Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import BertModel
|
| 4 |
+
|
| 5 |
+
class MultimodalClassifier(nn.Module):
|
| 6 |
+
def __init__(self, text_hidden_size=768, image_feat_size=2048, num_classes=5):
|
| 7 |
+
super(MultimodalClassifier, self).__init__()
|
| 8 |
+
self.bert = BertModel.from_pretrained("bert-base-uncased")
|
| 9 |
+
|
| 10 |
+
self.text_fc = nn.Sequential(
|
| 11 |
+
nn.Linear(text_hidden_size, 256),
|
| 12 |
+
nn.BatchNorm1d(256),
|
| 13 |
+
nn.ReLU(),
|
| 14 |
+
nn.Dropout(0.2)
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
self.image_fc = nn.Sequential(
|
| 18 |
+
nn.Linear(image_feat_size, 256),
|
| 19 |
+
nn.BatchNorm1d(256),
|
| 20 |
+
nn.ReLU(),
|
| 21 |
+
nn.Dropout(0.2)
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self.fusion_fc = nn.Sequential(
|
| 25 |
+
nn.Linear(512, 256),
|
| 26 |
+
nn.ReLU(),
|
| 27 |
+
nn.Dropout(0.3),
|
| 28 |
+
nn.Linear(256, 64),
|
| 29 |
+
nn.ReLU(),
|
| 30 |
+
nn.Dropout(0.2),
|
| 31 |
+
nn.Linear(64, num_classes)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, input_ids, attention_mask, image_vector):
|
| 35 |
+
text_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 36 |
+
text_feat = self.text_fc[0](text_output.pooler_output)
|
| 37 |
+
if text_feat.size(0) > 1:
|
| 38 |
+
text_feat = self.text_fc[1:](text_feat)
|
| 39 |
+
else:
|
| 40 |
+
text_feat = self.text_fc[2:](text_feat)
|
| 41 |
+
|
| 42 |
+
image_feat = self.image_fc[0](image_vector)
|
| 43 |
+
if image_feat.size(0) > 1:
|
| 44 |
+
image_feat = self.image_fc[1:](image_feat)
|
| 45 |
+
else:
|
| 46 |
+
image_feat = self.image_fc[2:](image_feat)
|
| 47 |
+
|
| 48 |
+
fused = torch.cat((text_feat, image_feat), dim=1)
|
| 49 |
+
logits = self.fusion_fc(fused)
|
| 50 |
+
return logits
|
| 51 |
+
|
| 52 |
+
|