File size: 8,179 Bytes
2713bc4
d76dbe8
2713bc4
 
 
 
 
 
 
 
 
 
 
 
 
0eee5e8
2713bc4
 
 
489f045
2713bc4
 
7ab5e1b
2713bc4
7ab5e1b
2713bc4
 
 
 
 
 
62d78a9
2713bc4
 
0eee5e8
2713bc4
 
0eee5e8
2713bc4
 
0eee5e8
2713bc4
 
 
 
0eee5e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2713bc4
0eee5e8
2713bc4
 
 
 
 
 
 
 
0eee5e8
2713bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4ee4b
2713bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4ee4b
 
 
 
 
 
 
 
 
 
 
 
 
2713bc4
4c4ee4b
2713bc4
4c4ee4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
---
license: apache-2.0
language:
- en
- zh
tags:
- MoE
- Unified Generation
- Speech and Music
- Multi-modal
---


<h1 align="center">UniMoE-Audio</h1>

**UniMoE-Audio**  is a unified framework that seamlessly combines speech and music generation. Powered by a novel Dynamic-Capacity Mixture-of-Experts architecture. 

<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
  <a href="https://mukioxun.github.io/Uni-MoE-site/home.html"><img src="https://img.shields.io/badge/📰 -Website-228B22" style="margin-right: 5px;"></a>
  <a href="https://arxiv.org/abs/2510.13344"><img src="https://img.shields.io/badge/📄-Paper-8A2BE2" style="margin-right: 5px;"></a>
</div>

---

**If you enjoy our work or want timely updates, please give us a like and follow us.**

## Open-source Plan
- [x] Model Checkpoint 
    - [x] [UniMoE-Audio-preview](https://huggingface.co/foggyforest/UniMoE-Audio-preview)
    - [ ] [UniMoE-Audio]()
- [x] Training and Inference Code: [HITsz-TMG/UniMoE-Audio](https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs/tree/master/UniMoE-Audio)
- [x] Technical Report: [UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE](https://arxiv.org/abs/2510.13344)

## Evaluation

### Speech Synthesis
![Speech Synthesis](./imgs/Speech_Generation.png)

### Text to Music Generation
![Text to Music Generation](./imgs/T2M.png)

### Video-Text to Music Generation
![Video-Text to Music Generation](./imgs/VT2M.png)

## Requirements

Since we have used the Qwen2.5VL model, we advise you to install transformers>=4.53.1, or you might encounter the following error:
```
KeyError: 'qwen2_vl'
```
## Quickstart

We use `qwen-vl-utils` to handle various types of visual input. You can install it using the following command:
```
pip install qwen-vl-utils
```


We use the Descript Audio Codec (DAC) for audio compression.  You can install it using the following command:
```
pip install descript-audio-codec
```
The model weight will be automatically downloaded on first run.


## Usage

Here is a code snippet to show you how to use UniMoE-Audio with `transformers`

```python
import torch
import deepspeed_utils # This line is important, do not delete it
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor

# Import from utils modules
from utils import (
    Dac,
    preprocess_codec,
    DecoderOutput,
    tts_preprocess,
    t2m_preprocess,
    v2m_preprocess,
    prepare_audio_prompt,
    generate_output
)

model_path = "/path/to/your/model"

dac = Dac()

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float32,
    attn_implementation='sdpa',
    trust_remote_code=True,
).eval()
model = model.to('cuda')

processor = AutoProcessor.from_pretrained(model_path)

```

### TTS Example:

```python
transcription = [
    "The nature reserve covers only a small part of the marsh area.",
    "我们基于动态容量混合专家框架,构建了一个统一语音和音乐生成模型。"
]
prompt_wav = "/path/to/your/voice/prompt"
prompt_transcription = "content of your voice prompt"
        
prompt_codec = preprocess_codec(model, dac.encode(prompt_wav))
text_input, tts_generation_kwargs = tts_preprocess(transcription, prompt_codec, prompt_transcription, model.device)
source_input = processor.tokenizer(text_input, add_special_tokens=False, return_tensors="pt", padding=True).to(model.device)

prefill, prefill_steps = prepare_audio_prompt(model, audio_prompts=[None] * len(transcription))
dec_output = DecoderOutput(prefill, prefill_steps, model.device)
        
with torch.no_grad():
    generated_codes, lengths_Bx = model.generate(
        input_ids=source_input.input_ids,
        attention_mask=source_input.attention_mask,
        dec_output=dec_output,
        max_tokens=10 * 50, # maximum duration of the generated audio is 10 seconds
        min_tokens=1 * 50, # minimum duration of the generated audio is 1 seconds
        temperature=1.0,
        top_p=1.0,
        cfg_filter_top_k=45,
        do_sample=True,
        use_cache=True,
        **tts_generation_kwargs
    )
        
audios = generate_output(model, generated_codes, lengths_Bx)
for i in range(len(audios)):
    output_path = os.path.join(f"./generated_speech_{i}.wav")
    dac.decode(audios[i].transpose(0, 1).unsqueeze(0), save_path=output_path, min_duration=1)

