# -*- coding: utf-8 -*-
"""
UniMoE Audio Utilities Module
Author: UniMoE Audio Team
"""
import copy
import glob
import json
import math
import os
import re
import shutil
import sys
import time
from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Union, TYPE_CHECKING, Callable
import dac
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
import transformers
from audiotools import AudioSignal
from safetensors import safe_open
from tqdm import tqdm
from transformers import AutoProcessor, AutoTokenizer, LogitsProcessor, LogitsProcessorList
from moviepy.video.io.VideoFileClip import VideoFileClip
from PIL import Image
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode
import torchvision
from qwen_vl_utils import smart_resize, process_vision_info
import deepspeed
from deepspeed import comm as dist
from deepspeed.moe.sharded_moe import _capacity, _one_hot_to_float, einsum, gumbel_rsample
from torch import Tensor
try:
import torch_npu
IS_CUDA = False
except:
IS_CUDA = True
try:
# To enable Tutel MoE optimizations:
# python3 -m pip install --user --upgrade git+https://github.com/microsoft/tutel@v0.1.x
from tutel import moe as tutel_moe
TUTEL_INSTALLED = True
except:
# Fail silently so we don't spam logs unnecessarily if user isn't using tutel
TUTEL_INSTALLED = False
pass
SYSTEM_MESSAGE = """<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"""
INPUT_FORMAT = """<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"""
AUDIO_START = "<|AUDIO_START|>"
DEFAULT_VIDEO_PROMPT = "<|vision_start|><|video_pad|><|vision_end|>{}"
IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200
VIDEO_TOTAL_PIXELS = 16 * 28 * 28
VIDEO_MIN_PIXELS = 16 * 28 * 28
VIDEO_MAX_PIXELS = 64 * 28 * 28
FRAME_FACTOR = 2
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
IMG_START_TOKEN='
'
IMG_END_TOKEN=''
IMG_CONTEXT_TOKEN=''
IMG_PREFIX_FORMAT = "<|IMAGE_PLACE_HOLDER|>"
# =============================================================================
# DAC Utilities
# =============================================================================
class Dac:
def __init__(self):
base_dir = os.path.dirname(__file__)
dac_model_dir = os.path.join(base_dir, "dac_model")
model_path = os.path.join(dac_model_dir, "weights_16khz.pth")
if not os.path.isfile(model_path):
print(f"DAC model not found at {model_path}, downloading...")
os.makedirs(dac_model_dir, exist_ok=True)
downloaded_path = dac.utils.download(model_type="16khz")
shutil.move(downloaded_path, model_path)
print(f"DAC model downloaded and saved to {model_path}")
env_path = os.environ.get("DAC_WEIGHTS")
candidates = []
if env_path:
candidates.append(env_path)
candidates.extend([
model_path,
os.path.join(base_dir, "weights_16khz.pth"),
os.path.join(os.getcwd(), "utils", "dac_model", "weights_16khz.pth"),
os.path.join(os.getcwd(), "dac_model", "weights_16khz.pth"),
])
final_model_path = next((p for p in candidates if p and os.path.isfile(p)), None)
if not final_model_path:
searched = "\n - " + "\n - ".join(candidates)
raise FileNotFoundError(
"DAC weights not found. Please place weights_16khz.pth in one of the following locations or set DAC_WEIGHTS to an absolute path:" + searched
)
self.model = dac.DAC.load(final_model_path)
self.resampler = dict()
if IS_CUDA:
self.model = self.model.to("cuda")
else:
self.model = self.model.to("npu")
def encode(self, audio_path):
signal = AudioSignal(audio_path)
if signal.audio_data.shape[1] == 2:
signal.audio_data = 0.5 * (signal.audio_data[:, :1, :] + signal.audio_data[:, 1:, :])
signal.to(self.model.device)
if signal.sample_rate != 16000:
if not str(signal.sample_rate) in self.resampler:
self.resampler[str(signal.sample_rate)] = torchaudio.transforms.Resample(signal.sample_rate, 16000)
if IS_CUDA:
