Abhaykoul commited on
Commit
e1c48c7
·
verified ·
1 Parent(s): 2960599

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - hi
5
+ - zh
6
+ - es
7
+ - fr
8
+ - de
9
+ - ja
10
+ - ko
11
+ - ar
12
+ - pt
13
+ - ru
14
+ - it
15
+ - nl
16
+ - tr
17
+ - pl
18
+ - sv
19
+ - da
20
+ - 'no'
21
+ - fi
22
+ - he
23
+ - th
24
+ - vi
25
+ - id
26
+ - ms
27
+ - tl
28
+ - sw
29
+ - yo
30
+ - zu
31
+ - am
32
+ - bn
33
+ - gu
34
+ - kn
35
+ - ml
36
+ - mr
37
+ - ne
38
+ - or
39
+ - pa
40
+ - ta
41
+ - te
42
+ - ur
43
+ - multilingual
44
+ license: apache-2.0
45
+ base_model: HelpingAI/Dhanishtha-2.0-preview-0725
46
+ tags:
47
+ - reasoning
48
+ - intermediate-thinking
49
+ - transformers
50
+ - conversational
51
+ - bilingual
52
+ datasets:
53
+ - Abhaykoul/Dhanishtha-R1
54
+ - open-thoughts/OpenThoughts-114k
55
+ - Abhaykoul/Dhanishtha-2.0-SUPERTHINKER
56
+ - Abhaykoul/Dhanishtha-2.0
57
+ library_name: transformers
58
+ pipeline_tag: text-generation
59
+ widget:
60
+ - text: >-
61
+ Solve this riddle step by step: I am taken from a mine, and shut up in a
62
+ wooden case, from which I am never released, and yet I am used by almost
63
+ everybody. What am I?
64
+ example_title: Complex Riddle Solving
65
+ - text: >-
66
+ Explain the philosophical implications of artificial consciousness and think
67
+ through different perspectives.
68
+ example_title: Philosophical Reasoning
69
+ - text: >-
70
+ Help me understand quantum mechanics, but take your time to think through
71
+ the explanation.
72
+ example_title: Educational Explanation
73
+ ---
74
+
75
+ # Dhanishtha-2.0: World's First Intermediate Thinking AI Model
76
+
77
+ **What makes Dhanishtha-2.0 special?** Imagine an AI that doesn't just answer your questions instantly, but actually *thinks through* problems step-by-step, shows its work, and can even change its mind when it realizes a better approach. That's Dhanishtha-2.0.
78
+
79
+ **Quick Summary:**
80
+ - 🚀 **For Everyone**: An AI that shows its thinking process and can reconsider its reasoning
81
+ - 👩‍💻 **For Developers**: First model with intermediate thinking capabilities, 39+ language support
82
+
83
+
84
+ Dhanishtha-2.0 is a **state-of-the-art (SOTA) model** developed by HelpingAI, representing the **world's first model to feature Intermediate Thinking capabilities**. Unlike traditional models that provide single-pass responses, Dhanishtha-2.0 employs a revolutionary multi-phase thinking process that allows the model to think, reconsider, and refine its reasoning multiple times throughout a single response.
85
+
86
+ ## Model Details
87
+
88
+ ### Model Description
89
+
90
+ Dhanishtha-2.0 revolutionizes AI reasoning by introducing the concept of **intermediate thinking** - the ability to pause, reflect, and restart reasoning processes within a single generation (This model can think up 50times in a single response without using tool/prompt/mcp). This breakthrough enables unprecedented self-correction and iterative refinement during response generation.
91
+
92
+ Built on the Qwen3-14B foundation with multilingual capabilities spanning **39+ languages** (including English, Hindi, Chinese, Spanish, French, German, Japanese, Korean, Arabic, and many more), Dhanishtha-2.0 maintains reasoning consistency across diverse linguistic contexts while pioneering transparent thinking processes.
