Upload folder using huggingface_hub
Browse files- README.md +136 -0
- config.json +61 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-classification
|
7 |
+
- document-classification
|
8 |
+
- knowledge-distillation
|
9 |
+
- vit
|
10 |
+
- rvl-cdip
|
11 |
+
- tiny-model
|
12 |
+
- distilled-model
|
13 |
+
datasets:
|
14 |
+
- rvl_cdip
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
+
pipeline_tag: image-classification
|
18 |
+
widget:
|
19 |
+
- src: https://huggingface.co/datasets/rvl_cdip/resolve/main/sample_images/letter_0.jpg
|
20 |
+
example_title: Letter
|
21 |
+
- src: https://huggingface.co/datasets/rvl_cdip/resolve/main/sample_images/form_0.jpg
|
22 |
+
example_title: Form
|
23 |
+
---
|
24 |
+
|
25 |
+
# ViT-Tiny Classifier for RVL-CDIP Document Classification (Distilled)
|
26 |
+
|
27 |
+
This model is a compressed Vision Transformer (ViT-Tiny) trained using knowledge distillation from DiT-Large on the RVL-CDIP dataset for document image classification.
|
28 |
+
|
29 |
+
## Model Details
|
30 |
+
|
31 |
+
- **Student Model**: ViT-Tiny (Vision Transformer)
|
32 |
+
- **Teacher Model**: microsoft/dit-large-finetuned-rvlcdip
|
33 |
+
- **Training Method**: Knowledge Distillation
|
34 |
+
- **Parameters**: ~5.5M (55x smaller than teacher)
|
35 |
+
- **Dataset**: RVL-CDIP (320k document images, 16 classes)
|
36 |
+
- **Task**: Document Image Classification
|
37 |
+
- **Accuracy**: To be evaluated
|
38 |
+
- **Compression Ratio**: ~55x parameter reduction from teacher model
|
39 |
+
|
40 |
+
## Document Classes
|
41 |
+
|
42 |
+
The model classifies documents into 16 categories:
|
43 |
+
|
44 |
+
1. **letter** - Personal or business correspondence
|
45 |
+
2. **form** - Structured forms and applications
|
46 |
+
3. **email** - Email communications
|
47 |
+
4. **handwritten** - Handwritten documents
|
48 |
+
5. **advertisement** - Marketing materials and ads
|
49 |
+
6. **scientific_report** - Research reports and studies
|
50 |
+
7. **scientific_publication** - Academic papers and journals
|
51 |
+
8. **specification** - Technical specifications
|
52 |
+
9. **file_folder** - File folders and organizational documents
|
53 |
+
10. **news_article** - News articles and press releases
|
54 |
+
11. **budget** - Financial budgets and planning documents
|
55 |
+
12. **invoice** - Bills and invoices
|
56 |
+
13. **presentation** - Presentation slides
|
57 |
+
14. **questionnaire** - Surveys and questionnaires
|
58 |
+
15. **resume** - CVs and resumes
|
59 |
+
16. **memo** - Internal memos and notices
|
60 |
+
|
61 |
+
## Usage
|
62 |
+
|
63 |
+
```python
|
64 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
65 |
+
from PIL import Image
|
66 |
+
|
67 |
+
# Load model
|
68 |
+
processor = AutoImageProcessor.from_pretrained("HAMMALE/vit-tiny-classifier-rvlcdip")
|
69 |
+
model = AutoModelForImageClassification.from_pretrained("HAMMALE/vit-tiny-classifier-rvlcdip")
|
70 |
+
|
71 |
+
# Load and classify an image
|
72 |
+
image = Image.open("path_to_your_document_image.jpg")
|
73 |
+
inputs = processor(image, return_tensors="pt")
|
74 |
+
|
75 |
+
# Get predictions
|
76 |
+
outputs = model(**inputs)
|
77 |
+
predicted_class_id = outputs.logits.argmax(-1).item()
|
78 |
+
|
79 |
+
# Get class names
|
80 |
+
class_names = [
|
81 |
+
"letter", "form", "email", "handwritten", "advertisement",
|
82 |
+
"scientific_report", "scientific_publication", "specification",
|
83 |
+
"file_folder", "news_article", "budget", "invoice",
|
84 |
+
"presentation", "questionnaire", "resume", "memo"
|
85 |
+
]
|
86 |
+
|
87 |
+
predicted_class = class_names[predicted_class_id]
|
88 |
+
print("Predicted class:", predicted_class)
|
89 |
+
```
|
90 |
+
|
91 |
+
## Performance
|
92 |
+
|
93 |
+
| Metric | Value |
|
94 |
+
|--------|-------|
|
95 |
+
