np.float32) / np.float32(2147483648.0)
|
| 62 |
+
|
| 63 |
+
if audio is not None and (len(turns) == 0 or turns[-1]["role"] != "user"):
|
| 64 |
+
prompt = inputs.get("prompt", "<|audio|>")
|
| 65 |
+
if "<|audio|>" not in prompt:
|
| 66 |
+
logging.warning(
|
| 67 |
+
"Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
prompt += " <|audio|>"
|
| 71 |
+
turns.append({"role": "user", "content": prompt})
|
| 72 |
+
|
| 73 |
+
text = self.processor.tokenizer.apply_chat_template(
|
| 74 |
+
turns, add_generation_prompt=True, tokenize=False
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if "sampling_rate" not in inputs and audio is not None:
|
| 78 |
+
logging.warning(
|
| 79 |
+
"No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
output = self.processor(
|
| 83 |
+
text=text,
|
| 84 |
+
audio=audio,
|
| 85 |
+
sampling_rate=inputs.get("sampling_rate", 16000),
|
| 86 |
+
)
|
| 87 |
+
if "audio_values" in output:
|
| 88 |
+
output["audio_values"] = output["audio_values"].to(self.model.dtype)
|
| 89 |
+
|
| 90 |
+
return output
|
| 91 |
+
|
| 92 |
+
def _forward(
|
| 93 |
+
self,
|
| 94 |
+
model_inputs: Dict[str, Any],
|
| 95 |
+
temperature: Optional[float] = None,
|
| 96 |
+
max_new_tokens: Optional[int] = None,
|
| 97 |
+
repetition_penalty: float = 1.1,
|
| 98 |
+
) -> List[int]:
|
| 99 |
+
temperature = temperature or None
|
| 100 |
+
do_sample = temperature is not None
|
| 101 |
+
|
| 102 |
+
terminators = [self.tokenizer.eos_token_id]
|
| 103 |
+
if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
|
| 104 |
+
terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
|
| 105 |
+
|
| 106 |
+
input_len = model_inputs["input_ids"].shape[1]
|
| 107 |
+
|
| 108 |
+
outputs = self.model.generate(
|
| 109 |
+
**model_inputs,
|
| 110 |
+
do_sample=do_sample,
|
| 111 |
+
temperature=temperature,
|
| 112 |
+
max_new_tokens=max_new_tokens,
|
| 113 |
+
repetition_penalty=repetition_penalty,
|
| 114 |
+
eos_token_id=terminators
|
| 115 |
+
)
|
| 116 |
+
return outputs[0][input_len:]
|
| 117 |
+
|
| 118 |
+
def postprocess(self, model_outputs) -> str:
|
| 119 |
+
output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
|
| 120 |
+
return output_text
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
|
| 124 |
+
"ultravox-pipeline",
|
| 125 |
+
pipeline_class=UltravoxPipeline,
|
| 126 |
+
pt_model=transformers.AutoModel,
|
| 127 |
+
type="multimodal",
|
| 128 |
+
)
|
ultravox_processing.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dataclasses
|
| 2 |
+
from typing import Any, Dict, List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import transformers
|
| 8 |
+
|
| 9 |
+
from .ultravox_config import UltravoxConfig
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclasses.dataclass
|
| 13 |
+
class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
|
| 14 |
+
# when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
|
| 15 |
+
include_alt_fields: bool = False
|
| 16 |
+
|
| 17 |
+
def __call__(self, features, *args, **kwargs):
|
| 18 |
+
audio_values = [x for f in features for x in f.pop("audio_values", [])]
|
| 19 |
+
audio_lens = [x for f in features for x in f.pop("audio_lens", [])]
|
| 20 |
+
audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])]
|
| 21 |
+
audio_token_start_idx = [
|
| 22 |
+
x for f in features for x in f.pop("audio_token_start_idx", [])
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
if self.include_alt_fields:
|
| 26 |
+
# these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
|
| 27 |
+
alt_features = [
|
| 28 |
+
{
|
| 29 |
+
"input_ids": f.pop("alt_input_ids"),
|
| 30 |
+
"attention_mask": f.pop("alt_attention_mask"),
|
| 31 |
+
"labels": f.pop("alt_labels"),
|
| 32 |
+
}
|
| 33 |
+
for f in features
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
batch = super().__call__(features, *args, **kwargs)
|
| 37 |
+
if self.include_alt_fields:
|
| 38 |
+
alt_batch = super().__call__(alt_features, *args, **kwargs)
|
| 39 |
+
batch["alt_input_ids"] = alt_batch["input_ids"]
|
| 40 |
+
batch["alt_attention_mask"] = alt_batch["attention_mask"]
|
| 41 |
+
batch["alt_labels"] = alt_batch["labels"]
|
| 42 |
+
|
| 43 |
+
batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx)
|
| 44 |
+
batch["audio_lens"] = torch.stack(audio_lens)
|
| 45 |
+
batch["audio_token_len"] = torch.stack(audio_token_len)
