import copy import os from typing import Optional import torch import torch.nn as nn from torch import Tensor import deepspeed from deepspeed import comm as dist from deepspeed.utils import groups, log_dist from deepspeed.utils.timer import SynchronizedWallClockTimer from deepspeed.moe.sharded_moe import FIRST_ALLTOALL_TIMER, MOE_TIMER, SECOND_ALLTOALL_TIMER, _AllToAll, einsum, gumbel_rsample from transformers.activations import ACT2FN def compress_matrix(A: torch.Tensor, mask: torch.Tensor, force_dim: int = None, allow_larger_dim=None) -> torch.Tensor: if A.shape[:2] != mask.shape: raise ValueError("First two dimensions of A and mask must match.") if mask.ndim != 2: raise ValueError("mask must be a 2D tensor.") if not ((mask == 0) | (mask == 1)).all(): raise ValueError( f"mask must only contain 0s and 1s. dtype: {mask.dtype}. " f"Invalid elements found at indices: {((mask != 0) & (mask != 1)).nonzero().tolist()} " # Get indices of elements not 0 AND not 1 f"with corresponding values: {mask[((mask != 0) & (mask != 1))].tolist()}. " # Get the values at those indices f"\nOriginal mask (showing up to first 20 elements if large):\n{mask.flatten()[:20]}{'...' if mask.numel() > 20 else ''}" ) S, E = mask.shape trailing_dims_shape = A.shape[2:] num_trailing_dims = len(trailing_dims_shape) device = A.device ones_per_column = mask.sum(dim=0) X = ones_per_column.max().item() if force_dim is None else force_dim if X == 0: return torch.empty((0, E, *trailing_dims_shape), dtype=A.dtype, device=device) sorted_row_indices_2d = torch.argsort(mask.float(), dim=0, descending=True) view_shape_for_indices = (S, E, *((1,) * num_trailing_dims)) expanded_indices = sorted_row_indices_2d.view(view_shape_for_indices).expand_as(A) A_gathered = torch.gather(A, 0, expanded_indices) if X <= A_gathered.shape[0]: B_candidate = A_gathered[:X, ...] elif allow_larger_dim or allow_larger_dim is None: if allow_larger_dim is None: print(f"[Warning compress_matrix] Target dimension X ({X}) is larger than " f"A's original row count S ({S}). Padding B_candidate with zeros.") B_candidate = A_gathered zeros_shape = [X - A_gathered.shape[0]] + list(B_candidate.shape[1:]) B_candidate = torch.cat((B_candidate, torch.zeros(zeros_shape, dtype=B_candidate.dtype, device=B_candidate.device)), dim=0) # Shape (X_target_dim, E, ...) else: raise AssertionError( f"Target dimension X ({X}) is larger than A's original row count S ({S}) " f"and allow_larger_dim is False. Padding is disallowed." ) row_indices_for_B = torch.arange(X, device=device).unsqueeze(1) b_mask_2d = row_indices_for_B < ones_per_column.unsqueeze(0) view_shape_for_b_mask = (X, E, *((1,) * num_trailing_dims)) B = B_candidate * b_mask_2d.view(view_shape_for_b_mask).to(A.dtype) return B def decompress_matrix(B: torch.Tensor, mask: torch.Tensor, allow_larger_dim=None) -> torch.Tensor: if B.shape[1] != mask.shape[1]: raise ValueError("B's second dimension and mask's second dimension (E) must match.") if mask.ndim != 2: raise ValueError("mask must be a 2D tensor.") if not ((mask == 0) | (mask == 1)).all(): raise ValueError("mask must only contain 0s and 1s.") S, E = mask.shape X = B.shape[0] trailing_dims_shape = B.shape[2:] num_trailing_dims = len(trailing_dims_shape) device = B.device if X == 0: return torch.zeros((S, E, *trailing_dims_shape), dtype=B.dtype, device=device) if X <= S: pass elif allow_larger_dim or allow_larger_dim is None: if allow_larger_dim is None: print(f"[Warning decompress_matrix] Input B.shape[0] ({X}) is larger than " f"target A's row count S ({S}). Truncating B to its first {S} rows.") B = B[:S, ...] X = S else: raise AssertionError( f"Input B.shape[0] ({X}) is larger than target A's row count S ({S}) " f"and allow_larger_dim is False. Truncation