GS-23 commited on
Commit
f3fd15e
·
verified ·
1 Parent(s): 5e20999

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: diffusers
4
+ tags:
5
+ - diffusion
6
+ - ddpm
7
+ - retinal-fundus
8
+ - image-generation
9
+ ---
10
+ # Model Card for ddpm-unet-retinal-fundus-image-generator
11
+
12
+
13
+ A **U-Net–based Denoising Diffusion Probabilistic Model (DDPM)** trained to generate **retinal fundus images**. This model can be used for synthetic medical image generation to augment datasets for training diagnostic models or other biomedical tasks.
14
+
15
+ ---
16
+
17
+ ## Model Architecture
18
+
19
+ - **Base**: [`UNet2DModel`](https://huggingface.co/docs/diffusers/main/en/api/models/unet2d)
20
+ - **Scheduler**: [`DDPMScheduler`](https://huggingface.co/docs/diffusers/main/en/api/schedulers/ddpm)
21
+ - **Resolution**: `128x128`
22
+ - **Channels**: `RGB (3)`
23
+ - **Attention**: Spatial self-attention in mid-resolution blocks
24
+ - **Framework**: [🤗 Diffusers](https://github.com/huggingface/diffusers) + PyTorch
25
+
26
+ ---
27
+
28
+ ## Dataset
29
+
30
+ - **Source**: [Kaggle - Retinal Fundus Images](https://www.kaggle.com/datasets/kssanjaynithish03/retinal-fundus-images)
31
+ - **Subset Used**: `train/Moderate Diabetic Retinopathy`
32
+ - **Preprocessing**:
33
+ - Resized to `128x128`
34
+ - Normalized to `[-1, 1]`
35
+ - Random horizontal flip
36
+
37
+ ---
38
+
39
+ ## Training Configuration
40
+
41
+ | Setting | Value |
42
+ |----------------------------|--------------------|
43
+ | Epochs | 35 |
44
+ | Batch size | 16 |
45
+ | Optimizer | AdamW |
46
+ | Learning rate | 1e-4 |
47
+ | Scheduler | Cosine w/ warmup |
48
+ | Precision | Mixed (fp16) |
49
+ | Diffusion Timesteps | 1000 |
50
+ | Image Samples Saved | Every 10 epochs |
51
+
52
+ Training was done using 🤗 Accelerate and TensorBoard logging.
53
+
54
+ ---
55
+
56
+ ## How to Use
57
+
58
+ ```python
59
+ from diffusers import DDPMPipeline
60
+ import torch
61
+ import matplotlib.pyplot as plt
62
+
63
+ pipeline = DDPMPipeline.from_pretrained("GS-23/ddpm-unet-retinal-fundus-image-generator")
64
+ images = pipeline(batch_size=1, generator=torch.manual_seed(0)).images
65
+
66
+ for img in images:
67
+ plt.imshow(img)
68
+ plt.axis("off")
69
+ plt.show()
70
+ ```
71
+
72
+ ---
73
+
74
+ ## 📌 Use Cases
75
+
76
+ - Data augmentation for diabetic retinopathy classifiers
77
+ - Retinal pathology simulation and training
78
+ - Medical generative AI research
79
+ - Domain-specific image synthesis