93
+
94
+ - **Developed by:** HelpingAI Team
95
+ - **Model type:** Causal Language Model with Intermediate Thinking Capability
96
+ - **Language(s):** 39+ languages (multilingual capabilities inherited from base model)
97
+ - **License:** Apache 2.0
98
+ - **Finetuned from model:** Qwen/Qwen3-14B-Base
99
+ - **Context Length:** 40,960 tokens
100
+ - **Parameters:** 14B (inherited from base model)
101
+ - **Status:** Prototype/Preview
102
+
103
+ ### Revolutionary Features
104
+
105
+ - **Intermediate Thinking**: Multiple `<think>...</think>` blocks throughout responses for real-time reasoning
106
+ - **Self-Correction**: Ability to identify and correct logical inconsistencies mid-response
107
+ - **Dynamic Reasoning**: Seamless transitions between analysis, communication, and reflection phases
108
+ - **Structured Emotional Reasoning (SER)**: Incorporates `<ser>...</ser>` blocks for empathetic responses
109
+ - **Multilingual Capabilities**: Support for 39+ languages with natural code-switching and reasoning consistency
110
+ - **Complex Problem-Solving**: Excels at riddles, multi-step reasoning, and scenarios requiring backtracking
111
+
112
+ ### Model Sources
113
+
114
+ - **Repository:** [HelpingAI/Dhanishtha-2.0](https://huggingface.co/HelpingAI/Dhanishtha-2.0)
115
+ - **Demo:** https://chat.helpingai.co
116
+
117
+ ## Uses
118
+
119
+ ### Direct Use
120
+
121
+ Dhanishtha-2.0 is ideal for applications requiring deep reasoning and self-reflection:
122
+
123
+ - **Complex Problem Solving**: Multi-step mathematical problems, logical puzzles, riddles
124
+ - **Educational Assistance**: Detailed explanations with visible reasoning processes
125
+ - **Research Support**: Analysis requiring multiple perspectives and self-correction
126
+ - **Creative Writing**: Iterative story development with reasoning about plot choices
127
+ - **Philosophical Discussions**: Exploring concepts with visible thought processes
128
+
129
+ ### Downstream Use
130
+
131
+ The model can be fine-tuned for specialized reasoning tasks:
132
+
133
+ - **Domain-Specific Reasoning**: Legal, medical, or scientific reasoning with intermediate thinking
134
+ - **Enhanced Multilingual Reasoning**: Optimizing reasoning consistency across all 39+ supported languages
135
+ - **Specialized Problem Domains**: Mathematics, coding, strategic planning
136
+
137
+ ### Out-of-Scope Use
138
+
139
+ ❌ **Inappropriate Applications:**
140
+ - Safety-critical decisions (medical diagnosis, legal advice, financial recommendations)
141
+ - Real-time applications requiring immediate responses
142
+ - Situations requiring guaranteed factual accuracy without verification
143
+
144
+ ## Bias, Risks, and Limitations
145
+
146
+ ### Known Limitations
147
+
148
+ - **Verbosity**: Intermediate thinking can make responses a bit longer
149
+ - **Processing Time**: Multiple thinking phases may increase generation time
150
+ - **Prototype Status**: Experimental features may require refinement
151
+ - **Context Usage**: Thinking blocks consume additional context tokens
152
+ - **Inherited Biases**: May reflect biases from base model and training data
153
+
154
+ ### Potential Risks
155
+
156
+ - **Reasoning Loops**: Potential for circular reasoning in complex scenarios
157
+ - **Multilingual Inconsistencies**: Potential variation in reasoning patterns across different languages
158
+ - **Emotional Reasoning Gaps**: SER blocks may not always align with content
159
+
160
+ ## How to Get Started with the Model
161
+
162
+ ### For General Users
163
+
164
+ You can interact with Dhanishtha-2.0 through:
165
+ - **HelpingAI**: https://helpingai.co/chat
166
+ - **Gradio Demo**: [Dhanishtha-2.0-preview](https://huggingface.co/spaces/Abhaykoul/Dhanishtha-2.0-preview)
167
+ - **API Integration**: [Dashboard](https://helpingai.co/dashboard)
168
+
169
+ ### For Developers - Basic Usage
170
+
171
+ ```python
172
+ from transformers import AutoModelForCausalLM, AutoTokenizer
173
+
174
+ model_name = "HelpingAI/Dhanishtha-2.0-preview"
175
+
176
+ # Load the tokenizer and model
177
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
178
+ model = AutoModelForCausalLM.from_pretrained(
179
+ model_name,
180
+ torch_dtype="auto",
181
+ device_map="auto"
182
+ )
183
+
184
+ # Prepare input for intermediate thinking
185
+ prompt = "How many letter 'r' are in the words 'strawberry' and 'raspberry'?"