is disallowed." ) sorted_row_indices_2d = torch.argsort(mask.float(), dim=0, descending=True) target_A_row_indices_2d = sorted_row_indices_2d[:X, :] A_reconstructed = torch.zeros((S, E, *trailing_dims_shape), dtype=B.dtype, device=device) view_shape_for_target_indices = (X, E, *((1,) * num_trailing_dims)) expanded_target_indices = target_A_row_indices_2d.view(view_shape_for_target_indices).expand_as(B) A_reconstructed.scatter_(dim=0, index=expanded_target_indices, src=B) return A_reconstructed class AudioSharedExpertMLP(nn.Module): """ Shared expert MLP for UniMoE-Audio model. Handles common audio feature transformations across all tokens. """ def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.shared_intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) class AudioDynamicExpertMLP(nn.Module): """ Dynamic expert MLP for UniMoE-Audio model. Specialized for adaptive audio feature processing based on content. """ def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.dynamic_intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) class AudioNullExpertMLP(nn.Module): """ Null expert MLP for UniMoE-Audio model. Returns zero output for tokens that don't require expert processing. """ def __init__(self, config): super().__init__() def forward(self, hidden_state): return torch.zeros_like(hidden_state, dtype=hidden_state.dtype, device=hidden_state.device) def audio_sparse_expert_mixer(scores, top_k, jitter_eps, training): """ Sparse expert mixing function for UniMoE-Audio. Implements adaptive expert selection with noise injection for training. """ masked_scores = scores multiplier_list = [] selected_experts_list = [] for _ in range(top_k): with torch.no_grad(): mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True) factor = scores.abs().clamp(min=mask_logits_threshold.abs()) mask_logits_threshold = ((mask_logits_threshold - scores) / factor) > (2 * jitter_eps) masked_gates = masked_scores.masked_fill(mask_logits_threshold, float("-inf")) selected_experts = max_ind masked_gates = torch.softmax(masked_gates, dim=-1) multiplier_o = masked_gates.gather(dim=-1, index=selected_experts) multiplier = multiplier_o masked_scores = torch.scatter( masked_scores, -1, selected_experts, float("-inf"), ) multiplier_list.append(multiplier) selected_experts_list.append(selected_experts) multiplier = torch.concat(multiplier_list, dim=-1) selected_experts = torch.concat(selected_experts_list, dim=-1) return ( multiplier, selected_experts, ) def audio_dynamic_expert_selection(logits, top_p): """ Dynamic expert selection for UniMoE-Audio based on cumulative probability threshold. Adapts the number of experts based on audio content complexity. """ dynamic_scores = torch.softmax(logits, dim=-1) dynamic_scores_sorted, _ = torch.sort(dynamic_scores, dim=-1, descending=True) dynamic_scores_cumsum = dynamic_scores_sorted.cumsum(dim=-1) dynamic_top_k = (~(dynamic_scores_cumsum >= top_p)).sum(dim=-1) dynamic_top_k = dynamic_top_k + 1 return dynamic_top_k def _audio_expert_capacity(num_tokens, num_experts, capacity_factor: Tensor, min_capacity: Tensor) -> Tensor: """Calculate expert capacity for UniMoE-Audio based on token distribution and capacity factor.""" capacity = torch.ceil((num_tokens / num_experts) * capacity_factor).to(torch.int64) if capacity < min_capacity: capacity = min_capacity.to(torch.int64) return capacity def calculate_audio_global_routing_weight( expert_mask: torch.Tensor, full_router_logits: torch.Tensor, mlp_dynamic_expert_num: int, routing_weights: torch.Tensor, ): """ Calculate global routing weights for UniMoE-Audio combining dynamic and fixed expert weights. Optimized for audio generation tasks. """ global_weight = torch.softmax(full_router_logits.masked_fill(expert_mask == 