self.resampler[str(signal.sample_rate)] = self.resampler[str(signal.sample_rate)].cuda()
else:
self.resampler[str(signal.sample_rate)] = self.resampler[str(signal.sample_rate)].npu()
signal.audio_data = self.resampler[str(signal.sample_rate)](signal.audio_data)
signal.sample_rate = 16000
x = self.model.preprocess(signal.audio_data.to(self.model.device), signal.sample_rate)
z, codes, latents, _, _ = self.model.encode(x)
codes = codes[0].clone().detach().transpose(0, 1)
assert codes.shape[1] == 12 and len(codes.shape) == 2
codes = codes.tolist()
return codes
def decode(self, codes, save_path, min_duration=None):
assert codes.shape[0] == 1 and codes.shape[1] == 12
z, _, _ = self.model.quantizer.from_codes(codes.to(self.model.device))
audio_out = self.model.decode(z)[0].detach().cpu()
sample_rate = 16000
duration = audio_out.size(1) / sample_rate
if min_duration is not None and duration < min_duration:
padding_duration = min_duration - duration
padding_samples = int(padding_duration * sample_rate)
padding = torch.zeros((audio_out.size(0), padding_samples), dtype=audio_out.dtype, device=audio_out.device)
audio_out = torch.cat((audio_out, padding), dim=1)
torchaudio.save(save_path, audio_out.detach().cpu(), sample_rate=16000, encoding="PCM_S", bits_per_sample=16)
def build_delay_indices(B: int, T: int, C: int, delay_pattern: List[int]) -> Tuple[torch.Tensor, torch.Tensor]:
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32)
t_idx_BxT = torch.broadcast_to(
torch.arange(T, dtype=torch.int32)[None, :],
[B, T],
)
t_idx_BxTx1 = t_idx_BxT[..., None]
t_idx_BxTxC = t_idx_BxTx1 - delay_arr.view(1, 1, C)
b_idx_BxTxC = torch.broadcast_to(
torch.arange(B, dtype=torch.int32).view(B, 1, 1),
[B, T, C],
)
c_idx_BxTxC = torch.broadcast_to(
torch.arange(C, dtype=torch.int32).view(1, 1, C),
[B, T, C],
)
t_clamped_BxTxC = torch.clamp(t_idx_BxTxC, 0, T - 1)
indices_BTCx3 = torch.stack(
[
b_idx_BxTxC.reshape(-1),
t_clamped_BxTxC.reshape(-1),
c_idx_BxTxC.reshape(-1),
],
dim=1,
).long()
return t_idx_BxTxC, indices_BTCx3
def apply_audio_delay(audio_BxTxC: torch.Tensor, pad_value: int, bos_value: int, precomp: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
device = audio_BxTxC.device
t_idx_BxTxC, indices_BTCx3 = precomp
t_idx_BxTxC = t_idx_BxTxC.to(device)
indices_BTCx3 = indices_BTCx3.to(device)
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
gathered_BxTxC = gathered_flat.view(audio_BxTxC.shape)
mask_bos = t_idx_BxTxC < 0
mask_pad = t_idx_BxTxC >= audio_BxTxC.shape[1]
bos_tensor = torch.tensor(bos_value, dtype=audio_BxTxC.dtype, device=device)
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
result_BxTxC = torch.where(mask_bos, bos_tensor, torch.where(mask_pad, pad_tensor, gathered_BxTxC))
return result_BxTxC
def build_revert_indices(B: int, T: int, C: int, delay_pattern: List[int]) -> Tuple[torch.Tensor, torch.Tensor]:
device = None
delay_arr = torch.tensor(delay_pattern, dtype=torch.int32, device=device)
t_idx_BT1 = torch.broadcast_to(torch.arange(T, device=device).unsqueeze(0), [B, T])
t_idx_BT1 = t_idx_BT1.unsqueeze(-1)
t_idx_BxTxC = torch.minimum(
t_idx_BT1 + delay_arr.view(1, 1, C),
torch.tensor(T - 1, device=device),
)
b_idx_BxTxC = torch.broadcast_to(torch.arange(B, device=device).view(B, 1, 1), [B, T, C])
c_idx_BxTxC = torch.broadcast_to(torch.arange(C, device=device).view(1, 1, C), [B, T, C])
indices_BTCx3 = torch.stack(
[
b_idx_BxTxC.reshape(-1),
t_idx_BxTxC.reshape(-1),
c_idx_BxTxC.reshape(-1),
],
axis=1,
).long()
return t_idx_BxTxC, indices_BTCx3
def revert_audio_delay(
audio_BxTxC: torch.Tensor,
pad_value: int,
precomp: Tuple[torch.Tensor, torch.Tensor],
T: int,
) -> torch.Tensor:
t_idx_BxTxC, indices_BTCx3 = precomp
device = audio_BxTxC.device
t_idx_BxTxC = t_idx_BxTxC.to(device)