|
| 46 |
+
|
| 47 |
+
# Pad the last dimension of all audio_values to the same length, with 0s on the right.
|
| 48 |
+
if audio_values:
|
| 49 |
+
max_len = max([x.shape[-1] for x in audio_values])
|
| 50 |
+
batch["audio_values"] = torch.stack(
|
| 51 |
+
[F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
|
| 52 |
+
)
|
| 53 |
+
if self.tokenizer.padding_side == "left":
|
| 54 |
+
input_ids_lens = torch.LongTensor(
|
| 55 |
+
[f["input_ids"].shape[-1] for f in features]
|
| 56 |
+
)
|
| 57 |
+
displacement = batch["input_ids"].shape[-1] - input_ids_lens
|
| 58 |
+
displacement = displacement.repeat_interleave(
|
| 59 |
+
batch["audio_batch_size"].squeeze(-1)
|
| 60 |
+
)
|
| 61 |
+
batch["audio_token_start_idx"] += displacement.to(
|
| 62 |
+
batch["audio_token_start_idx"].device
|
| 63 |
+
)
|
| 64 |
+
return batch
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class UltravoxProcessor(transformers.ProcessorMixin):
|
| 68 |
+
"""
|
| 69 |
+
Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
audio_processor: The audio processor for the audio encoder.
|
| 73 |
+
tokenizer: The tokenizer for the language model.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
attributes = ["audio_processor", "tokenizer"]
|
| 77 |
+
audio_processor_class = ("WhisperProcessor",)
|
| 78 |
+
tokenizer_class = (
|
| 79 |
+
"PreTrainedTokenizer",
|
| 80 |
+
"PreTrainedTokenizerFast",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
tokenizer: transformers.PreTrainedTokenizerBase
|
| 84 |
+
audio_processor: transformers.ProcessorMixin
|
| 85 |
+
|
| 86 |
+
def __init__(
|
| 87 |
+
self,
|
| 88 |
+
audio_processor=None,
|
| 89 |
+
tokenizer=None,
|
| 90 |
+
audio_padding: str = "longest",
|
| 91 |
+
encoder_ds_factor: int = 2,
|
| 92 |
+
stack_factor: int = 8,
|
| 93 |
+
audio_placeholder: str = "<|audio|>",
|
| 94 |
+
# Defaults to whisper encoder context size
|
| 95 |
+
audio_context_size: Optional[int] = 3000,
|
| 96 |
+
):
|
| 97 |
+
"""
|
| 98 |
+
Args:
|
| 99 |
+
audio_processor: The audio processor for the audio encoder.
|
| 100 |
+
tokenizer: The tokenizer for the language model.
|
| 101 |
+
audio_padding: The padding strategy for the audio encoder.
|
| 102 |
+
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
|
| 103 |
+
encoder_ds_factor: The downsampling factor of the audio encoder.
|
| 104 |
+
audio_placeholder: The placeholder for the audio in the text.
|
| 105 |
+
audio_context_size: The maximum number of frames that the audio encoder can handle.
|
| 106 |
+
"""
|
| 107 |
+
self.audio_padding = audio_padding
|
| 108 |
+
self.encoder_ds_factor = encoder_ds_factor
|
| 109 |
+
self.stack_factor = stack_factor
|
| 110 |
+
self.audio_placeholder = audio_placeholder
|
| 111 |
+
self.audio_context_size = audio_context_size
|
| 112 |
+
assert (
|
| 113 |
+
tokenizer.eos_token is not None
|
| 114 |
+
), "The tokenizer has no EOS token. Cannot recover."