0, float("-inf")), dim=-1) global_dynamic_weight = global_weight[:, :mlp_dynamic_expert_num] global_fixed_weight = global_weight[:, mlp_dynamic_expert_num:] global_dynamic_weight = routing_weights * global_dynamic_weight.sum(-1).unsqueeze(-1).expand(-1, routing_weights.shape[-1]) global_weight = torch.cat((global_dynamic_weight, global_fixed_weight), dim=-1) return global_weight class UniMoEAudioSparseMoeBlock(nn.Module): """ UniMoE-Audio Sparse Mixture of Experts block with dynamic routing and expert selection. Optimized for audio generation tasks with efficient sparse operations and capacity management. """ def __init__(self, config): super().__init__() self.hidden_dim = config.hidden_size self.mlp_dynamic_expert_num = config.mlp_dynamic_expert_num + config.mlp_dynamic_null_expert_num self.mlp_dynamic_real_expert_num = config.mlp_dynamic_expert_num self.mlp_dynamic_null_expert_num = config.mlp_dynamic_null_expert_num self.mlp_dynamic_top_p = config.mlp_dynamic_top_p self.mlp_dynamic_top_k = config.mlp_dynamic_top_k self.mlp_fixed_expert_num = config.mlp_fixed_expert_num self.num_experts = self.mlp_dynamic_expert_num + self.mlp_fixed_expert_num if self.mlp_dynamic_top_p == 0: print(f"mlp_dynamic_top_p is 0, will use mlp_dynamic_top_k={self.mlp_dynamic_top_k} instead !!!") self.ignore_differentiable_router = config.ignore_differentiable_router if self.ignore_differentiable_router: print("ignore_differentiable_router is True, will not use router_logits !!!") self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.fixed_real_moe = nn.ModuleList([AudioSharedExpertMLP(config) for _ in range(self.mlp_fixed_expert_num)]) self.dynamic_real_moe = UniMoEAudioMoE(config, AudioDynamicExpertMLP(config), self.mlp_dynamic_real_expert_num, config.ep_size) self.router_jitter_noise = config.router_jitter_noise self.input_jitter_noise = config.input_jitter_noise self.min_capacity = config.min_capacity self.capacity_factor = config.capacity_factor self.token_drop = config.token_drop self.drop_policy = config.drop_policy self.avg_hidden_states_last = config.avg_hidden_states_last self.drop_token_num_print = config.drop_token_num_print self.fp32_gate = config.fp32_gate def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, aux_balance_weight: torch.Tensor=None): batch_size, sequence_length, hidden_dim = hidden_states.shape original_hidden_states = hidden_states if self.training and self.fp32_gate: hidden_states = hidden_states.float() if self.training and self.input_jitter_noise > 0: hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise) hidden_states = hidden_states.view(-1, hidden_dim) if self.training and self.fp32_gate: full_router_logits = torch.nn.functional.linear(hidden_states, weight=self.gate.weight.float(), bias=None) else: full_router_logits = self.gate(hidden_states) dynamic_router_logits = full_router_logits[:, : self.mlp_dynamic_expert_num] if self.mlp_dynamic_top_p != 0: dynamic_top_k = audio_dynamic_expert_selection(dynamic_router_logits, self.mlp_dynamic_top_p) else: dynamic_top_k = torch.full((dynamic_router_logits.shape[0],), self.mlp_dynamic_top_k, dtype=torch.int, device=dynamic_router_logits.device) expert_mask = torch.zeros((batch_size * sequence_length, self.num_experts), dtype=torch.int, device=hidden_states.device) routing_weights = torch.zeros((batch_size * sequence_length, self.mlp_dynamic_expert_num), dtype=hidden_states.dtype, device=hidden_states.device) for top_k in range(1, self.mlp_dynamic_expert_num + 1): group_idx = torch.nonzero(dynamic_top_k == top_k, as_tuple=True)[0] if len(group_idx) == 0: continue dynamic_group_logits = dynamic_router_logits[group_idx] group_routing_weights, group_selected_experts = audio_sparse_expert_mixer( dynamic_group_logits, top_k=top_k, jitter_eps=self.router_jitter_noise, training=self.training and not self.ignore_differentiable_router, ) group_expert_mask = torch.nn.functional.one_hot(group_selected_experts, num_classes=self.num_experts) group_expert_mask = group_expert_mask.sum(dim=1) group_weight = torch.zeros((len(group_idx), self.mlp_dynamic_expert_num), dtype=hidden_states.dtype, device=hidden_states.device) group_weight.scatter_(dim=-1, index=group_selected_experts, src=group_routing_weights) routing_weights.index_add_(0, group_idx, group_weight) expert_mask.index_add_(0, group_idx, group_expert_mask.to(expert_mask.dtype)) routing_weights = routing_weights / (routing_weights.sum(dim=-1).unsqueeze(-1).expand(-1, routing_weights.shape[-1]) + 1e-6) if attention_mask is not None: attention_mask = attention_mask.to(expert_mask.dtype).view(-1).unsqueeze(-1).expand(-1, self.num_experts) expert_mask = expert_mask * attention_mask if self.mlp_dynamic_expert_num < self.num_experts: expert_mask[:, self.mlp_dynamic_expert_num :] = 1 aux_loss = audio_load_balancing_loss_func( expert_mask=expert_mask, mlp_dynamic_expert_num=self.mlp_dynamic_expert_num, global_weight=None, full_router_logits=full_router_logits, routing_weights=routing_weights, aux_balance_weight=aux_balance_weight, ) if self.token_drop: expert_mask_dtype = expert_mask.dtype capacity = _audio_expert_capacity(batch_size * sequence_length, self.mlp_dynamic_expert_num, torch.tensor(self.capacity_factor), torch.tensor(self.min_capacity)) if self.drop_policy == "probs": if capacity > dynamic_router_logits.shape[0]: print(f"[warning] token capacity({capacity}) > token num({dynamic_router_logits.shape[0]}), setting capacity=token num") capacity = dynamic_router_logits.shape[0] dynamic_expert_mask = expert_mask[:, : self.mlp_dynamic_expert_num].bool() token_drop_router_logits = torch.masked_fill(dynamic_router_logits, ~dynamic_expert_mask, torch.finfo(dynamic_router_logits.dtype).min) capacity_probs, capacity_indices = torch.topk(token_drop_router_logits, k=capacity, dim=0, sorted=False) capacity_mask = torch.zeros_like(expert_mask).scatter(0, capacity_indices, 1) capacity_mask[:, self.mlp_dynamic_expert_num :] = 1 expert_mask = torch.logical_and(expert_mask, capacity_mask) ori_token_num = dynamic_expert_mask.sum().item() cur_token_num = expert_mask[:, : self.mlp_dynamic_expert_num].sum().item() if self.drop_token_num_print and ("RANK" not in os.environ or int(os.environ["RANK"]) == 0): print(f"drop {ori_token_num - cur_token_num} tokens from total {ori_token_num} tokens") elif self.drop_policy == "position": locations = torch.cumsum(expert_mask, dim=0) - 1 expert_mask *= torch.lt(locations, capacity) else: raise ValueError(f"Invalid drop_policy: {self.drop_policy}") expert_mask = expert_mask.to(expert_mask_dtype) routing_weights = routing_weights.masked_fill(~(expert_mask[:, : self.mlp_dynamic_expert_num].bool()), 0.0) routing_weights = routing_weights / (routing_weights.sum(dim=-1).unsqueeze(-1).expand(-1, routing_weights.shape[-1]) + 1e-6) if self.mlp_dynamic_expert_num < self.num_experts: global_weight = calculate_audio_global_routing_weight(expert_mask, full_router_logits, self.mlp_dynamic_expert_num, routing_weights) else: global_weight = routing_weights hidden_states = original_hidden_states.view(-1, hidden_dim) final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device) global_weight = global_weight.to(hidden_states.dtype) current_hidden_states = self.dynamic_real_moe(hidden_states, expert_mask=expert_mask[:, : self.mlp_dynamic_real_expert_num], router_weight=global_weight[:, : self.mlp_dynamic_real_expert_num]) final_hidden_states = final_hidden_states + current_hidden_states for expert_idx in range(self.mlp_fixed_expert_num): expert_layer = self.fixed_real_moe[expert_idx] current_state = hidden_states current_global_weight = global_weight[:, self.mlp_dynamic_expert_num + expert_idx].unsqueeze(-1) current_hidden_states = expert_layer(current_state) * current_global_weight final_hidden_states = final_hidden_states + current_hidden_states final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) if not self.training and self.avg_hidden_states_last: dist.all_reduce(final_hidden_states, op=dist.ReduceOp.AVG, group=self.dynamic_real_moe.deepspeed_moe.ep_group) return final_hidden_states, full_router_logits, dynamic_top_k, expert_mask, global_weight, aux_loss def audio_load_balancing_loss_func( expert_mask: torch.Tensor, mlp_dynamic_expert_num: int, global_weight: Optional[torch.Tensor] = None, full_router_logits: Optional[torch.Tensor] = None, routing_weights: Optional[torch.Tensor] = None, aux_balance_weight: Optional[torch.Tensor] = None, ) -> float: """Calculate load balancing loss for UniMoE-Audio expert routing to encourage balanced usage.""" min_dtype = torch.finfo(full_router_logits.dtype).min global_weight = full_router_logits.masked_fill(expert_mask == 0, min_dtype) global_weight = global_weight[:, :mlp_dynamic_expert_num] global_weight = torch.softmax(global_weight, dim=-1) expert_mask = expert_mask[:, :mlp_dynamic_expert_num] num_experts = expert_mask.shape[-1] if aux_balance_weight is None: tokens_per_expert = torch.mean(expert_mask.float(), dim=0) router_prob_per_expert = torch.mean(global_weight, dim=0) else: batch_size, sequence_length = aux_balance_weight.shape num_hidden_layers = global_weight.shape[0] // (batch_size * sequence_length) expert_attention_mask = aux_balance_weight[None, :, :, None].expand((num_hidden_layers, batch_size, sequence_length, num_experts)).reshape(-1, num_experts).to(global_weight.device) tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(expert_attention_mask, dim=0) router_prob_per_expert = torch.sum(global_weight * expert_attention_mask, dim=0) / torch.sum(expert_attention_mask, dim=0) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) return overall_loss * num_experts class AudioExperts(deepspeed.moe.experts.Experts): """Custom Audio experts class extending DeepSpeed MoE experts with additional functionality.""" def __init__(self, expert, num_local_experts=1, expert_group_name=None): super(deepspeed.moe.experts.Experts, self).__init__() self.deepspeed_experts = torch.nn.ModuleList([copy.deepcopy(expert) for i in range(num_local_experts)]) self.num_local_experts = num_local_experts for expert in self.deepspeed_experts: for name, param in expert.named_parameters(): param.allreduce = False param.group_name = expert_group_name def forward(self, inputs): chunks = inputs.chunk(self.num_local_experts, dim=1) expert_outputs = [] for chunk, expert in zip(chunks, self.deepspeed_experts): out = expert(chunk) if type(out) is tuple: out = out[0] expert_outputs += [out] expert_output = torch.cat(expert_outputs, dim=1) return expert_output class AudioMOELayer(deepspeed.moe.sharded_moe.MOELayer): """Custom Audio MoE layer extending DeepSpeed MOELayer with matrix compression optimization.""" def __init__( self, experts: nn.Module, ep_group_name, ep_size, num_local_experts: int, use_tutel: bool = False, ) -> None: super(deepspeed.moe.sharded_moe.MOELayer, self).