indices_BTCx3 = indices_BTCx3.to(device)
gathered_flat = audio_BxTxC[indices_BTCx3[:, 0], indices_BTCx3[:, 1], indices_BTCx3[:, 2]]
gathered_BxTxC = gathered_flat.view(audio_BxTxC.size())
pad_tensor = torch.tensor(pad_value, dtype=audio_BxTxC.dtype, device=device)
T_tensor = torch.tensor(T, device=device)
result_BxTxC = torch.where(t_idx_BxTxC >= T_tensor, pad_tensor, gathered_BxTxC)
return result_BxTxC
def prepare_audio_prompt(model, audio_prompts: list[torch.Tensor]):
num_channels = model.config.codec_channels
audio_bos_value = model.config.codec_bos_value
delay_pattern = model.config.codec_delay_pattern
max_delay_pattern = max(delay_pattern)
batch_size = len(audio_prompts)
max_len = max(p.shape[0] if p is not None else 0 for p in audio_prompts) + max_delay_pattern + 1
prefill_steps = []
prefill = torch.full(
(batch_size, max_len, num_channels),
fill_value=-1,
dtype=torch.int,
device=model.device,
)
prefill[:, 0, :] = audio_bos_value
for i in range(batch_size):
prompt = audio_prompts[i]
if prompt is not None:
prompt = prompt.to(device=model.device, dtype=torch.int)
prefill[i, 1 : prompt.shape[0] + 1, :] = prompt
prefill_steps.append(prompt.shape[0] + 1)
else:
prefill_steps.append(1)
delay_precomp = build_delay_indices(
B=batch_size,
T=max_len,
C=num_channels,
delay_pattern=delay_pattern,
)
delayed_batch = apply_audio_delay(
audio_BxTxC=prefill,
pad_value=-1,
bos_value=audio_bos_value,
precomp=delay_precomp,
)
return delayed_batch, prefill_steps
class DecoderOutput:
def __init__(self, prefill, prefill_steps, device: torch.device, labels_prefill=None):
self.generated_tokens = prefill
self.prefill_steps = prefill_steps
self.labels_prefill = labels_prefill
self.device = device
def get_tokens_at(self, step_from: int, step_to: int = None) -> torch.Tensor:
if step_to is None:
step_to = step_from + 1
return self.generated_tokens[:, step_from:step_to, :].to(self.device)
def get_labels_at(self, step_from: int, step_to: int = None) -> torch.Tensor:
if step_to is None:
step_to = step_from + 1
if self.labels_prefill is None:
return None
return self.labels_prefill[:, step_from:step_to, :].to(self.device)
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
dec_out = dec_out.to(self.generated_tokens.dtype).to(self.generated_tokens.device)
if apply_mask:
assert step < self.generated_tokens.shape[1]
mask = self.generated_tokens[:, step, :] == -1
self.generated_tokens[:, step, :] = torch.where(mask, dec_out, self.generated_tokens[:, step, :])
else:
assert step == self.generated_tokens.shape[1]
self.generated_tokens = torch.cat((self.generated_tokens, dec_out[:, None, :]), dim=1)
def generate_output(model, generated_codes: torch.Tensor, lengths_Bx: torch.Tensor) -> list[np.ndarray]:
num_channels = model.config.codec_channels
batch_size = generated_codes.shape[0]
seq_length = generated_codes.shape[1]
delay_pattern = model.config.codec_delay_pattern
audio_pad_value = model.config.codec_pad_value
max_delay_pattern = max(delay_pattern)
revert_precomp = build_revert_indices(
B=batch_size,
T=seq_length,
C=num_channels,
delay_pattern=delay_pattern,
)
codebook = revert_audio_delay(
audio_BxTxC=generated_codes,
pad_value=audio_pad_value,
precomp=revert_precomp,
T=seq_length,
)[:, :-max_delay_pattern, :]
audios = []
for i in range(batch_size):
audios.append(codebook[i, : lengths_Bx[i], :].cpu())
return audios
def frame_process(images, **ele):
images = [torchvision.transforms.functional.pil_to_tensor(img) for img in images]
video = torch.stack(images, dim=0)
# copy from fetch_video
nframes, _, height, width = video.shape
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
max_pixels_supposed = ele.get("max_pixels", max_pixels)
if max_pixels_supposed > max_pixels:
print(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].")