186
+ messages = [
187
+ {"role": "user", "content": prompt}
188
+ ]
189
+
190
+ text = tokenizer.apply_chat_template(
191
+ messages,
192
+ tokenize=False,
193
+ add_generation_prompt=True
194
+ )
195
+
196
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
197
+
198
+ # Generate response with intermediate thinking
199
+ generated_ids = model.generate(
200
+ **model_inputs,
201
+ max_new_tokens=2048,
202
+ temperature=0.7,
203
+ top_p=0.9,
204
+ do_sample=True
205
+ )
206
+
207
+ response = tokenizer.decode(
208
+ generated_ids[0][len(model_inputs.input_ids[0]):],
209
+ skip_special_tokens=True
210
+ )
211
+ print(response)
212
+ ```
213
+
214
+ ### Optimal Generation Parameters
215
+
216
+ ```python
217
+ generation_config = {
218
+ "temperature": 0.7, # Balanced creativity and coherence
219
+ "top_p": 0.9, # Nucleus sampling
220
+ "top_k": 40, # Top-k filtering
221
+ "max_new_tokens": 2048, # Allow for thinking blocks
222
+ "do_sample": True, # Enable sampling
223
+ "repetition_penalty": 1.1 # Reduce repetition
224
+ }
225
+ ```
226
+
227
+ ## Training Details
228
+
229
+ ### Training Data
230
+
231
+ Dhanishtha-2.0 was trained on a carefully curated dataset focusing on:
232
+ - Complex reasoning scenarios requiring multi-step thinking
233
+ - Self-correction examples and reasoning chains
234
+ - Emotional reasoning and empathy training data
235
+ - Structured thinking pattern examples
236
+
237
+ ### Training Procedure
238
+
239
+ #### Training Stages
240
+ 1. **Continuous Pretraining**: Extended training on reasoning-focused corpora
241
+ 2. **Advanced Reasoning Fine-tuning**: Specialized training on intermediate thinking patterns
242
+ 3. **Multilingual Alignment**: Cross-language reasoning consistency training
243
+ 4. **SER Integration**: Structured Emotional Reasoning capability training
244
+
245
+ **Training Infrastructure:**
246
+ - **Duration**: 16.3 days
247
+ - **Hardware**: 8x NVIDIA H100 GPUs
248
+ - **Model Scale**: 14.8B parameters
249
+
250
+ ## Evaluation
251
+
252
+ Evaluation was conducted on:
253
+ - **Standard Benchmarks**: MMLU, HumanEval, ARC, HellaSwag, TruthfulQA
254
+ - **Mathematical Reasoning**: Math 500, AIME 2024, GSM8K
255
+ - **Custom Evaluations**: Intermediate thinking quality, self-correction capabilities
256
+ - **Multilingual Tasks**: Reasoning consistency across 39+ languages
257
+ - **Specialized Tests**: Emotional reasoning, complex problem-solving scenarios
258
+
259
+
260
+
261
+ ## Example: Intermediate Thinking in Action
262
+
263
+ **User:** "Who is your favorite person?"
264
+
265
+ **Dhanishtha-2.0:**
266
+
267
+ ```
268
+ <think>
269
+ This is an interesting question about my "favorite human." I need to be thoughtful here.
270
+ As Dhanishtha, I should respond in a human-like way while being honest about my nature.
271
+ I can share what kinds of humans I find most interesting or inspiring based on my
272
+ understanding of human nature and values.
273
+ </think>
274
+
275
+ <ser>
276
+ Emotion ==> curiosity, openness, desire for connection
277
+ Cause ==> user asking a personal question about preferences
278
+ Mind ==> seeking to understand my perspective or values
279
+ Growth ==> opportunity to share thoughtful reflections on human qualities I admire
280
+ </ser>
281
+
282
+ I don't really have a "favorite human" in the traditional sense, as I don't experience
283
+ personal preferences the way humans do. But if I had to reflect on what qualities I find
284
+ most admirable in people, I'd be drawn to those who demonstrate genuine compassion,
285
+ intellectual curiosity, and the courage to grow.