|
| 115 |
+
self.vocab = tokenizer.get_vocab()
|
| 116 |
+
self.audio_token_replacement = tokenizer.eos_token
|
| 117 |
+
if tokenizer.pad_token_id is None:
|
| 118 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 119 |
+
|
| 120 |
+
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
|
| 121 |
+
|
| 122 |
+
@classmethod
|
| 123 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
| 124 |
+
config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
|
| 125 |
+
pretrained_model_name_or_path, **kwargs
|
| 126 |
+
)
|
| 127 |
+
audio_processor = transformers.AutoProcessor.from_pretrained(
|
| 128 |
+
config.audio_model_id
|
| 129 |
+
or config.audio_config._name_or_path
|
| 130 |
+
or "openai/whisper-tiny"
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 134 |
+
pretrained_model_name_or_path, **kwargs
|
| 135 |
+
)
|
| 136 |
+
tokenizer.padding_side = "left"
|
| 137 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 138 |
+
|
| 139 |
+
return cls(
|
| 140 |
+
audio_processor=audio_processor,
|
| 141 |
+
tokenizer=tokenizer,
|
| 142 |
+
stack_factor=config.stack_factor,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
def _chunk_and_pad_audio(
|
| 146 |
+
self,
|
| 147 |
+
audio_values: torch.Tensor,
|
| 148 |
+
audio_lens: torch.Tensor,
|
| 149 |
+
include_audio_num_chunks: bool = False,
|
| 150 |
+
) -> Dict[str, Any]:
|
| 151 |
+
"""
|
| 152 |
+
Processes the audio batch by chunking any items in the batch according to the audio_context_size,
|
| 153 |
+
padding the last chunk if needed, and returns a dictionary with updated audio data.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
|
| 157 |
+
audio_lens (torch.Tensor): A tensor of audio lengths.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
Dict[str, Any]: Dictionary with the following keys:
|
| 161 |
+
- "audio_values": The concatenated audio tensor after chunking and padding.
|
| 162 |
+
- "audio_lens": Tensor of lengths for each chunk.
|
| 163 |
+
- "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk.
|
| 164 |
+
- "audio_batch_size": A Tensor with one integer representing the number of chunks.
|
| 165 |
+
|
| 166 |
+
"""
|
| 167 |
+
chunked_audio_values: List[torch.Tensor] = []
|
| 168 |
+
chunked_audio_lens: List[int] = []
|
| 169 |
+
is_continuation_list: List[bool] = []
|
| 170 |
+
num_chunks: List[int] = []
|
| 171 |
+
context_size = self.audio_context_size or audio_values.shape[-1]
|
| 172 |
+
|
| 173 |
+
for i in range(audio_values.shape[0]): # iterate over the batch
|
| 174 |
+
num_chunks.append(int(np.ceil(audio_lens[i] / context_size)))
|
| 175 |
+
for offset in range(0, audio_lens[i], context_size):
|
| 176 |
+
is_continuation = offset > 0
|
| 177 |
+
chunk = audio_values[i, :, offset : offset + context_size]
|
| 178 |
+
if is_continuation and chunk.shape[-1] < context_size:
|
| 179 |
+
# N.B. We only need to pad continuation chunks. If none of the samples require chunking, the
|
| 180 |
+
# batch might not (need to) be padded all the way to the audio_context_size, in which case
|
| 181 |
+
# we've already included the padding above. On the other hand, if we have any continuation
|
| 182 |
+
# chunks we know that the batch needs to be padded to audio_context_size because that's what
|
| 183 |
+
# we're slicing to.
|
| 184 |
+
chunk = F.pad(chunk, (0, context_size - chunk.shape[-1]))
|
| 185 |
+
chunked_audio_values.append(chunk)
|
| 186 |
+
chunked_audio_lens.append(
|
| 187 |
+
min(int(audio_lens[i].item()) - offset, context_size)
|
| 188 |
+
)
|
| 189 |
+
is_continuation_list.append(is_continuation)
|
| 190 |
+
|
| 191 |
+
data = {
|
| 192 |
+
"audio_values": torch.stack(chunked_audio_values, dim=0),
|
| 193 |
+
"audio_lens": torch.tensor(
|
| 194 |
+
chunked_audio_lens, dtype=torch.int64, device=audio_values.device
|
| 195 |
+
),
|
| 196 |
+
"audio_is_continuation": torch.tensor(
|
| 197 |
+
is_continuation_list, dtype=torch.bool, device=audio_values.device
|
| 198 |
+
),
|
| 199 |
+
"audio_batch_size": torch.tensor(
|
| 200 |
+
[len(chunked_audio_values)], device=audio_values.device
|
| 201 |
+
),
|
| 202 |
+
}
|
| 203 |
+
if include_audio_num_chunks:
|
| 204 |
+
data["audio_num_chunks"] = torch.tensor(
|
| 205 |
+
num_chunks, dtype=torch.int64, device=audio_values.device
|
| 206 |
+
)
|
| 207 |
+
return data
|
| 208 |
+
|
| 209 |
+
def __call__(
|
| 210 |
+
self,
|
| 211 |
+
text: Optional[str] = None,
|
| 212 |
+
audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
| 213 |
+
audios: Optional[
|
| 214 |
+
Union[
|
| 215 |
+
List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor]
|
| 216 |
+
]
|
| 217 |
+
] = None,
|
| 218 |
+
sampling_rate: Optional[int] = None,
|
| 219 |
+
return_tensors: Optional[
|
| 220 |
+
Union[str, transformers.TensorType]
|
| 221 |
+
] = transformers.TensorType.PYTORCH,
|
| 222 |
+
include_audio_num_chunks: bool = False,
|
| 223 |
+
**kwargs,
|
| 224 |
+
) -> transformers.BatchFeature:
|
| 225 |
+
"""
|
| 226 |
+
Main method to prepare for the model one text sequence and audio. This method forwards the `text`
|
| 227 |
+
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 228 |
+
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
|
| 229 |
+
audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring
|
| 230 |
+
of the above two methods for more information.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
text (`str`, `List[str]`):
|
| 234 |
+
The sequence to be encoded. Sequence can be a string or (pretokenized string).
|
| 235 |
+
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 236 |
+
The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor.
|
| 237 |
+
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 238 |
+
A list or two dimensional array of audio to be prepared.
|
| 239 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
| 240 |
+
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
|
| 241 |
+
you are doing.
|
| 242 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 243 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 244 |
+
|
| 245 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 246 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 247 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 248 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 249 |
+
|
| 250 |
+
Returns:
|
| 251 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 252 |
+
|
| 253 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 254 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 255 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 256 |
+
`None`).
|
| 257 |
+
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
|
| 258 |
+
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
|
| 259 |
+
Returned when `audio` is not `None`.
|
| 260 |
+
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
|
| 261 |
+
"""
|
| 262 |
+
# TODO: Add support for multiple text inputs.
|
| 263 |
+
if audio is not None and audios is not None:
|
| 264 |
+
raise ValueError("Only one of `audio` or `audios` should be provided.")
|
| 265 |
+
elif audio is not None:
|
| 266 |
+
audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio]
|
| 267 |
+
elif audios is None:
|
| 268 |
+
audios = []
|
| 269 |
+
|
| 270 |
+
data = {}
|
| 271 |
+
audio_is_continuation = []
|
| 272 |
+
if len(audios) > 0:
|
| 273 |
+
audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios]
|
| 274 |
+
|
| 275 |
+
# Pad out each audio to at least 2 hops (the minimum required by the processor).
|
| 276 |
+
hop_length = self.audio_processor.feature_extractor.hop_length
|
| 277 |
+
audios = [
|
| 278 |
+
(
|
| 279 |
+
np.pad(x, (0, 2 * hop_length - len(x)), mode="constant")
|
| 280 |
+
if len(x) < 2 * hop_length
|
| 281 |
+
else x
|
| 282 |
+
)
|
| 283 |
+
for x in audios
|
| 284 |
+
]
|
| 285 |
+
|
| 286 |
+
# Main audio processing. The processor is model-specific.
|
| 287 |
+
x: transformers.BatchFeature = self.audio_processor(
|
| 288 |
+
audios,
|
| 289 |
+
sampling_rate=sampling_rate,
|
| 290 |
+
padding="longest",
|
| 291 |
+
pad_to_multiple_of=hop_length, # The attention mask effectively gets padded to the hop length, so pad the audio to be consistent.