| Accuracy | To be evaluated |
|
96 |
+
| Parameters | ~5.5M |
|
97 |
+
| Model Size | ~22 MB |
|
98 |
+
| Input Size | 224x224 pixels |
|
99 |
+
|
100 |
+
## Training Details
|
101 |
+
|
102 |
+
- **Student Architecture**: Vision Transformer (ViT-Tiny)
|
103 |
+
- **Teacher Model**: microsoft/dit-large-finetuned-rvlcdip
|
104 |
+
- **Distillation Method**: Knowledge Distillation
|
105 |
+
- **Input Resolution**: 224x224
|
106 |
+
- **Preprocessing**: Standard ImageNet normalization
|
107 |
+
- **Framework**: Transformers/PyTorch
|
108 |
+
- **Distillation Benefits**: Maintains high accuracy with 55x fewer parameters
|
109 |
+
|
110 |
+
## Dataset
|
111 |
+
|
112 |
+
The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset contains:
|
113 |
+
- 400,000 grayscale document images
|
114 |
+
- 16 document categories
|
115 |
+
- Images collected from truth tobacco industry documents
|
116 |
+
- Standard train/validation/test splits
|
117 |
+
|
118 |
+
## Citation
|
119 |
+
|
120 |
+
```bibtex
|
121 |
+
@misc{hammale2025vit_tiny_rvlcdip_distilled,
|
122 |
+
title={ViT-Tiny Classifier for RVL-CDIP Document Classification (Distilled)},
|
123 |
+
author={Hammale, Mourad},
|
124 |
+
year={2025},
|
125 |
+
howpublished={\url{https://huggingface.co/HAMMALE/vit-tiny-classifier-rvlcdip}},
|
126 |
+
note={Knowledge distilled from microsoft/dit-large-finetuned-rvlcdip}
|
127 |
+
}
|
128 |
+
```
|
129 |
+
|
130 |
+
## Acknowledgments
|
131 |
+
|
132 |
+
This model was created by HAMMALE (Mourad) through knowledge distillation from the larger DiT-Large model (microsoft/dit-large-finetuned-rvlcdip), achieving significant compression while maintaining competitive performance for document classification tasks.
|
133 |
+
|
134 |
+
## License
|
135 |
+
|
136 |
+
This model is released under the Apache 2.0 license.
|
config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ViTForImageClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"encoder_stride": 16,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.0,
|
9 |
+
"hidden_size": 192,
|
10 |
+
"id2label": {
|
11 |
+
"0": "letter",
|
12 |
+
"1": "form",
|
13 |
+
"2": "email",
|
14 |
+
"3": "handwritten",
|
15 |
+
"4": "advertisement",
|
16 |
+
"5": "scientific_report",
|
17 |
+
"6": "scientific_publication",
|
18 |
+
"7": "specification",
|
19 |
+
"8": "file_folder",
|
20 |
+
"9": "news_article",
|
21 |
+
"10": "budget",
|
22 |
+
"11": "invoice",
|
23 |
+
"12": "presentation",
|
24 |
+
"13": "questionnaire",
|
25 |
+
"14": "resume",
|
26 |
+
"15": "memo"
|
27 |
+
},
|
28 |
+
"image_size": 224,
|
29 |
+
"initializer_range": 0.02,
|
30 |
+
"intermediate_size": 768,
|
31 |
+
"label2id": {
|
32 |
+
"advertisement": 4,
|
33 |
+
"budget": 10,
|
34 |
+
"email": 2,
|
35 |
+
"file_folder": 8,
|
36 |
+
"form": 1,
|
37 |
+
"handwritten": 3,
|
38 |
+
"invoice": 11,
|
39 |
+
"letter": 0,
|
40 |
+
"memo": 15,
|
41 |
+
"news_article": 9,
|
42 |
+
"presentation": 12,
|
43 |
+
"questionnaire": 13,
|
44 |
+
"resume": 14,
|
45 |
+
"scientific_publication": 6,
|
46 |
+
"scientific_report": 5,
|
47 |
+
"specification": 7
|
48 |
+
},
|
49 |
+
"layer_norm_eps": 1e-12,
|
50 |
+
"model_type": "vit",
|
51 |
+
"num_attention_heads": 3,
|
52 |
+
"num_channels": 3,
|
53 |
+
"num_hidden_layers": 12,
|
54 |
+
"patch_size": 16,
|
55 |
+
"pooler_act": "tanh",
|
56 |
+
"pooler_output_size": 192,
|
57 |
+
"problem_type": "single_label_classification",
|
58 |
+
"qkv_bias": true,
|
59 |
+
"torch_dtype": "float32",
|
60 |
+
"transformers_version": "4.52.4"
|
61 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:715e45c6eac8d55c30fa550cc387e5c8508e2beda741c90cf59371d2579a55b5
|
3 |
+
size 22132736
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "ViTImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 224,
|
21 |
+
"width": 224
|
22 |
+
}
|
23 |
+
}
|