Update: Add custom NPKPredictionModel implementation
Browse files- README.md +33 -0
- config.json +8 -0
- label_encoder.pkl +3 -0
- modeling_npk.py +62 -0
- npk_prediction_model.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- npk-prediction
|
| 4 |
+
- xgboost
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# NPK Prediction Model
|
| 8 |
+
|
| 9 |
+
This model predicts the Nitrogen, Phosphorus, and Potassium needs for crops based on various input features.
|
| 10 |
+
|
| 11 |
+
## Usage
|
| 12 |
+
|
| 13 |
+
```python
|
| 14 |
+
from transformers import AutoConfig, AutoModel
|
| 15 |
+
|
| 16 |
+
# Load the model
|
| 17 |
+
config = AutoConfig.from_pretrained("GodfreyOwino/NPK_prediction_model1")
|
| 18 |
+
model = AutoModel.from_config(config)
|
| 19 |
+
|
| 20 |
+
input_data = {
|
| 21 |
+
'crop_name': ['maize (corn)'],
|
| 22 |
+
'target_yield': [150],
|
| 23 |
+
'field_size': [10],
|
| 24 |
+
'ph': [6.5],
|
| 25 |
+
'organic_carbon': [1.2],
|
| 26 |
+
'nitrogen': [0.15],
|
| 27 |
+
'phosphorus': [20],
|
| 28 |
+
'potassium': [150],
|
| 29 |
+
'soil_moisture': [30]
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
prediction = model(input_data)
|
| 33 |
+
print(prediction)
|
config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "npk",
|
| 3 |
+
"architectures": ["NPKPredictionModel"],
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoConfig": "modeling_npk.NPKConfig",
|
| 6 |
+
"AutoModel": "modeling_npk.NPKPredictionModel"
|
| 7 |
+
}
|
| 8 |
+
}
|
label_encoder.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac25981a59fd92e29772ecf03261fa9992cc2df471d6fd05d77977930203066c
|
| 3 |
+
size 1233
|
modeling_npk.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import pickle
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
class NPKConfig(PretrainedConfig):
|
| 8 |
+
model_type = "npk"
|
| 9 |
+
|
| 10 |
+
def __init__(self, **kwargs):
|
| 11 |
+
super().__init__(**kwargs)
|
| 12 |
+
|
| 13 |
+
class NPKPredictionModel(PreTrainedModel):
|
| 14 |
+
config_class = NPKConfig
|
| 15 |
+
|
| 16 |
+
def __init__(self, config):
|
| 17 |
+
super().__init__(config)
|
| 18 |
+
self.xgb_model = None
|
| 19 |
+
self.label_encoder = None
|
| 20 |
+
|
| 21 |
+
def forward(self, inputs):
|
| 22 |
+
# Preprocess inputs
|
| 23 |
+
processed_inputs = {}
|
| 24 |
+
for key, value in inputs.items():
|
| 25 |
+
if isinstance(value, list):
|
| 26 |
+
processed_inputs[key] = value[0] if value else None
|
| 27 |
+
else:
|
| 28 |
+
processed_inputs[key] = value
|
| 29 |
+
|
| 30 |
+
crop_name = processed_inputs['crop_name']
|
| 31 |
+
processed_inputs['crop_name'] = self.label_encoder.transform([crop_name])[0]
|
| 32 |
+
|
| 33 |
+
input_df = pd.DataFrame([processed_inputs])
|
| 34 |
+
|
| 35 |
+
# Make prediction
|
| 36 |
+
prediction = self.xgb_model.predict(input_df)
|
| 37 |
+
|
| 38 |
+
return {
|
| 39 |
+
'Nitrogen Need': float(prediction[0][0]),
|
| 40 |
+
'Phosphorus Need': float(prediction[0][1]),
|
| 41 |
+
'Potassium Need': float(prediction[0][2])
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
@classmethod
|
| 45 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 46 |
+
config = kwargs.pop("config", None)
|
| 47 |
+
if config is None:
|
| 48 |
+
config = NPKConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 49 |
+
|
| 50 |
+
model = cls(config)
|
| 51 |
+
|
| 52 |
+
# Load the XGBoost model and label encoder
|
| 53 |
+
xgb_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="npk_prediction_model.pkl")
|
| 54 |
+
le_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="label_encoder.pkl")
|
| 55 |
+
|
| 56 |
+
with open(xgb_path, 'rb') as f:
|
| 57 |
+
model.xgb_model = pickle.load(f)
|
| 58 |
+
|
| 59 |
+
with open(le_path, 'rb') as f:
|
| 60 |
+
model.label_encoder = pickle.load(f)
|
| 61 |
+
|
| 62 |
+
return model
|
npk_prediction_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03507cafdc8061c0a14f23d1791e4d7c908752e68c5b1f330f0c7854a398a640
|
| 3 |
+
size 129759981
|