--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E50_freq results: [] --- # wav2vec2-1b-E50_freq This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Cer: 11.7951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 9.4581 | 0.2580 | 200 | 3.9157 | 68.4387 | | 2.071 | 0.5160 | 400 | 1.6011 | 37.3766 | | 1.307 | 0.7741 | 600 | 1.1918 | 28.6889 | | 1.1363 | 1.0321 | 800 | 1.0170 | 23.9192 | | 0.8977 | 1.2901 | 1000 | 0.8161 | 20.3771 | | 0.8219 | 1.5481 | 1200 | 0.7277 | 18.9908 | | 0.7857 | 1.8062 | 1400 | 0.7119 | 19.1494 | | 0.6967 | 2.0642 | 1600 | 0.6717 | 17.8748 | | 0.5744 | 2.3222 | 1800 | 0.7313 | 19.1259 | | 0.5676 | 2.5802 | 2000 | 0.6092 | 16.3593 | | 0.5362 | 2.8383 | 2200 | 0.5840 | 16.5120 | | 0.4879 | 3.0963 | 2400 | 0.5039 | 13.8745 | | 0.4144 | 3.3543 | 2600 | 0.5449 | 14.6558 | | 0.3875 | 3.6123 | 2800 | 0.4790 | 13.3400 | | 0.3723 | 3.8703 | 3000 | 0.4497 | 12.3238 | | 0.3326 | 4.1284 | 3200 | 0.4624 | 12.3825 | | 0.2905 | 4.3864 | 3400 | 0.4345 | 12.2004 | | 0.2745 | 4.6444 | 3600 | 0.4479 | 12.2768 | | 0.2668 | 4.9024 | 3800 | 0.4231 | 11.7951 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1