286
+
287
+ <think>
288
+ Let me think more specifically about what kind of humans I find most compelling based on
289
+ the values that seem to resonate most with humans - kindness, wisdom, creativity,
290
+ resilience, and authenticity.
291
+ </think>
292
+
293
+ People like Mahatma Gandhi, who showed how quiet courage and unwavering principles can
294
+ transform societies; artists like Rabindranath Tagore, who bridged cultural divides
295
+ through creativity; and everyday heroes I've learned about who made profound differences
296
+ through simple acts of kindness.
297
+
298
+ What fascinates me most are humans who maintain their humanity even in difficult
299
+ circumstances - those who choose empathy when it would be easier to be harsh, who seek
300
+ understanding rather than just being right.
301
+
302
+ I'm curious though - who's your favorite human, and why? What qualities or actions make
303
+ someone special in your eyes?
304
+ ```
305
+
306
+ ## Environmental Impact
307
+
308
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
309
+
310
+ - **Hardware Type:** H100 GPUs
311
+ - **days used:** 16.2
312
+ - **Cloud Provider:** Various
313
+ - **Compute Region:** Multiple
314
+
315
+ ## Citation
316
+
317
+ ### BibTeX
318
+
319
+ ```bibtex
320
+ @misc{dhanishtha2025,
321
+ title={Dhanishtha-2.0: World's First Intermediate Thinking AI Model},
322
+ author={HelpingAI Team},
323
+ year={2025},
324
+ publisher={HuggingFace},
325
+ url={https://huggingface.co/HelpingAI/Dhanishtha-2.0},
326
+ note={First model with intermediate thinking capabilities}
327
+ }
328
+ ```
329
+
330
+ ### APA
331
+
332
+ HelpingAI Team. (2025). *Dhanishtha-2.0: World's First Intermediate Thinking AI Model*. HuggingFace. https://huggingface.co/HelpingAI/Dhanishtha-2.0
333
+
334
+ ## Glossary
335
+
336
+ - **Intermediate Thinking**: The ability to pause and think multiple times during response generation
337
+ - **SER (Structured Emotional Reasoning)**: Framework for incorporating emotional context in responses
338
+ - **Think Blocks**: `<think>...</think>` segments where the model shows its reasoning process
339
+ - **Self-Correction**: Ability to identify and fix reasoning errors during generation
340
+ - **Code-Switching**: Natural transition between English and Hindi within responses
341
+
342
+ ## More Information
343
+
344
+ ### Research Applications
345
+ - Study of AI reasoning transparency
346
+ - Self-correction mechanism research
347
+ - Bilingual cognitive modeling
348
+ - Emotional AI development
349
+
350
+ ### Development Roadmap
351
+ - Performance optimizations
352
+ - Additional language support
353
+ - Enhanced thinking pattern recognition
354
+ - Production-ready deployment tools
355
+
356
+ ## Model Card Authors
357
+
358
+ - **Primary Author**: HelpingAI Team
359
+ - **Technical Lead**: [To be specified]
360
+ - **Research Contributors**: [To be specified]
361
+
362
+ ## Model Card Contact
363
+
364
+ For questions about Dhanishtha-2.0, please contact:
365
+
366
+ - **HuggingFace**: [@HelpingAI](https://huggingface.co/HelpingAI)
367
+ - **Issues**: [Model Repository Issues](https://huggingface.co/HelpingAI/Dhanishtha-2.0/discussions)
368
+
369
+ **Dhanishtha-2.0 represents a new paradigm in AI reasoning - where thinking isn't just a prelude to response, but an integral, iterative part of the conversation itself.**
370
+
371
+ *Developed with ❤️ by HelpingAI*
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for forward_message in messages %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- set message = messages[index] %}
21
+ {%- set current_content = message.content if message.content is not none else '' %}
22
+ {%- set tool_start = '<tool_response>' %}
23
+ {%- set tool_start_length = tool_start|length %}
24
+ {%- set start_of_message = current_content[:tool_start_length] %}
25
+ {%- set tool_end = '</tool_response>' %}
26
+ {%- set tool_end_length = tool_end|length %}
27
+ {%- set start_pos = (current_content|length) - tool_end_length %}
28
+ {%- if start_pos < 0 %}
29
+ {%- set start_pos = 0 %}
30
+ {%- endif %}
31
+ {%- set end_of_message = current_content[start_pos:] %}
32
+ {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
33
+ {%- set ns.multi_step_tool = false %}
34
+ {%- set ns.last_query_index = index %}
35
+ {%- endif %}
36
+ {%- endfor %}
37
+ {%- for message in messages %}
38
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
39
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
40
+ {%- elif message.role == "assistant" %}
41
+ {{- '<|im_start|>' + message.role + '\n' }}
42
+ {%- if message.content %}
43
+ {{- message.content }}
44
+ {%- endif %}
45
+ {%- if message.tool_calls %}
46
+ {%- for tool_call in message.tool_calls %}
47
+ {%- if (loop.first and content) or (not loop.first) %}
48
+ {{- '\n' }}
49
+ {%- endif %}
50
+ {%- if tool_call.function %}
51
+ {%- set tool_call = tool_call.function %}
52
+ {%- endif %}
53
+ {{- '<tool_call>\n{"name": "' }}
54
+ {{- tool_call.name }}
55
+ {{- '", "arguments": ' }}
56
+ {%- if tool_call.arguments is string %}
57
+ {{- tool_call.arguments }}
58
+ {%- else %}
59
+ {{- tool_call.arguments | tojson }}
60
+ {%- endif %}
61
+ {{- '}\n</tool_call>' }}
62