__init__() self.experts = experts self.ep_group = None self.ep_size = ep_size self.ep_group_name = ep_group_name self.num_local_experts = num_local_experts self.time_falltoall = 0.0 self.time_salltoall = 0.0 self.time_moe = 0.0 self.timers = SynchronizedWallClockTimer() self.wall_clock_breakdown = False def _set_ep_group(self, ep_group): self.ep_group = ep_group def forward(self, hidden_states: Tensor, expert_mask: Tensor, router_weight: Tensor) -> Tensor: router_weight = router_weight * expert_mask if self.wall_clock_breakdown: self.timers(MOE_TIMER).start() d_model = hidden_states.shape[-1] seq_len = hidden_states.shape[0] expert_num = expert_mask.shape[-1] capacity = expert_mask.sum(dim=0).max() if self.ep_group is not None: dist.all_reduce(capacity, op=dist.ReduceOp.MAX, group=self.ep_group) compres_hidden_states = hidden_states.unsqueeze(1).expand(seq_len, expert_num, d_model) compres_hidden_states = compress_matrix(compres_hidden_states, expert_mask, force_dim=capacity, allow_larger_dim=True) # [C, expert_num, d_model] compres_expert_mask = compress_matrix(expert_mask, expert_mask, force_dim=capacity, allow_larger_dim=True) dispatched_input = einsum("ce,cem->ecm", compres_expert_mask, compres_hidden_states) if self.wall_clock_breakdown: self.timers(FIRST_ALLTOALL_TIMER).start() dispatched_input = _AllToAll.apply(self.ep_group, dispatched_input) if self.wall_clock_breakdown: self.timers(FIRST_ALLTOALL_TIMER).stop() self.time_falltoall = self.timers(FIRST_ALLTOALL_TIMER).elapsed(reset=False) dispatched_input = dispatched_input.reshape(self.ep_size, self.num_local_experts, -1, d_model) expert_output = self.experts(dispatched_input) if self.wall_clock_breakdown: self.timers(SECOND_ALLTOALL_TIMER).start() expert_output = _AllToAll.apply(self.ep_group, expert_output) if self.wall_clock_breakdown: self.timers(SECOND_ALLTOALL_TIMER).stop() self.time_salltoall = self.timers(SECOND_ALLTOALL_TIMER).elapsed(reset=False) expert_output = expert_output.reshape(self.ep_size * self.num_local_experts, -1, d_model) expert_output = decompress_matrix(expert_output.transpose(0, 1), expert_mask, allow_larger_dim=True) combined_output = einsum("se,sem->sm", router_weight, expert_output) if self.wall_clock_breakdown: self.timers(MOE_TIMER).stop() self.time_moe = self.timers(MOE_TIMER).elapsed(reset=False) return combined_output class UniMoEAudioMoE(deepspeed.moe.layer.MoE): """Custom Audio MoE class extending DeepSpeed MoE with configuration and parallelism setup.""" def __init__(self, config, expert, num_experts, ep_size, moe_name_prefix="ep_size"): super(deepspeed.moe.layer.MoE, self).__init__() self.enable_expert_tensor_parallelism = config.enable_expert_tensor_parallelism self.ep_size = ep_size self.num_experts = num_experts self.expert_group_name = f"{moe_name_prefix}_{self.ep_size}" self.num_local_experts = self.num_experts // self.ep_size log_dist(f"Creating MoE layer with num_experts: {self.num_experts} | num_local_experts: {self.num_local_experts} | expert_parallel_size: {self.ep_size}", [0]) experts = AudioExperts(expert, self.num_local_experts, self.expert_group_name) self.deepspeed_moe = AudioMOELayer(experts, self.expert_group_name, self.ep_size, self.num_local_experts) def set_deepspeed_parallelism(self, use_data_before_expert_parallel_=False): self._create_process_groups(use_data_before_expert_parallel_=use_data_before_expert_parallel_) def _create_process_groups(self, use_data_before_expert_parallel_=False): if self.expert_group_name not in groups._get_expert_parallel_group_dict(): print(f"No existing process group found, creating a new group named: {self.expert_group_name}") if (groups.mpu is None) or (not self.enable_expert_tensor_parallelism): groups._create_expert_and_data_parallel(self.ep_size, use_data_before_expert_parallel_=use_data_before_expert_parallel_) else: groups._create_expert_data_and_model_parallel(self.ep_size, mpu=groups.mpu, use_data_before_expert_parallel_=use_data_before_expert_parallel_) self.deepspeed_moe._set_ep_group(groups._get_expert_parallel_group(self.expert_group_name)) def forward(self, *input_args, **input_kwargs): return self.deepspeed_moe(*input_args, **input_kwargs)