from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, QuantoConfig, GenerationConfig # load hf config hf_config = AutoConfig.from_pretrained("/Users/gokdenizgulmez/Desktop/mlx-lm/mlx_lm/MiniMiniMax01Text", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01") prompt = "Hello!" messages = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by MiniMax based on MiniMax-Text-01 model."}]}, {"role": "user", "content": [{"type": "text", "text": prompt}]}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # tokenize and move to device model_inputs = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained( "/Users/gokdenizgulmez/Desktop/mlx-lm/mlx_lm/MiniMiniMax01Text", trust_remote_code=True ) generation_config = GenerationConfig( max_new_tokens=20, eos_token_id=200020, use_cache=True, ) generated_ids = model.generate(**model_inputs, generation_config=generation_config) print(f"generated_ids: {generated_ids}") generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]