You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Merchant Name Extraction Model

This model extracts merchant names from transaction descriptions using Named Entity Recognition (NER).

Model Details

  • Model Type: DistilBERT for Token Classification
  • Task: Merchant Name Extraction
  • Language: English
  • Framework: PyTorch + Transformers

Usage

from transformers import DistilBertTokenizerFast, DistilBertForTokenClassification
import torch

# Load model and tokenizer
model = DistilBertForTokenClassification.from_pretrained("GalalEwida/SIA-MerchentName")
tokenizer = DistilBertTokenizerFast.from_pretrained("GalalEwida/SIA-MerchentName")

# Prediction function
def extract_merchant(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
    
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = torch.argmax(outputs.logits, dim=2)
    
    tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
    id2label = {0: 'O', 1: 'B-MERCHANT', 2: 'I-MERCHANT'}
    predicted_labels = [id2label[pred.item()] for pred in predictions[0]]
    
    merchant_tokens = []
    for token, label in zip(tokens, predicted_labels):
        if label in ['B-MERCHANT', 'I-MERCHANT']:
            if token.startswith('##'):
                if merchant_tokens:
                    merchant_tokens[-1] += token[2:]
            else:
                merchant_tokens.append(token)
    
    return ' '.join(merchant_tokens)

# Example usage
text = "WALMART SUPERCENTER #1234 ANYTOWN US"
merchant = extract_merchant(text)
print(f"Extracted: {merchant}")

Labels

  • O: Outside (not part of merchant name)
  • B-MERCHANT: Beginning of merchant name
  • I-MERCHANT: Inside merchant name

Example Predictions

Input Extracted Merchant
WALMART SUPERCENTER #1234 ANYTOWN US WALMART
AMAZON.COM AMZN.COM/BILL WA AMAZON
STARBUCKS STORE #0123 NEW YORK NY STARBUCKS
Downloads last month
-
Safetensors
Model size
66.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support