|
| 292 |
+
truncation=False,
|
| 293 |
+
return_attention_mask=True,
|
| 294 |
+
**kwargs,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
data.update(
|
| 298 |
+
self._chunk_and_pad_audio(
|
| 299 |
+
audio_values=torch.as_tensor(
|
| 300 |
+
x.input_features if "input_features" in x else x.input_values
|
| 301 |
+
),
|
| 302 |
+
audio_lens=torch.as_tensor(x.attention_mask).sum(-1),
|
| 303 |
+
include_audio_num_chunks=include_audio_num_chunks,
|
| 304 |
+
)
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
audio_is_continuation = data.pop("audio_is_continuation")
|
| 308 |
+
data["audio_token_len"] = torch.ceil(
|
| 309 |
+
data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor)
|
| 310 |
+
).to(dtype=torch.int)
|
| 311 |
+
|
| 312 |
+
if text is not None:
|
| 313 |
+
if not isinstance(text, str):
|
| 314 |
+
raise ValueError("Text must be a string. Batch mode not supported yet.")
|
| 315 |
+
|
| 316 |
+
# Special tokens like BOS should already have been added by the caller.
|
| 317 |
+
tokenized_parts = self.tokenizer(
|
| 318 |
+
text.split(
|
| 319 |
+
"<|audio|>" # The placeholder isn't part of the vocabulary, so split the text around it.
|
| 320 |
+
),
|
| 321 |
+
add_special_tokens=False,
|
| 322 |
+
**kwargs,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
audio_token_start_idx = []
|
| 326 |
+
placeholder_index = -1
|
| 327 |
+
split_input_ids = tokenized_parts["input_ids"]
|
| 328 |
+
input_ids: List[int] = []
|
| 329 |
+
|
| 330 |
+
audio_token_replacement_token_id = self.vocab[self.audio_token_replacement]
|
| 331 |
+
|
| 332 |
+
for i, token_len in enumerate(data.get("audio_token_len", [])):
|
| 333 |
+
if not audio_is_continuation[i]:
|
| 334 |
+
placeholder_index += 1
|
| 335 |
+
if placeholder_index >= len(split_input_ids):
|
| 336 |
+
raise ValueError(
|
| 337 |
+
f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)"
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
input_ids.extend(split_input_ids[placeholder_index])
|
| 341 |
+
|
| 342 |
+
audio_token_start_idx.append(len(input_ids))
|
| 343 |
+
|
| 344 |
+
input_ids.extend([audio_token_replacement_token_id] * token_len)
|
| 345 |
+
|
| 346 |
+
# Include any tokens after the last audio.
|
| 347 |
+
placeholder_index += 1
|
| 348 |
+
if placeholder_index != len(split_input_ids) - 1:
|
| 349 |
+
raise ValueError(
|
| 350 |
+
f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)"
|
| 351 |
+
)
|
| 352 |
+
input_ids.extend(split_input_ids[placeholder_index])
|
| 353 |
+
|
| 354 |
+
if "audio_token_len" in data:
|
| 355 |
+
data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx)
|
| 356 |
+
|
| 357 |
+
data["input_ids"] = [input_ids]
|
| 358 |
+
data["attention_mask"] = [[1] * len(input_ids)]
|
| 359 |
+
|
| 360 |
+
# Ensure that there are no audio placeholders after the last audio.
|
| 361 |
+
|
| 362 |
+
return transformers.BatchFeature(data=data, tensor_type=return_tensors)
|
| 363 |
+
|
| 364 |
+
def batch_decode(self, *args, **kwargs):
|
| 365 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 366 |
+
|
| 367 |
+
def decode(self, *args, **kwargs):
|
| 368 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 369 |
+
|
| 370 |
+
@property
|
| 371 |
+
def model_input_names(self):
|
| 372 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 373 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
| 374 |
+
return list(set(tokenizer_input_names + audio_processor_input_names))
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
UltravoxProcessor.register_for_auto_class()
|
| 378 |
+
|
| 379 |
+
transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)
|