max_pixels = min(max_pixels_supposed, max_pixels)
if "resized_height" in ele and "resized_width" in ele:
resized_height, resized_width = smart_resize(
ele["resized_height"],
ele["resized_width"],
factor=IMAGE_FACTOR,
)
else:
resized_height, resized_width = smart_resize(
height,
width,
factor=IMAGE_FACTOR,
min_pixels=min_pixels,
max_pixels=max_pixels,
)
video = transforms.functional.resize(
video,
[resized_height, resized_width],
interpolation=InterpolationMode.BICUBIC,
antialias=True,
).float()
return video
def preprocess_codec(model, codec):
"""Preprocess codec tokens"""
codec_token = torch.tensor(codec, dtype=torch.long)
codec_token_len = codec_token.shape[0]
max_delay_pattern = max(model.config.codec_delay_pattern)
codec_input_ids = torch.zeros((codec_token_len + max_delay_pattern + 1, model.num_channels), dtype=torch.long)
for c in range(model.num_channels):
start = model.config.codec_delay_pattern[c] + 1
codec_input_ids[:start, c] = model.config.codec_bos_value
codec_input_ids[start : start + codec_token_len, c] = codec_token[:, c]
codec_input_ids[start + codec_token_len :, c] = model.config.codec_pad_value
if start + codec_token_len < codec_input_ids.shape[0]:
codec_input_ids[start + codec_token_len, c] = model.config.codec_eos_value
return codec_input_ids
def tts_preprocess(batch_caption, prompt_codec, prompt_text, device):
text_input = []
codec_input_ids = []
for caption in batch_caption:
prompt_caption = "<|SPEECH_PROMPT_START|>" + prompt_text + "<|SPEECH_PROMPT_END|>"
prompt_caption += "<|VOICE_PROMPT_START|>" + "<|AUDIO_PLACEHOLDER|>" * prompt_codec.shape[0] + "<|VOICE_PROMPT_END|>"
prompt_caption_fn = lambda x: prompt_caption + "<|SPEECH_START|>" + x + "<|SPEECH_END|>"
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format(f"<|SPEECH_PROMPT_START|>{prompt_text}<|SPEECH_PROMPT_END|><|VOICE_PROMPT_START|><|VOICE_PROMPT_END|><|SPEECH_START|>{caption}<|SPEECH_END|>") + AUDIO_START)
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format(prompt_caption_fn("")) + AUDIO_START)
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format(prompt_caption_fn(caption)) + AUDIO_START)
codec_input_ids.append(prompt_codec.clone())
codec_input_ids.append(prompt_codec.clone())
codec_input_ids = torch.cat(codec_input_ids, dim=0).to(device)
tts_generation_kwargs = {
"codec_input_ids": codec_input_ids,
"cfg_scale": [2, 3],
"neg_input_size": 3,
}
return text_input, tts_generation_kwargs
def t2m_preprocess(batch_caption):
text_input = []
for caption in batch_caption:
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format("<|MUSIC_START|>" + "Low quality." + "<|MUSIC_END|>") + AUDIO_START)
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format("<|MUSIC_START|>" + caption + "<|MUSIC_END|>") + AUDIO_START)
t2m_generation_kwargs = {
"cfg_scale": 10,
"neg_input_size": 2,
}
return text_input, t2m_generation_kwargs
def v2m_preprocess(batch_caption, batch_video, fps=1):
def extract_images_from_video(video_path, fps=1, max_frames=1):
video = VideoFileClip(video_path)
duration = video.duration
# 提取图片
images = []
for i, t in enumerate(range(0, math.ceil(duration * fps))):
time_in_video = t / fps
frame = video.get_frame(time_in_video)
img = Image.fromarray(frame)
images.append(img)
if max_frames is not None and i >= max_frames - 1:
break
return images
text_input = []
video_inputs = []
fps_inputs = []
for caption, video in zip(batch_caption, batch_video):
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format("<|MUSIC_START|>" + "Low quality." + "<|MUSIC_END|>") + AUDIO_START)
text_input.append(SYSTEM_MESSAGE + INPUT_FORMAT.format("<|MUSIC_START|>" + caption + "<|MUSIC_END|>") + AUDIO_START)
video_input = frame_process(
extract_images_from_video(video, fps),
fps = fps,
)
video_inputs.append(video_input)
video_inputs.append(video_input)
fps_inputs.append(fps)
fps_inputs.append(fps)
t2m_generation_kwargs = {
"cfg_scale": 10,
"neg_input_size": 2,
}
return text_input, video_inputs, fps_inputs, t2m_generation_kwargs