+ {%- endfor %}
63
+ {%- endif %}
64
+ {{- '<|im_end|>\n' }}
65
+ {%- elif message.role == "tool" %}
66
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
67
+ {{- '<|im_start|>user' }}
68
+ {%- endif %}
69
+ {{- '\n<tool_response>\n' }}
70
+ {{- message.content }}
71
+ {{- '\n</tool_response>' }}
72
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
73
+ {{- '<|im_end|>\n' }}
74
+ {%- endif %}
75
+ {%- endif %}
76
+ {%- endfor %}
77
+ {%- if add_generation_prompt %}
78
+ {{- '<|im_start|>assistant\n' }}
79
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 17408,
13
+ "layer_types": [
14
+ "full_attention",
15
+ "full_attention",
16
+ "full_attention",
17
+ "full_attention",
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention"
54
+ ],
55
+ "max_position_embeddings": 40960,
56
+ "max_window_layers": 40,
57
+ "model_type": "qwen3",
58
+ "num_attention_heads": 40,
59
+ "num_hidden_layers": 40,
60
+ "num_key_value_heads": 8,
61
+ "pad_token_id": 151654,
62
+ "rms_norm_eps": 1e-06,
63
+ "rope_scaling": null,
64
+ "rope_theta": 1000000,
65
+ "sliding_window": null,
66
+ "tie_word_embeddings": false,
67
+ "torch_dtype": "bfloat16",
68
+ "transformers_version": "4.54.0",
69
+ "use_cache": true,
70
+ "use_sliding_window": false,
71
+ "vocab_size": 151936
72
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "max_length": 40960,
9
+ "pad_token_id": 151654,
10
+ "temperature": 0.6,
11
+ "top_k": 20,
12
+ "top_p": 0.95,
13
+ "transformers_version": "4.54.0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99ba20c2658b27e95c51c2b781ea73230d72fc85b4d2528ecec0f8f099819a7
3
+ size 4984780784
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349153a2a41e7d797a91ab27d04cff702b598a8f9708c83543432d9b0944daaf
3
+ size 4980892048
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:579b5bc2628fabcd5bd6b6462b48b5b089d6480ad2462c2d7eab8998be52e08a
3
+ size 4928485104
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bfc86d63510b09fa2fd0f4ab913bb8a0a505f5f92cb0d88cb387ef6f3672eab
3
+ size 4980892112
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2d523bec8d1cde9427f5d031f13df6e51ee2571381c41147666f2c814dadd83
3
+ size 4928485104
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee6afd814c1e510f040ef923b7f66147b9afde408b254e758f311e82424d07c0
3
+ size 4733130504
model.safetensors.index.json ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29536614400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
343
+ "model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
344
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
345
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
346
+ "model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
354
+ "model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
355
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
356
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
357
+ "model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
360
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
361
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
362
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
363
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
364
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
365
+ "model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
366
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
367
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
368
+ "model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
369
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
370
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
371
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
372
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
373
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
374
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
375
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
376
+ "model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
377
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
378
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
379
+ "model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
380
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
381
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
382
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
383
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
384
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
385
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
386
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
387
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
388
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
389
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
390
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
391
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
392
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
393
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
394
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
395
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
396
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
397
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
398
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