```

### T2M Example:

```python
caption = [
    "A retro-inspired synthwave track with a driving beat and nostalgic melodies. Perfect for cruising or late-night drives.",
    "A mid-tempo electronic track with a driving beat and atmospheric synth textures. Ideal for background listening or a chill dance set."
]

text_input, t2m_generation_kwargs = t2m_preprocess(caption)

source_input = processor.tokenizer(text_input, add_special_tokens=False, return_tensors="pt", padding=True).to(model.device)

prefill, prefill_steps = prepare_audio_prompt(model, audio_prompts=[None] * len(caption))
dec_output = DecoderOutput(prefill, prefill_steps, model.device)
        
with torch.no_grad():
    generated_codes, lengths_Bx = model.generate(
        input_ids=source_input.input_ids,
        attention_mask=source_input.attention_mask,
        dec_output=dec_output,
        max_tokens=20 * 50, # maximum duration of the generated audio is 20 seconds
        min_tokens=8 * 50, # minimum duration of the generated audio is 8 seconds
        temperature=1.0,
        top_p=1.0,
        cfg_filter_top_k=45,
        do_sample=True,
        use_cache=True,
        **t2m_generation_kwargs
    )
        
audios = generate_output(model, generated_codes, lengths_Bx)
for i in range(len(audios)):
    output_path = os.path.join(f"./generated_music_{i}.wav")
    dac.decode(audios[i].transpose(0, 1).unsqueeze(0), save_path=output_path, min_duration=1)


```

### V2M Example:
```python

caption = [
    "A relaxing instrumental piece featuring a simple melody played on a synth flute. The track creates a calm and peaceful atmosphere.",
]
video = [
    "/path/to/your/video/path.mp4",
]

text_input,  video_inputs, fps_inputs, v2m_generation_kwargs = v2m_preprocess(caption, video)

source_input = processor(text=text_input, images=None, videos=video_inputs, fps=fps_inputs, padding=True, return_tensors="pt", do_resize=False)
source_input = source_input.to(model.device)

prefill, prefill_steps = prepare_audio_prompt(model, audio_prompts=[None] * len(caption))
dec_output = DecoderOutput(prefill, prefill_steps, model.device)
        
with torch.no_grad():
    generated_codes, lengths_Bx = model.generate(
        input_ids=source_input.input_ids,
        pixel_values_videos=source_input.pixel_values_videos,
        video_grid_thw=source_input.video_grid_thw,
        second_per_grid_ts=source_input.second_per_grid_ts,
        attention_mask=source_input.attention_mask,
        dec_output=dec_output,
        max_tokens=20 * 50, # maximum duration of the generated audio is 20 seconds
        min_tokens=8 * 50, # minimum duration of the generated audio is 8 seconds
        temperature=1.0,
        top_p=1.0,
        cfg_filter_top_k=45,
        do_sample=True,
        use_cache=True,
        **v2m_generation_kwargs
    )
        
audios = generate_output(model, generated_codes, lengths_Bx)
for i in range(len(audios)):
    output_path = os.path.join(f"./generated_video_music_{i}.wav")
    dac.decode(audios[i].transpose(0, 1).unsqueeze(0), save_path=output_path, min_duration=1)
```




# Citation

Please cite the repo if you use the model or code in this repo.

```
@article{liu2025unimoeaudiounifiedspeechmusic,
      title={UniMoE-Audio: Unified Speech and Music Generation with Dynamic-Capacity MoE}, 
      author={Zhenyu Liu and Yunxin Li and Xuanyu Zhang and Qixun Teng and Shenyuan Jiang and Xinyu Chen and Haoyuan Shi and Jinchao Li and Qi Wang and Haolan Chen and Fanbo Meng and Mingjun Zhao and Yu Xu and Yancheng He and Baotian Hu and Min Zhang},
      year={2025},
      journal={arXiv preprint arXiv:2510.13344},
      url={https://arxiv.org/abs/2510.13344}, 
}
```

# Contract

If you encounter any issue, feel free to contact us via the email: [email protected]