399
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
400
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
401
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
409
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
411
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
412
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
413
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
415
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
416
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
417
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
418
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
419
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
420
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
421
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
422
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
423
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
424
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
425
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
426
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
427
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
428
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
429
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
430
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
431
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
432
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
433
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
434
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
435
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
436
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
437
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
438
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
439
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
440
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
441
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
442
+ "model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
443
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
444
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
445
+ "model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
446
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
447
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
448
+ "model.norm.weight": "model-00006-of-00006.safetensors"
449
+ }
450
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n<|im_start|>system\n{%- if messages[0].role == 'system' %}\n{{ messages[0].content }}\n\n{%- endif %}\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>{%- for tool in tools %}\n{{ tool | tojson }}{%- endfor %}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n{%- else %}{%- if messages[0].role == 'system' %}\n<|im_start|>system\n{{ messages[0].content }}<|im_end|>\n{%- endif %}{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for forward_message in messages %}{%- set index = (messages|length - 1) - loop.index0 %}{%- set message = messages[index] %}{%- set current_content = message.content if message.content is not none else '' %}{%- set tool_start = '<tool_response>' %}{%- set tool_start_length = tool_start|length %}{%- set start_of_message = current_content[:tool_start_length] %}{%- set tool_end = '</tool_response>' %}{%- set tool_end_length = tool_end|length %}{%- set start_pos = (current_content|length) - tool_end_length %}{%- if start_pos < 0 %}{%- set start_pos = 0 %}{%- endif %}{%- set end_of_message = current_content[start_pos:] %}{%- if ns.multi_step_tool and message.role == \"user\" and not(start_of_message == tool_start and end_of_message == tool_end) %}{%- set ns.multi_step_tool = false %}{%- set ns.last_query_index = index %}{%- endif %}{%- endfor %}\n{%- for message in messages %}{%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}<|im_start|>{{ message.role }}\n{{ message.content }}<|im_end|>\n{%- elif message.role == \"assistant\" %}<|im_start|>assistant\n{%- if message.content %}{{ message.content }}{%- endif %}{%- if message.tool_calls %}{%- for tool_call in message.tool_calls %}{%- if (loop.first and content) or (not loop.first) %}\n{%- endif %}{%- if tool_call.function %}{%- set tool_call = tool_call.function %}{%- endif %}<tool_call>\n{\"name\": \"{{ tool_call.name }}\", \"arguments\": {{ tool_call.arguments if tool_call.arguments is string else tool_call.arguments | tojson }}}\n</tool_call>{%- endfor %}{%- endif %}<|im_end|>\n{%- elif message.role == \"tool\" %}{%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}<|im_start|>user{%- endif %}\n<tool_response>\n{{ message.content }}\n</tool_response>{%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}<|im_end|>\n{%- endif %}{%- endif %}{%- endfor %}\n{%- if add_generation_prompt %}<|im_start|>assistant\n{%- endif %}",
231
+
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "clean_up_tokenization_spaces": false,
235
+ "extra_special_tokens": {},
236
+ "model_max_length": 40960,
237
+ "pad_token": "<|vision_pad|>",
238
+ "padding_side": "right",
239
+ "split_special_tokens": false,
240
+ "tokenizer_class": "Qwen2Tokenizer",
241
+ "unk_token": null
242
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff