KerasBERTv1 / merges.txt
HenryAI's picture
add tokenizer
926606c
#version: 0.2 - Trained by `huggingface/tokenizers`
Ġ Ġ
_ _
= =
__ __
== ==
ĠĠ ĠĠ
i n
Ġ t
a t
e r
____ ____
a l
==== ====
o n
Ġ -
ĠĠ Ġ
o r
e n
Ġ a
l o
e s
Ġt h
Ġ s
r a
Ġ 0
e l
s s
Ġth e
________ ________
c h
r e
u t
i on
ĠĠĠĠ ĠĠĠĠ
in g
s t
lo ss
l a
Ġ =
Ġ v
s e
i t
i m
Ġ 1
Ġ o
\ "
Ġ f
Ġ c
Ġ d
l e
Ġv al
o d
Ġ m
======== ========
p o
Ġ in
a r
ĠĠĠĠ ĠĠĠ
Ġ w
e d
c t
i s
Ġ p
c c
Ġ b
a n
p ut
0 0
e t
r o
Ġt o
en t
Ġ (
i z
a s
Ġ 2
Ġo f
Ġ n
________________ ________________
at ion
e p
Ġ [
y er
p e
i c
od el
c y
n d
Ġ loss
po ch
at a
a m
la yer
ra in
at e
cc u
ccu ra
a g
u r
ccura cy
u m
k er
Ġ e
i l
h a
E poch
i g
Ġ 3
i d
m s
st ep
Ġa nd
el f
o m
Ġ[ ================
======== ====
Ġ[================ ============
== ]
Ġ[============================ ==]
at ch
Ġ layer
im ag
Ġ re
on e
ker as
a ccuracy
en s
Ġf or
a d
iz e
ha pe
Ġ is
Ġ u
Ġ T
Ġt f
i v
o l
Ġm odel
ĠĠĠĠĠĠĠĠ ĠĠĠ
Ġs elf
p l
Ġ g
u l
c e
r es
al l
( )
Ġs t
ct ion
o t
or m
i f
N one
. .
ig h
u e
Ġ #
- -
t s
e f
Ġd ata
Ġ 6
ens or
p le
it h
h e
c k
> >
on v
) ,
u n
________________________________ ________________________________
put s
t rain
d ata
es t
Ġt rain
Ġ 4
imag e
e x
d i
a b
se t
Ġ y
s ize
1 0
Ġb e
Ġw ith
t h
5 0
lo w
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠ
q u
la ss
Ġlayer s
) :
ate g
ic al
Ġa s
t o
Ġ h
d ing
in t
Ġ \"
i st
er s
Ġw e
Ġ 5
ateg or
i al
am e
Ġ I
p t
p ar
il l
la b
m odel
ategor ical
ro m
v al
e at
n el
Ġe x
1 8
Ġ x
Ġ l
ur n
] ,
) )
ra n
9 0
c od
p er
par se
1 2
es s
Ġ C
Ġth at
Ġo ut
u re
c on
o u
Ġw h
lab el
c ategorical
o w
e ct
a x
Ġ A
Ġ on
Ġ or
Ġ keras
) .
s hape
am ple
d s
en se
1 5
a cc
m b
Ġa ccuracy
p re
b atch
3 2
Ġ *
Ġin put
Ġ S
m ent
i le
Ġn um
or t
\" )
Ġs hape
Ġt ensor
Ġc on
Ġre t
Ġ it
en er
iz er
l y
p ro
la r
r ue
v e
= \"
k e
f orm
Ġret urn
ct iv
t f
ar g
Ġp re
\" ,
Ġa n
Ġu se
â ĸ
âĸ Ī
Ġw ill
i r
igh t
âĸĪ âĸĪ
d im
imag es
>> >
Ġtrain ing
Ġs e
e an
a p
Ġ im
Ġ 7
2 8
p y
it y
mb ed
-- --
Ġ image
2 0
en ce
Ġ at
9 6
p ort
ctiv ation
p at
Ġp a
Ġ en
layer s
3 5
v er
] [
2 5
o ut
Ġth is
1 00
Ġb atch
n um
Ġ 8
Ġc lass
Ġ lo
iz ation
orm al
ur es
1 7
ab le
igh ts
9 8
w e
ch an
Ġ R
Ġs u
as k
Ġp ro
am pl
Ġ '
.. .
Ġd ef
Ġ po
ul t
ener at
f f
s elf
I n
y pe
e g
Ġa re
eat ures
r i
Ġ )
st an
a ck
6 4
Ġf rom
ar n
t er
f low
in put
Ġ D
in e
Ġ res
Ġ r
mbed ding
chan nel
a ch
Ġc an
Ġ le
ex t
= (
________________________________________________________________ ________________________________
Ġ +
ag e
it s
________________________________________________________________________________________________ __
Ġout put
Ġu s
i p
1 6
Ġ N
lo ck
c ess
Ġ "
cod er
Ġ M
2 4
t est
Ġ al
ran s
Ġst r
Ġa cc
Ġdata set
v i
Ġc om
g e
( \"
u st
al se
Ġs parse
Ġ F
r ic
u d
in puts
Ġ1 0
pt im
Ġ if
od e
in it
1 4
ampl es
3 0
7 8
un ction
ra nd
Ġc onv
in d
channel s
] )
c lass
u lar
Ġ P
an d
et ric
ĠT he
5 6
r int
ra y
Ġin puts
Ġa r
ĠĠĠĠ ĠĠ
ut ion
u p
Ġ label
Ġb y
ra m
arg et
2 6
iv e
arn ing
ĠĠĠĠ Ġ
er e
c onv
9 3
m o
t ype
Ġs h
rand om
9 7
en d
Ġn e
Ġ L
1 3
Ġn ot
D ense
ent s
or e
c om
Ġn p
to p
u g
Ġa x
3 00
9 4
ker nel
0 4
d ef
Ġa ctivation
00 00
b ack
ar d
f er
ar y
Ġe poch
data set
f rom
a k
T rue
c l
M odel
Ġ images
or y
Ġy ou
Ġ3 2
9 5
lo at
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠ
7 5
C onv
o ul
a se
w or
================ ================
h is
Ġf unction
ormal ization
p a
o ur
po ut
ro pout
o c
Ġ1 6
Ġtensor flow
= "
Ġd e
( [
" ,
' ,
W e
s parse
ar t
eat ure
Ġval ue
b lock
0 8
c al
re d
7 6
all back
id ation
l en
Ġ {
ra di
r el
t ensor
a yer
id e
pat h
b er
i se
âĸĪâĸĪ âĸĪâĸĪ
9 9
Ġ ha
po s
Ġ6 4
Ġ /
re ate
Ġto p
t ent
Ġn ame
ation s
ran ge
ol ing
Ġwe ights
d d
Ġ None
3 3
ĠI n
oul d
In put
r ate
pt ion
Ġ G
Ġin t
2 7
ad ding
4 5
Ġm o
u al
u ff
Ġm a
---- ----
Ġ O
ptim izer
f eatures
Ġ1 28
m ax
et h
ol ution
ect or
4 6
Ġus ing
o s
st r
i es
Ġe ach
pro cess
T he
u s
Ġ E
Ġex ample
L ayer
im g
im port
Ġ2 8
Ġu n
g um
ĠĠĠĠĠĠĠĠ ĠĠ
Ġt est
etric s
Ġs et
f ig
rel u
p pl
at ed
i ch
di ction
lo t
Ġd type
con stan
6 2
Ġ Ċ
Ġf il
ir st
Ġ B
s h
t ra
j ect
' s
N et
s o
c es
3 8
rans form
g th
pe c
4 0
p rint
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
ic es
n g
Ġp er
ug ment
Ġp l
________________________________________________________________ _
Ġ 9
all y
Ġ one
Ġin d
35 2
u es
lo g
wor k
5 00
t a
is c
Ġ channels
we ights
r or
ot h
Ġwh ich
Ġpl t
e m
i b
) (
i ed
n ame
f loat
Ġf eatures
Ġha ve
] .
i x
6 6
p s
2 2
u il
8 4
p ile
5 5
pat ial
in ary
a st
out put
Ġ i
Ġ kernel
Ġw or
p h
di ct
3 7
Ġ K
at ing
Ġm ask
f or
Ġim port
oc ab
k en
vi e
it ion
Ġval idation
Ġp adding
qu ence
Ġg et
p ng
ar i
Ġ he
Ġm ean
1 9
lo ad
pec if
[ \"
Ġt arget
la st
ri b
tent ion
Ġst ep
m ask
o o
ad d
7 0
Ġ all
ist ory
Ġt im
ow n
Ġ1 1
G enerat
id es
Ġh as
3 4
form at
at or
Ġ2 0
Ġlo g
5 9
pl it
Ġm ax
b ject
m at
et work
Ġax is
e ction
ĠT his
3 9
ult i
Ġout puts
Ġuse d
an t
( (
Ġ ch
ke y
15 7
Ġa ppl
F alse
constan cy
Ġe mbedding
ĠI f
Ġd im
id x
2 00
it ial
ul ts
allback s
Ġs im
pre d
Ġs ample
ple ment
Ġle arning
Ġs ame
d e
Ġb et
iz ers
res ent
2 1
3 6
t r
Ġg enerat
e mbedding
u ction
Ġ range
label s
i as
Ġs ize
ro ss
Ġn o
ens ion
cl ud
8 6
Ġf eature
arg s
Ġclass if
8 0
id th
d a
Ġs a
7 7
p lot
Ġval ues
g ular
at es
Ġc all
in al
an ce
m ean
Ġ1 5
8 5
Ġ U
ar ray
iv es
init ial
1 1
T rain
e poch
Ġs pecif
train able
[ :
er as
Ġc ol
0 5
m a
0 9
a ult
w ard
gum ents
ra ph
Ġon ly
en coder
Ġa b
po int
ot al
Ġint eg
i re
Ġs o
Ġin to
Ġlabel s
Ġu p
k w
se d
Ġre p
kw args
lo b
er t
Ġl ist
Ġc reate
4 7
__ (
Ġwh en
Ġf ol
ct or
ig n
. ,
Ġo ur
Ġ2 56
qu ent
c a
Ġ :
2 9
Ġsh ould
N N
Ġs amples
Ġl en
Ġepoch s
ĠK eras
i lar
u ce
ĠT ensor
val u
Ġ W
n e
o x
ra ms
loss es
ep th
Ġd o
f t
Ġt ext
Ġ2 6
Ġpa ss
process ing
P o
t arget
r im
Ġin clud
n ormalization
Ġ* *
A T
s um
ic ation
com pile
00 0
Ġ z
Ġa dd
Ġv ector
ata set
p on
p ing
ic e
R e
= '
i o
Ġ random
Ġ1 3
S I
t ext
on g
12 5
Ġnum ber
t rue
2 3
F or
0 7
d er
\" \"
Ġm etrics
4 4
Ġs patial
eg at
6 5
c at
m ap
Ġm ore
ust om
radi ent
diction s
8 7
Ġy our
ur r
c o
Ġd if
Z E
n p
n ess
se ts
Ġp rint
urr ent
i er
we ight
= [
Ġ ==
Ġdim ension
t ers
is ion
SI ZE
Ġ `
Ġen cod
Ġstr ides
rim in
p atch
u b
Ġ k
isc rimin
val ue
g et
Ġn etwork
ta in
ocab ular
18 62
' :
o ptimizer
le d
ro w
Ġconv olution
iscrimin ator
ocabular y
f it
quent ial
Ġc or
Ġd ist
Ġb uil
Ġar ray
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠ
et urn
num py
5 2
8 8
c ol
Ġ key
ĠD ef
eth od
Ġ2 3
t al
âĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪ
lob al
Ġsu b
Ġ .
Ġdif fer
c all
d ense
Ġf ile
ver age
Ġin itial
Ġpa rams
s ample
Ġt a
Ġ1 4
cal e
Ġ â
1 18
M A
Ġfol low
() ,
Ġlo ad
radi ents
k ens
l at
S e
j ection
ĠT rue
un t
Ġim plement
Ġsu per
w o
Ġ __
ab il
we en
18 9
r it
en ces
\" :
iz ed
ĠĠ Ċ
ot e
Po oling
f n
at h
uff le
Ġbet ween
5 3
n n
Ġo ver
sh ow
c or
Ġmodel s
Ġse quence
A r
y le
es e
ro py
o p
Ġo bject
Ġne w
h istory
Ġ We
Ġf irst
un its
ak y
Ġrep resent
a ctivation
f il
pl t
ind ex
uff er
Ġinclud e
Ġ H
Ġm ethod
I m
s plit
ro p
ent ropy
Ġ qu
ou nd
L U
M ean
er ror
s ame
in ation
Ġcom put
p la
he ad
-------- --------
6 7
f ile
ĠĠĠĠĠĠĠĠ Ġ
Ġâ ĺ
4 8
pe ct
Ġst ate
len gth
t t
v ed
Ġa ugment
Ġo ptimizer
Ġdiffer ent
T his
tensor flow
n o
u le
Ġ2 2
A U
qu a
i ent
Ġ V
th er
Ġ2 7
ine ar
Ġ j
re gular
Ġ1 2
Ġ el
Ġp atch
d ate
Ġpo s
class es
6 0
] ]
c allbacks
ut il
Ġm at
Ġm ulti
mo oth
P U
i ke
ut e
Ġnum py
Ġal so
ĠĠĠĠĠĠ Ċ
M ax
th on
================================ ================================
l es
Ġwe ight
ransform er
a y
Ġc l
ĠR e
6 3
is ual
Ġb lock
9 2
Ġb ut
D ataset
d ropout
g enerat
w ise
Ġ1 8
ram et
Ar guments
el l
ig inal
Ġse ed
Ġim g
Ġsu ch
0 2
er y
B atch
r y
el y
out puts
L e
Ġto ken
stan ce
Ġhe ight
ross entropy
S T
c ent
f ul
st ate
T O
Ġs c
le arning
res hape
val id
Ġpro b
Ġtim e
F low
u ple
Ġt wo
ep s
z ip
e ck
s amples
Ġ %
Ġw idth
17 6
Ġsim ilar
Ġ _
I N
s mooth
Ġin ter
ap pl
pos it
initial izer
E x
m etrics
Ġv ari
\") (
Ġit s
Ġan y
rib ution
/ /
v g
in ts
Ġwh ere
6 8
N ormalization
o ptim
ram e
Y ou
ing le
Ġen coder
ĠF or
ind ices
eth er
Ġper form
Ġh ow
: //
u ct
Ġth en
res pon
Ġappl ied
Ġto tal
() .
.. ..
Ġ\" \"\"
ĠI t
Ġen d
b s
b ias
st rain
Ġc o
Ġm ap
Ġn ode
train ing
ĠĠĠĠĠ Ċ
Ġne ed
Generat ing
Ġâĺ ij
. ],
f eature
Ġse e
Ġcor respon
d f
ĠĠĠĠ Ċ
ĠF alse
ĠTensor Flow
or s
ep t
Ġg ener
red uce
p end
ou s
c s
Ġb inary
12 8
Ġcon s
ust er
Ġr un
4 2
C H
f ter
um ination
ampl ing
Re LU
7 9
Ġf a
ill umination
pos ure
7 4
T ensor
v ing
ĠĠĠĠĠĠĠĠ ĠĊ
Ġin st
Ġ3 0
smooth ness
optim izers
D ropout
Ġpro cess
Ġstr ing
ption al
a ults
n ormal
Ġm in
() )
di r
ft max
am es
Ġind ex
3 1
r od
Ġclass es
log its
u se
u nd
\" ]
0 3
f irst
p ad
ra ct
po se
fer ence
Ġclassif ication
0 1
l ist
v a
} \")
er os
Ġmo vie
* *
5 4
7 2
im ent
at io
Ġs ingle
Ġc al
Ġfollow ing
is ode
om e
ĠN um
0 6
a ugment
h en
i a
Ġg raph
train ed
Ġtrain able
ax is
Ġinteg er
R es
Ġ1 00
() (
qu ences
con fig
b uffer
Ġth an
Ġ[ ]
b inary
p ha
Ġt rans
ĠI m
gum ent
ix el
valu ate
c ision
q ue
at tention
ap pend
eturn s
" )
c ed
ic ient
ur ing
step s
Ġar gument
Ġma ke
Ġthe m
Ġm an
5 8
A N
L o
Ġd ropout
ĠC reate
7 3
Ġd et
Ġb ase
ut put
it le
Ġc ustom
Ġg o
k up
m on
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠ
Ġembedding s
cat en
C on
r ror
t otal
po ol
Ġcon tain
pro b
[: ,
Ġ3 6
ĠC om
pre dict
Se quential
P I
Ġs ense
id ual
Ġex amples
Ġmean s
# #
m all
t en
ur al
Ġst art
Ġpro v
ĠL o
Ġfil ters
embedding s
4 3
s qua
Ġo ther
Ġh igh
Ġl at
mo vie
ib le
" .
n ot
n egat
Ġf alse
Ġd epth
AU TO
5 7
Ġt e
er o
Ġa d
Ġre d
dim s
ri x
re e
cod e
ind ow
row s
P re
ro und
per iment
Ġres ults
Ġr ate
7 1
Ġ last
ent ence
Ġgenerat or
epoch s
no ise
I f
L E
le an
ab les
Ġle arn
Ġsa ve
regular izer
t ing
el ine
im e
lab le
A R
a ve
f a
Ġ2 9
own load
abil ity
A d
D iv
res s
Ġpo int
Ġpo oling
pa re
8 2
E rror
\" ),
Ġc ase
Ġd iscriminator
Ġcon fig
E R
Ġb ias
Ġb ox
id s
data sets
to ken
Ġpre dict
Ġstep s
ĠIm age
Ġ1 7
Ġl ike
Ġpa per
Ġf loat
Ġc re
cod ed
pla y
Max Pooling
i e
is play
ers ity
Ġbuil d
lo ud
Ġv ocabulary
it ies
Ġst and
([ [
u di
18 7
ĠA PI
Ġcol or
v el
Ġ2 4
Ġat t
Ġat tention
and om
Generat ed
ramet ers
t itle
ut h
ut or
ĠC on
c ept
ch it
Ġc a
y ing
re ad
Ġma e
Div ersity
. ]
9 1
k s
Ġt ak
Ġm ode
Ġin stance
Ġfor mat
Ġ4 0
to kens
Ġor der
Ġpre dictions
Ġperform ance
U N
Ġthe ir
Ġ5 12
Ġor iginal
Ġta pe
chit ect
] :
e c
l ib
Ġt uple
Ġre ad
Ġlo o
sh uffle
b o
p es
z eros
Ġo s
Ġg radients
ect ed
tt ps
posit ives
8 1
n et
Ġd ense
Ġdef ault
ĠN U
our ce
j o
Ġ low
Ġth ese
im um
iv en
Ġim pro
v es
Ġc allbacks
ir s
a ss
Ġt ransform
ut o
Ġd uring
Ġw as
Ġpre processing
N ote
c ker
en cy
3 13
la mb
ud ent
Ġar chitect
udi o
S N
S t
T otal
Ġ ro
Ġa fter
po oling
Ġp art
head s
strain t
6 1
w idth
Ġ et
Ġwh ile
ĠM odel
tra st
so ftmax
) ]
5 1
n orm
po l
ar s
put e
Ġ8 0
vi es
negat ives
( "
s ub
Ġd i
Ġel se
) [
8 3
s l
ch ed
ff icient
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
Le aky
6 9
8 9
ch or
Ġ1 9
Ġd es
ver y
ram es
Ġdimension s
Ad am
lamb da
c urrent
m in
Ġ 50
Ġ2 55
Ġ[ [
util s
Leaky ReLU
) ),
4 9
E mbedding
m ode
r atio
w ar
ra ds
Ġc urrent
ag es
igh b
py thon
Ġmo st
Ġaugment ation
isual ize
R eturns
T o
l u
t e
ef ore
per t
ĠS e
ĠR es
Ġthe y
46 9
generat or
> <
P ro
Ġw ould
ic ations
Ġg iven
ast ype
mat h
A ctivation
m etric
v ector
it ive
Ġm od
Ġ2 1
ex p
pre processing
c ul
l l
Ġf e
Ġm ust
ĠC onv
Ġfil es
tra cker
ĠDef aults
Ġmat rix
================================================================ =
' t
C ategorical
Ġs mall
pa ce
N um
c re
m ary
v ice
Ġ >
Ġth ere
Ġ3 1
Ġre al
con str
4 1
E S
F O
en et
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠ
Ġv ia
ĠT ransformer
). __
pro jection
Ġpro jection
ĠM ean
Ġab out
Ġsimilar ity
' )
R andom
w h
en gth
SN R
i ence
p ed
Ġa ction
Ġs ome
Ġb ack
Ġn ormal
ol ute
Train ing
AT CH
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
cs v
4 22
Ġ <
ct ory
de coder
Ġgenerat ed
e ad
k ip
s cale
Ġ ent
Ġd ire
Ġp ath
il on
di st
Ġtensor s
str ing
ating s
Ġinteg ers
ign al
Ġarchitect ure
, ),
= -
S et
a c
Ġ &
Ġ lar
Ġs plit
st art
Ġo per
ar ly
Ġwh at
ma e
eps ilon
Ġstand ard
" :
b ox
w ith
ic ally
pre dictions
Ġr el
oo lean
Ġlog its
Ġdo es
A dd
b n
Ġa p
Ġw ell
Ġe very
Ġre qu
Ġre gular
() :
Ġtrain ed
Ġex tra
vi sed
D e
G lobal
v ari
v ocabulary
Ġa ss
stan t
ĠD e
Ġind ices
Ġtim est
patch es
a in
Ġe v
ateg y
Ġcon t
path s
L et
T est
g raph
ra w
se quence
Ġclassif ier
Ġspecif ied
Ġencod ed
z e
Ġp rod
Ġ2 00
ĠS t
20 21
Ġlen gth
g er
s u
Ġg lobal
Ġun its
Ġch eck
ST M
A verage
al ity
im show
Ġto kens
Ġn egat
ĠT h
Ġsh ow
Ġma y
ĠO ptional
col or
A M
b ase
n ing
u c
Ġf ul
Ġin ference
Ġ2 5
Ġg u
Ġ6 7
ĠR NN
rans pose
ĠIn t
ĠG et
fil ters
g radients
h ot
s patial
at ure
ug h
Ġde coder
s ignal
Ġ ]
Ġ6 8
val idation
Ġex pect
class if
Ġgener ate
d iscriminator
f unction
s ing
re g
re am
po ints
Ġse quences
Ġ10 24
Ġ/ /
Ġno ise
va i
: \",
st yle
Ġc ode
Ġb oth
iz ing
Ġwh ether
Ġfil ter
appl y
vai lable
c ast
n ected
Ġt ask
ro up
100 0
constan t
lat ent
g en
r un
s ave
in ed
Ġa verage
ĠĠĠĠĠĠĠĠ Ċ
it or
if orm
ex periment
ill ation
Ġres ult
up date
Ġtarget s
Ġdist ribution
caten ate
squa red
Num ber
' .
G AN
p or
Ġ You
in ce
er ate
\" ],
Ġst yle
ca use
sum mary
---------------- ----------------
cept ion
ĠNU MA
B ATCH
a ract
is h
Ġb efore
all el
ers ion
ment s
Ġwor k
Ġinitial izer
Ġmulti ple
O N
s on
Ġs cal
od uction
uil d
Ġkey s
Ġta ke
Batch N
7 04
E n
d epth
Ġ ...
im ilar
Ġo ption
Ġw rit
ro ugh
ol d
In tr
ĠN e
ĠP SNR
ition al
Ġcl uster
trast ive
Ġnegat ive
Intr oduction
[ -
p isode
Ġ4 4
25 6
Ġred uction
T A
g ed
m l
w er
en coded
Ġs y
Ġs ha
Ġd isc
Ġin form
Ġlat ent
jo in
T UN
c ud
Ġm etric
Ġ[ '
pre f
Ġbatch es
Ġ) (
def ault
TUN E
t ed
as es
pre process
oth er
Im plement
appl ications
Ex ample
bs er
AUTO TUNE
Ġinform ation
4 93
N on
S E
p en
Ġe mbed
Ġ4 2
ex posure
ĠP a
Ġpatch es
sl ices
' ]
C rossentropy
Ġ ed
Ġ id
Ġs er
Ġf it
ĠS hape
Ġal ong
Ġcorrespon ding
ĠCom pute
fa ctor
I M
c rossentropy
g radient
Ġ ke
Ġ illumination
on d
Ġn ext
Ġen um
78 2
us er
Ġconvolution al
cor d
P y
e mbed
g le
l r
Ġw ay
Ġw indow
id ed
ex ec
Ġres olution
Ġsim ple
Ġpass ed
Ġj ust
Ġcons ist
Pro cess
E pisode
V al
d w
o g
Ġt em
\" .
Ġp ixel
an ced
et ch
pl ic
res ult
he ck
Ġex posure
ĠA vg
Ġpre diction
ĠR eturn
Ġcom b
ide o
Ġ== >
ĠRe ward
Ġdet a
ĠLo ss
Ġgu ide
on itor
Ġa g
ct ly
Ġ2 24
he ight
con d
Ġ+ =
Ġal low
Train able
Ġcomput e
Ġcorrespon ds
exp and
Ġenum erate
i que
Ġs oul
Ġs pace
Ġv er
as eline
Ġh ttps
ĠA n
15 63
eg er
ĠN ote
lat ten
fficient Net
Average Pooling
f rame
o ff
s olute
Ġt ra
ĠĠĠ Ċ
imag enet
Ġsu p
ĠE TA
plot lib
augment ation
Ġbase d
Ġbox es
Set up
P O
e valuate
l ip
r g
t he
y s
Ġ channel
ĠT o
ĠA ppl
ĠO utput
Ġz ero
Ġev en
__ ()
at ive
Ġs cale
Ġs entence
Ġb ound
Ġn on
Ġre constr
Ġg re
qu al
ist ic
Ġus es
G E
Ġ ,
in es
Ġf ound
le c
Ġp lot
Ġdata sets
ach er
ĠN etwork
Ġal pha
rib ute
Ġk n
ĠDef ault
Ġtrans fer
bo se
ĠPa ram
Process ing
p u
ch ar
it er
Ġe valu
id d
id er
per vised
Ġreturn s
Ġimpro ve
exec utor
1 96
T a
a uto
g es
v ation
st ream
it e
Ġd ep
an s
am ma
ur l
ĠT rain
Ġg radient
par allel
val ues
con straint
Ġcom pile
ition s
target s
Ġtak es
c loud
m up
Ġ util
re al
Ġc ould
Ġp at
Ġ2 04
il y
Ġ4 9
Ġh ere
model s
)) )
Ġpa rameters
H ere
L oo
c ore
o b
r ight
Ġ error
Ġt ype
Ġv ery
Ġv ersion
\" ].
Ġp resent
Ġst udent
Ġbe en
Ġar guments
Ġsh uffle
Ġne ighb
ca y
call s
Ġrepresent ation
generat ed
Batch Normalization
ĠImage Net
Ġ ~
Ġ ep
Ġth rough
Ġf ine
Ġw ant
Ġ[ (
Ġloss es
um n
Ġ3 7
di re
ĠL e
ĠIn itial
rib ut
Ġlog s
Ġ: ,
g ress
Ġf rame
Ġ5 6
ĠS tr
Ġan chor
wor d
radient Ta
idd en
radientTa pe
I F
O utput
o f
p adding
y per
ch eck
Ġm atch
et s
Ġu nd
res ize
cl uster
Ġ{ }
Ġhe ad
bser vation
H istory
Ġs um
Ġf ig
Ġp ip
Ġn ames
ig mo
Ġfor m
ef er
Ġbe cause
Ġl ong
Ġl inear
pre diction
pro p
eg ular
Ġch aract
ĠInt eger
cud a
igmo id
D T
S parse
a ction
v ocab
Ġ chan
Ġst ill
un ing
con cat
Ġde mon
Ġwor d
Ġappl y
initial izers
Ġobject s
war ds
pref etch
Ġke ep
C om
U M
] ],
b le
c ross
Ġc ategorical
Ġd own
Ġ4 8
ĠA dd
Ġde ep
ne w
rit ic
Ġver bose
Loo kup
" )(
\" ])
od es
Ġ6 9
ith er
un iform
ex ts
Ġpa irs
Input Layer
39 1
Ġimplement ation
Ġprov ided
f alse
in s
Ġa vailable
ic k
Ġ3 8
ĠT F
Ġpo ints
Ġwor ds
ĠW hen
Ġload ed
Ġca ption
imilar ity
1 90
A ccuracy
g or
j son
l inear
t ransform
y thon
Ġn ormalization
res h
Ġh el
Ġmat plotlib
## ##
Ġcre ated
G radientTape
i el
o ve
s ide
v ar
Ġs p
Ġd s
Ġin v
Ġconv ert
block s
ix ed
ĠU p
ath er
Ġgo od
heck point
Sparse Categorical
gor ith
L R
al pha
Ġa udio
Ġo b
Ġf rames
le vel
Ġm onitor
Ġin cre
ro ot
il ation
Ġwith out
15 65
ĠD ataset
com m
cl ip
fig ure
Ġspecif y
Ġz ip
Ġpos itive
Ġprob le
Ġdi ct
: ]
c ri
l d
w w
Ġ |
Ġ rows
Ġg ot
Ġit er
Ġen v
Ġlo c
Ġpo ss
ĠB oolean
Ġencod ing
Ġsub class
yper pa
, ))
4 76
m ulti
Ġ !
on es
Ġs ep
Ġs ource
Ġc allback
Ġm or
Ġpre cision
Ġencod e
Im age
Ġrequ i
stant i
Ġ204 8
ĠLe arning
A t
u ally
ĠS et
cal ing
co unt
IN FO
Lo ad
Ġregular ization
classif ier
Ġund er
= [\"
M ulti
S tr
b y
g rads
t y
v ant
Ġn ow
id ire
Ġre call
per ature
Ġle t
Ġbuil t
Ġinst ead
pol ation
vari ables
su pervised
ĠNe ural
1 12
I ter
R efer
U R
c rop
Ġ1 000
Ġd isplay
Ġp e
Ġex p
Ġwh o
Ġcon tent
Ġat om
Ġpo ol
ter n
ach e
our s
Ġmo vies
abil ities
Ġqu ery
ribution s
uct ure
va e
Ġhigh er
idire ction
] ))
g ment
m ed
n r
n ames
s entence
Ġ J
Ġ X
Ġ ],
at t
Ġa uth
Ġf inal
et a
Ġe as
Ġre ward
pl y
ue Error
Ġh istory
pre cision
96 26
stan ces
ĠP ython
Ġspecif ying
Ġcol umn
Ġvector s
col s
Ġel e
ramet er
.... ....
experiment al
Ġep isode
IF AR
check point
comm end
C heckpoint
t ranspose
on s
ra ry
se quences
um e
ĠG PU
Layer Normalization
66 66
Ġfa ctor
Ġinst all
Lo ss
lec ule
C A
] ])
m ul
se q
se ed
is es
pe ak
ig its
Ġ6 3
Ġ6 6
ĠC IFAR
py plot
Ġus er
oo k
Ġup d
ca ption
ĠW h
Ġblock s
Le arning
ĠNum Py
ched ule
ĠSe quential
Ġfe w
Ġevalu ation
2 50
T h
V ector
j ac
m n
s ampling
Ġ- -
Ġs ure
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĊ
Ġne ural
Ġtim es
Ġcal led
Ġgre at
egular izer
idirection al
jac ency
0 16
D ata
G B
L STM
[ [
e ver
h anced
r id
x t
Ġ @
Ġ la
Ġ Epoch
Ġ idx
on ly
ch n
iz es
Ġ3 3
Ġ3 5
est ed
Ġpre process
ĠP re
Ġsh ort
Ġcontain ing
Iter ation
' ll
a ved
c lo
g n
i an
i ally
o bject
t ar
Ġv isualize
le aky
00 1
iv ely
() ([
ort ed
ff n
We ight
vie w
AT UR
Ġaugment ed
LE N
Ġlow er
Ġsp ir
Ġob tain
D ef
u ck
w indow
Ġ 90
ra ble
re call
Ġd el
ĠĠĠĠĠĠĠ Ċ
Ġe valuate
Ġre current
int er
12 3
Ġle ast
Ġcom ple
em ory
da pt
Ġarray s
Ġman y
Ġcluster ing
Ġsup port
Ġpip eline
resh old
Ġauth ors
I d
r atings
w ay
Ġ lambda
or iz
ra d
Ġo ptim
Ġb est
il s
Ġh is
Ġpre pare
96 39
Ġind ic
ĠU sing
Ġup date
Ġte chn
Ġlar ge
ĠStr ing
E ATUR
O V
T H
U p
a range
g ing
s ource
w a
Ġ est
Ġa ct
ĠĠĠĠĠĠĠĠ ĠĠĠĠĊ
Ġ1 24
po sed
Ġp d
am b
Ġ3 4
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĊ
Ġl ine
con tent
Ġlo op
Ġres t
Ġab ove
Ġfa ke
ĠRes Net
cul ate
ĠDe ep
Ġ! =
oriz on
D ownload
L P
b it
c allback
s igmoid
t exts
Ġ 96
er ies
Ġs pe
ĠĠĠĠĠĠĠĠ ĠĠĠĠ
Ġv ocab
Ġval id
as h
ic y
Ġe ither
ĠT PU
ctiv ity
Ġpre trained
Ġse cond
Ġal read
ĠE x
Ġdist illation
regular izers
Ġcontain s
squa re
Ġful ly
Ġproble m
0 15
C reate
e b
e ch
o ard
} ,
or ed
Ġ1 17
\" ))
Ġc lo
Ġc ases
cc ess
Ġ6 5
Ġbe ha
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĊ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĊ
Ġh yperpa
Ġcom p
mo vies
ĠL ength
Ġha d
fig size
Ġsample d
29 1
Ġpass ing
prob ability
utor ial
0 14
I G
N ow
c le
Ġt ry
Ġv ision
Ġf ar
Ġd on
ar ch
Ġw ere
Ġp ar
Ġb uffer
Ġ( -
layer norm
Ġre g
ck pt
Ġ4 6
Ġ5 00
Ġpa ir
Ġres idual
ĠL ayer
Ġcall ing
Ġload ing
dire ctory
476 190
gment ation
/ .
0 90
5 86
C T
D IM
I t
d own
g reg
i T
l ess
Ġt y
er m
re t
Ġv isual
Ġo w
Ġo ptional
Ġd l
Ġbe ing
)) .
Ġuse ful
ir on
Ġ8 6
ĠD ata
Ġstr ucture
Ġcom mon
for ms
Ġsa ved
__( **
MA GE
op ping
Ġcomput ation
que e
Ġte acher
sub plot
Ġposs ible
5 12
C allback
W hen
a udio
g h
g an
v ars
st d
Ġv ideo
Ġd id
Ġm y
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ Ġ
Ġ5 5
Ġlabel ed
ĠE fficientNet
key s
Ġcl ip
Ġprob ability
Ġloo kup
Ġtimest eps
ĠAppl y
Ġest im
amb da
F EATUR
a pt
g pu
ě [
Ġ ray
Ġd is
Ġre commend
ad am
Ġbe low
Ġdef aults
Ġr atings
Ġstr ide
14 07
mask ed
ĠU n
Ġab solute
pon ent
Ġrepresent ations
ĠNum ber
Ġloo k
orizon tal
Ġalread y
quee ze
) >
B oard
N I
c ase
j p
r t
s age
u ch
y n
Ġ- >
ra ction
Ġd rop
Ġm e
Ġp h
Ġb aseline
om ent
Ġ4 3
ex amples
18 18
dim ension
unction al
ĠP ro
back end
Ġspecif ic
Ġmethod s
ĠV al
Ġmap ping
Ġcons ider
Ġextra ct
Ġkn ow
L A
_ {
c i
f rames
h o
Ġt r
Ġs kip
im it
Ġof f
Ġg rads
Ġh and
Ġsu ccess
64 1
78 4
conv ert
Ġfunction s
Ġbet ter
Ġmap s
Ġro ot
Ġsmall er
rg b
Ġreconstr uction
ob ile
ĠUp date
At tention
mn ist
N UM
n er
n ection
t uning
Ġ raw
Ġs ince
ut om
Ġb el
00 25
il ity
Ġg roup
ef f
ff ect
Ġcan not
Ġ16 0
ĠG AN
Ġhas h
de vice
Ġbet a
Ġnetwork s
Ġvari able
Res hape
Ġpredict ed
Ġtransform ation
vector s
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
Ġdeta ils
gorith m
Vector ization
Ġow n
) }
0 17
b est
h ttps
q vae
s queeze
u ds
al k
Ġa cross
Ġa dapt
Ġd one
Ġd ilation
Ġp la
Ġp res
Ġex a
ener ate
ĠR egularizer
93 7
ĠĠĠĠĠĠĠĠĠĠ Ċ
Ġmask ed
add ed
ĠU se
compile d
qua red
Ġdire ctory
string s
box es
Ġconsist s
Ġdemon str
NI ST
jp g
( '
M S
a ug
s ha
s imilarity
t em
t uple
t ime
u int
ic s
Ġtf ds
ex ample
ĠC ustom
con nected
ou gh
Ġpo wer
Ġstr ong
ĠO OV
os ine
tra ct
Ġrepresent ing
Ġqu ant
Ġco unt
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ Ċ
Global AveragePooling
Val ueError
Ġcharact er
Def ine
way s
. )
O n
l ike
o ice
o unt
r al
Ġ Q
Ġ ide
in ally
or d
ion s
Ġ1 27
Ġd ownload
Ġu ps
Ġg en
Ġl ib
90 7
cod ing
ax es
Ġcon caten
25 5
100 00
ĠR GB
ri e
ĠD ense
ext Vectorization
Ġus age
ĠO n
olution al
mat mul
Ġsa ving
Ġ: ]
IN G
Ġoper ations
ĠTh ese
ribut es
0 10
0 94
A n
C O
R a
d isplay
i lo
r atch
t ag
Ġ ran
or der
Ġs ampling
Ġs orted
Ġ3 9
ol ume
() `
if t
Ġ6 1
Ġ4 1
18 0
con catenate
label ed
ĠA d
Ġcon str
ctiv e
Ġstr ategy
pa irs
Ġmax imum
de code
Ġcol s
================================================================ ================================
uct ed
Ġlat er
St art
Ġtimest ep
Ġprod uce
cri ption
Ġspir it
' ],
E D
O R
S top
] ),
g roup
p ip
Ġ epsilon
or g
or iginal
en c
Ġth us
Ġf fn
Ġc ross
Ġc rop
atch ed
Ġfor ward
ction ary
Ġex pert
Ġcon trastive
Ġlo cal
Ġdef ine
Ġle aky
Ġstr ength
Ġcom m
Ġfunction al
99 9
ces sed
ta ke
ps nr
ĠDef ine
activation s
Ex amples
ER T
Ġlar ger
Ġser ial
Ġ~ /.
Ġenv iron
T R
a u
b one
e mb
m y
t ransformer
Ġ ),
in ing
Ġth ing
Ġc ell
ar est
ur ation
ĠĠĠĠĠĠĠĠĠĠĠ Ċ
Ġex t
tf re
Ġ7 0
ĠL STM
ĠO ne
ĠĠĠĠĠĠĠĠĠĠĠĠĠ Ċ
not ations
war mup
wh ere
En coder
PO CH
SparseCategorical Crossentropy
Ġpe ak
Ġhyperpa rameters
================================================================================================ ==
. ]]
2 24
A E
b r
l ight
p lo
u ced
Ġ ra
Ġ 95
Ġt utorial
al led
st ates
st udent
Ġf re
Ġin stances
il es
un e
Ġ4 7
Ġle ft
Ġle vel
wor ker
ber t
AU C
Ġet c
ched ul
Ġmod ule
Ġful l
Str ategy
vant age
aved Model
' re
B uild
I D
L ambda
i k
o led
Ġ ):
er ical
Ġa ch
Ġ1 26
Ġc ent
Ġm l
Ġm ak
Ġb ond
et ad
Ġto g
if ar
if ied
Ġ4 5
Ġy iel
Ġh idden
Ġex per
Ġl imit
25 8
ĠR eturns
Ġsu bject
ri or
Ġal ways
ĠIn put
ĠB ERT
Ġper cent
Ġwor ld
Ġcal lable
Ġprov ides
Pre pare
fa ke
ie w
Ġent ire
dist ribute
Ġap pro
Ġexpect ed
ĠWh ether
Ġach ie
etad ata
. _
3 75
A l
F latten
S ampling
e v
f re
i am
l or
o bservation
Ġs el
se e
Ġ1 50
Ġo pen
Ġp ad
Ġe arly
Ġre fer
th is
ĠA r
ile d
Ġpa rameter
Ġr ight
Ġr atio
ĠM NIST
vi ous
Ġax es
ari able
\"\" \"
tt p
Ġgener al
Pre dict
Ġdi ctionary
por ts
Ġsha pes
Ġpat ience
Ġrequi res
utom at
Ra ises
" ),
) }\")
A D
R O
R NN
d ot
e y
o om
o ver
Ġ 93
Ġ0 000
Ġc ur
Ġc ap
Ġm emory
an h
Ġg amma
ĠA U
ĠS avedModel
Ġpre d
Ġpre ds
Ġen hanced
Ġne ver
Ġset s
38 2
ne ighb
fil es
ĠH ow
Ġsc ratch
(). __
.] ],
Ġtransform ed
ml p
Ġallow s
ĠNetwork s
Ġsep ar
Refer ence
Ġenviron ment
Ġtog ether
, )
. __
N AM
R ed
d isc
i ss
i red
t xt
w rit
er ial
ĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĊ
Ġf ind
le g
Ġm oment
res t
Ġst ates
ĠI M
Ġl ess
per cent
96 12
ver se
Ġpo oled
Ġres ize
Ġwor ks
[: -
Ġab le
co pe
Ġvari ables
strain ts
prob e
Ġoper ation
Ġtask s
Ġsuccess ful
lor ot
E POCH
T FO
d type
f o
l ing
t im
on al
Ġa mo
Ġ0 00
ut ure
im al
od y
an chor
ad apt
iv idual
if y
Ġ6 2
th ing
ĠC T
ĠA l
Ġan other
ĠF loat
33 33
Ġset ting
ator s
fil en
ĠH ere
Ġprocess ing
normal ize
ree ze
Ġorder ing
ass ert
Ġ> =
Ġcheck point
Ġid ent
Ġutil ity
TFO p
1 35
A s
D E
E valu
N ormal
d b
g ram
g amma
at om
al one
Ġ0 5
Ġ1 25
Ġd ot
le ase
ct ual
is y
ĠT ime
pl its
Ġ6 0
low er
Ġex periment
Ġreturn ing
Ġpro pert
ri p
Ġal gorithm
ust ers
93 8
Model Checkpoint
Ġmo lecule
ĠE ach
oo gle
AT E
Ġinter polation
ĠLo ad
Ġpixel s
Ġag greg
Ġhel p
Multi H
Up Sampling
0 78
B inary
G TH
M in
W ith
c ache
at map
er min
Ġa vg
Ġa utomat
ra p
re ward
Ġin side
Ġw ar
Ġ[ -
pe ech
Ġe qual
10 1
Ġwith in
qu ery
ĠC loud
15 1
pro cessed
Ġse gmentation
Ġen able
ĠL ist
wor ds
Ġde cay
pos ition
Ġmax len
Ġbuil ding
wh ich
dist illation
por al
Ġtra ck
DT ranspose
transform ed
LEN GTH
Download ing
eff icient
) ):
1 50
A ugment
c ifar
f lat
q rt
x label
Ġ 94
Ġ ign
in k
in clud
Ġs ent
Ġs om
ing e
Ġc ritic
is m
Ġ2 78
Ġ[ "
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠ
Ġex ist
Ġcon nection
arg max
ach ine
com e
dd ev
str ides
Ġtest ing
Ġ9 1
Ġwor ker
Ġimport ant
Ġâĺ Ĵ
Ġinst alled
prob abilities
Ġdepth wise
ĠSe e
arly Stop
Ġtr uth
arlyStop ping
( -
. \")
0 50
0 20
3 99
6 25
B lock
D NN
I C
M ix
a ke
d ed
d igits
e val
g z
m p
m ar
p ixel
r ated
r ating
Ġt ransformer
Ġa round
Ġ1 90
Ġd oc
Ġb oolean
ĠT extVectorization
ce iv
res et
ĠA ctual
Ġreturn ed
Ġse en
Ġpro ject
Ġdef ined
ĠF unctional
Ġun it
ĠTensor Board
Ġadd ed
co gn
Ġkey word
Ġfollow s
Se quence
Ġpos ition
ĠNum py
Ġatt ributions
ĠNU M
Ġnormal ize
Ġextra ction
-------------------------------- --------------------------------
ĠInitial izer
clo uds
object s
Ġexa ctly
ĠAU C
leg end
Ġamo unt
1 17
> .]
S V
T F
U sage
c ap
o se
y label
Ġth ree
Ġs ign
ch oice
re ating
st m
Ġm ight
Ġb en
Ġe ffect
Ġ[============================ >.]
atch es
res net
ab s
10 24
ĠC al
ĠA t
ĠS h
ormal i
ĠM LP
Ġ{ '
Ġ{ \"
os en
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĊ
Ġind ividual
oo v
co un
cor ds
fil ter
file path
Ġvari ance
Ġtak en
Ġscal ar
BatchN ormali
Ġlong er
Ġupd ated
yn am
ĠOn ly
Ġml p
% |
( **
8 14
C all
S quared
U sing
c ut
d r
s kip
â Ģ
er g
lo o
re plic
Ġf in
Ġf uture
Ġm uch
00 23
ro l
Ġn orm
Ġ[ \"
ur ther
Ġg round
Ġst at
ot t
)) (
ĠA s
pre ds
Ġcon text
Ġpre vious
ap ers
pat ible
num ber
ach ed
and alone
kernel s
pos itions
eth ing
us al
us ion
ĠE mbedding
Ġ28 3
Ġ9 2
Ġfol der
Ġrandom ly
cor es
Ġ_ ,
Ġstring s
predict ed
Ġexpect s
Ġwrit ten
ĠInitial ize
Com put
ww w
Ġele ments
ĠString Lookup
Ġbeha vi
ret urn
Ġdemonstr ates
MS prop
Ġran k
plo ts
ĠHow ever
EPOCH S
. /
1 99
9 00
a rable
c nn
e ed
f p
f in
m iles
r u
t ask
Ġa w
Ġth ose
Ġs l
re ct
st ack
st opping
im ple
Ġo bservation
Ġd f
Ġd iv
Ġw atched
ab el
10 94
Ġbe g
qu ency
Ġ5 8
con trastive
Ġcon d
98 6
ri es
Ġres net
ĠN o
ĠN ormalization
and as
Ġsh if
13 8
pa red
Ġint rod
Ġinclud es
AT A
pla ne
Ġpos itions
Ġprov ide
sub plots
Ġfe ed
Ġent ry
Ġcont in
Ġwork flow
stanti ate
bit rary
Evalu ating
Ġwar mup
8 75
A L
C ustom
C LR
E fficientNet
F S
N ING
R U
Z ero
a re
d ownload
i qu
j or
t il
t anh
u ding
v o
Ġ }
__ .
in v
Ġa ctor
lo pe
le ction
le ft
Ġm ix
Ġre c
if ic
ab solute
Ġ\" ,
ategor y
18 6
Ġor ig
ĠS ys
Ġ7 1
Ġres pect
ĠM ax
cl uding
max len
Ġch osen
Ġvector ize
Ġdist ance
Ġinitial ization
tt ributes
Ġsc ore
Res Net
Ġgo ing
Con catenate
AR NING
Ġcre ating
Ġatt ribute
ĠCon straint
Ġback bone
ac ity
run ning
Ġed ge
Ġdeta iled
ponent ial
includ e
ĠSys FS
" ],
0 96
7 20
C rop
I T
T rans
a ker
a vg
g lobal
i ct
p ack
s mall
u age
al ty
Ġs chedule
re ak
Ġd ynam
an g
pe at
Ġe fficient
il ment
om al
ad jacency
() ],
ĠC o
pro j
Ġse ction
Ġ7 3
Ġpro posed
ĠP o
ĠL inear
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ Ċ
ide os
Ġma in
Generat or
Ġsim ply
Ġadd ition
Re cord
Ġk ind
MA X
augment er
LE S
81 97
jo b
Ġpart ic
base d
Ġresult ing
Val idation
Ġtem perature
transform ation
uck et
Ġsupport ed
Ġtechn ique
Ġph ilo
dimension al
Ġmak es
iam ese
erg ence
Ġbeg in
E arlyStopping
I MAGE
S hape
V isualize
b uild
c ing
c ated
g b
h ist
i ate
p i
Ġ ?
Ġv qvae
Ġf urther
ed u
Ġto o
as ing
ation al
val s
12 1
Ġret rie
=( -
end er
end ent
Ġnot eb
ase d
ĠE n
Ġmask ing
Ġrep la
Ġz eros
map ping
Lo g
Ġimpro ved
ĠConv ert
ead Attention
Global MaxPooling
Ġshow s
BatchN or
Ġed ges
Ġneighb ours
Ġfig size
#### ####
Ġloc ation
Ġmor ality
Ġmoment um
Comput es
% \")
0 95
: **
D ist
H E
e qual
g s
h idden
o per
p ically
s pecif
v ideo
Ġ row
Ġt er
Ġa vo
it em
Ġp y
Ġ( (
Ġn odes
ig it
ĠT ransform
un it
Ġ5 4
Ġ5 7
par t
12 0
ĠC all
pre trained
Ġcon stant
Ġle ad
ĠM y
and Augment
Ġactivation s
Ġde code
sh ift
add ons
Ġsub set
unt ime
pect ro
Ġsc en
posit ive
Ġmin i
Ġad jacency
Ġlearn ed
Ġatt n
Ġass ign
classif ication
Ġwrit e
Ġkn own
Ġeas ily
Ġbel ong
sha pes
ĠIM G
Ġautomat ically
Ġsom ething
replic a
Ġbehavi or
:** *
8 37
9 28
= (),
B idirectional
I L
N ot
P adding
R MSprop
] (
b e
b aseline
c ustom
s el
t wo
u ces
v ision
z ero
{ '
in p
in fo
or ing
Ġa ctivity
lo cal
Ġth reshold
Ġs at
ch ars
re p
re constr
Ġv iew
se quential
Ġf n
Ġp ract
ag er
ag gle
Ġ3 00
Ġre wards
Ġst an
ith ub
Ġ4 02
Ġex ec
ess age
15 2
15 6
32 0
stan d
ĠP ixel
ĠP ass
97 9
0000 00
ĠB atch
Net work
500 0
for d
Ġappl ying
Ġclassif y
Ġfile path
bs olute
Ġsy st
Ġsha red
Ġele ment
Ġindic ating
FEATUR E
Ġide a
Ġcomm and
cogn ition
oper ators
0 93
: -
: .
: --
A IN
A ttributes
D epth
D ATA
F rame
G et
I R
T PU
V ariable
m se
n on
r on
u DNN
v isualize
es ome
im ize
Ġ1 37
\" {
Ġc er
Ġw alk
Ġ2 99
ig ger
Ġtf a
Ġst ack
ran ch
per ts
ĠC NN
con straints
ĠS o
ĠS ize
Ġan s
Ġ7 2
Ġ7 8
Ġ8 1
98 5
ĠD ropout
Ġres hape
mo ve
([ -
ib ility
19 2
mat rix
Ġappl ies
Ġso ftmax
Ġup per
Ġconvolution s
Se en
Ġrepresent ed
Ġcomput ed
cent er
Ġgraph s
Ġad vantage
Ġconfig uration
ĠConv olutional
ribut ed
Ġcolumn s
Ġdel ta
Ġcomple x
Ġray s
Ġthing s
Ġappro ach
ĠAr guments
Red uction
loo kup
Ġaw esome
iqu es
Ġphilo so
6 0000
: ",
N o
O ur
S peech
_ ,
g lorot
l ation
t p
t le
u ous
v ers
Ġt urn
Ġt run
or age
en ds
Ġv olume
Ġf ast
Ġf ixed
Ġp ur
00 22
Ġ3 84
() }
Ġst ore
ess ages
ĠC PU
ĠA da
Ġon es
32 5
ve lo
ir ror
ver t
... ,
eg in
ext ra
ĠM obile
ind er
ĠP er
ĠP IL
Ġar t
ĠL et
log s
for ward
ĠW ith
Ġqu ality
Mean Squared
pla ce
Ġrun ning
Res caling
ĠCom pile
Ġcre ates
te acher
projection s
AM P
Ġscal ing
Ġoption ally
Ġsy m
Ġutil ities
right ness
Ġcharact ers
action s
Ġtimes eries
wa v
476190 48
476190 47619048
tem perature
ord in
TR AIN
Ġcur ve
NAM ES
TFOp Lambda
MultiH eadAttention
1 10
6 64
8 28
9 78
A ss
A bsolute
E P
F irst
N P
O CA
P er
S o
U se
[ '
b egin
g rid
h orizontal
o ms
p p
t n
v is
Ġ ..
Ġ 99
Ġt p
Ġt rue
at ively
Ġs izes
it ter
it ives
Ġd N
Ġd igits
le ct
Ġp added
Ġp rior
Ġb reak
00 26
il inear
id f
Ġre ma
Ġst ddev
un ique
est ion
Ġh im
Ġh ttp
\", \"
17 5
In itial
Ġus ers
Ġun ique
Ġset up
Ġfil en
ĠB e
Ġsa y
ne arest
Ġdimension ality
Mean Absolute
Ġcomput er
Ġprob abilities
Ġ% .
vg g
negat ive
Ġrequ ire
De vice
ish ed
Ġcomb ination
Ġpat tern
Ġchan ged
Ġsubclass ed
med iate
Th ere
Ġtechn iques
Ġvisual ization
percent ile
tim est
Ġpartic ular
Ġnoteb ook
Ġphiloso ph
OCA B
5 0000
8 66
P os
` .
b uil
c b
c er
d is
d et
d og
f latten
k v
l ines
n ode
q kv
s qrt
Ġ 97
Ġt n
at ely
or ding
or ds
Ġs pa
el ta
Ġf p
Ġd igit
Ġp ers
ro ll
Ġ2 77
um ent
Ġy et
qu ad
ĠS ample
ĠS pecif
ĠR andom
Ġpo l
ĠD ist
16 0
com b
com p
95 5
Ġun til
mask s
ection s
ant ic
de cay
Ġk l
Ġco ordin
Ġcal culate
Ġred uce
ĠCon nected
cul es
Ġdire ctly
Ġass ert
Ġcont rol
Ġoption s
IM G
Ġbound ing
cluster ing
Ġchan ge
SparseCategorical Accuracy
Ġrequi red
stanti ates
att ributions
writ e
Ġben ef
pectro gram
2 90
4 80
7 10
= {
C NN
C reating
S S
W h
a ctor
a verage
d itional
g rad
g ithub
n one
o pt
s il
u pl
u sed
in a
Ġt re
er a
en coding
ch ast
Ġ1 22
Ġo p
Ġf lip
le cules
Ġm etadata
Ġm achine
Ġin s
ar r
Ġw rap
Ġp en
Ġp lease
Ġp andas
Ġb as
Ġb ert
Ġn am
ens itive
res idual
Ġst range
ex perts
th og
Ġ5 1
Ġ5 9
ĠA rg
Ġnum erical
Ġse arch
Ġ7 9
Ġ7 84
98 8
ĠR andAugment
Ġpro gress
Ġres izing
16 6
24 8
mo st
97 4
Ġha ving
ĠG raph
Ġget s
Ġcal cul
Ġlearn able
UN K
St andalone
Ġro t
Ġwrit ing
SE Q
Ġtem poral
Ġcomb ined
ĠTrain ing
Id x
Ġcent er
fre q
pack ages
Ġpract ice
Ġcer tain
irror ed
chast ic
8 26
8 08
F eature
H T
T ype
U n
W ARNING
\ '
b ound
e arly
k n
m od
u ation
en g
lo c
el ens
re current
la y
Ġ1 0000
Ġc am
Ġc loud
Ġc ache
Ġc osine
Ġin cluding
00 98
Ġe qu
res ents
if ication
if ier
10 2
ill er
ĠC an
Ġon ce
ĠS w
Ġcon f
Ġit em
arg in
Ġpre training
64 0
Ġacc ess
vi elens
Ġsh own
end ed
Ġne ar
95 98
pa per
pos es
Ġ/ >
resent ation
36 8
led ge
Ġimplement ed
Ġsuper vised
Ġvari ous
Ġdet ermin
ĠLo g
Ġdes ired
ĠRes idual
vector izer
BatchN o
Ġreconstr ucted
Ġdemon st
Ġinv ol
Ġmor al
Refer ences
Ġrest ore
Ġty pes
)} %\")
Ġsel ected
neighb ours
are a
Ġdynam ic
HE AD
Ġavo id
sil u
ĠArg s
) `
. \"
. \"\"\"
4 00
7 35
7 78
C E
C V
F F
K eras
M I
S ON
] ).
a uc
b eta
c ies
c ience
c ritic
d m
d rop
f lip
n etwork
q dm
r ation
s core
s miles
t ol
y cle
Î ½
Ġt ag
Ġt qdm
Ġa uto
Ġs ol
ch em
st rip
it ch
Ġ1 23
Ġd ue
Ġin f
Ġin fer
Ġin cor
an notations
ro ps
pe g
ccura cies
Ġre cord
Ġre view
ĠT otal
res olution
ĠI MAGE
ir d
Ġse ver
Ġ7 6
20 17
96 53
Ġ8 5
Ġpo p
In stantiates
Ġres et
Ġr ather
ip s
16 7
16 9
ĠM o
ĠM ask
Ġacc ording
rand int
ray s
ray scale
Ġde velo
ption s
Ġun less
ng uage
log ical
Ġup on
Ġrep resents
que ue
AR GE
Ġprojection s
Ġaction s
Ġnormal ized
Ġap pe
SE T
Ġtem p
Ġag ain
ĠAppl ication
iter ations
Ġincre ase
Ġgreat er
FEATUR ES
Ġpres er
tag s
Ġsepar ate
Ġshif ted
Ġter ms
ĠTransform ers
Ġpol icy
Ġdemonst rate
ARGE T
( /
2 64
4 75
A nd
F lip
O r
b ile
b ond
b ook
d es
d oc
g re
i ef
k id
m ix
o ps
s chedul
} .
Ġt able
er ge
on ts
Ġs plits
re peat
re place
it ations
\" ).
Ġf la
Ġc rossentropy
le arn
ar ies
Ġb ad
et ina
ent ion
Ġ2 15
ep arable
ep endent
um an
Ġre f
Ġg lob
ce ment
he m
un c
int eg
ĠI ter
ĠI gn
ĠC h
ĠA vailable
Ġan omal
Ġse m
Ġ7 7
96 0
ĠR ep
Ġres ized
Ġr gb
Ġus ually
vi ation
Ġcom pared
ĠF irst
Ġde cre
ĠG radient
ĠG enerate
Ġmo ving
ĠB y
ĠB uild
38 7
Ġch ar
ĠU sed
Ġinclud ed
Ġover fit
augment ed
Categorical Crossentropy
Ġdire ction
Ġpath s
ĠDe vice
Ġprod uct
Ġhead er
Ġwho le
ĠGPU s
6666 6666
Ġspe ed
ho st
Ġlib rary
Predict ed
filen ame
Ġaggreg ated
Binary Crossentropy
EfficientNet B
ĠCo lab
extra ctor
MeanSquared Error
Device Attributes
thog onal
mod ule
tol ist
etina Net
" "
0 27
7 64
G D
G G
M B
P l
S ame
V OCAB
b al
b ranch
c lean
e ms
j peg
o v
p us
u ctor
v it
w ers
Ġ q
Ġ url
at form
im ation
Ġ1 92
Ġf raction
Ġc ut
Ġm ult
Ġm ath
Ġin p
Ġin com
as on
Ġof ten
Ġn at
Ġn eg
id ent
om ain
ol der
pl ier
Ġdata frame
un ch
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĊ
Ġ5 3
18 8
15 8
ĠS ince
Ġan notations
98 4
98 7
Ġsu ff
ri pt
ext ract
cess ary
13 6
13 7
com pute
94 1
Ġde c
max imum
Ġfil m
Ġfil led
Ġper m
Ġcol lection
Ġlist s
000 1
Ġadd itional
Re qu
Ġimplement s
Ġj son
Ġsc ript
Ġfa ct
Pre dictions
([[ [
Ġtak ing
Ġread ing
bo ol
ass ets
Ġro ut
pol icy
Random Flip
Ġ... ]
Ġembed ded
Ġdown stream
ĠTF Record
Ġcaption s
Ġiter ation
ĠJ SON
Ġeas y
ĠPre pare
Ġshort cut
inter polation
wa re
Ġclo se
Ġreg ard
Ġconcaten ated
Ġconstr uctor
Mix er
ĠCal culate
ĠSh uffle
Ġorig in
Depth wise
Ass ets
EP S
Ġcoordin ates
irrored Strategy
onts ize
, \"
, )),
0 64
0 26
0 55
4 30
8 59
: ])
A I
B e
B uil
B ox
D ot
E SIZE
S GD
a fter
b ody
g lob
l stm
n ext
p rod
r at
r ing
s ite
v ices
Î ¹
Ï Ħ
Ġ Î
Ġ ens
Ġt itle
er ic
ch ors
ch aract
st er
Ġv ar
Ġv ideos
it ed
im es
Ġ1 34
Ġf name
Ġf iel
Ġf ontsize
Ġd omain
ar ts
ed y
Ġp s
Ġp apers
Ġb ar
00 5
as ure
ic i
ur s
ad e
ol ic
Ġst opping
ot s
Ġ# #
un ct
data frame
Ġh er
int ain
ist er
Ġ5 2
Ġ5 18
Ġex pl
18 2
18 5
Ġl ik
90 6
32 4
32 6
pro bs
Ġpre f
Ġ7 5
Ġres pe
ĠM A
ĠM ake
14 2
mo lecule
oc al
Ġun f
Ġun labeled
load er
Ġ20 20
de ep
Ġgenerat es
Ġgenerat ors
ma jor
ca usal
pon ents
Ġcor rect
sample d
Ġâ Ģ
Ġqu ick
Ġpos itional
Ġco un
Ġneed s
Ġgener ation
Pre diction
Ġfloat ing
bo ard
Ġrel ative
vari ance
ĠSt yle
Ġdep end
Ġfig ure
gorith ms
Ġincre asing
Ġla nguage
clo se
window s
Ġindic ates
IG HT
1818 1818
LA SS
Ġachie ve
cap acity
ĠMax imum
Ġbegin ning
Ġexec ution
Ġsyst em
Ġnam ed
Ġcam era
) ])
0 56
0 97
1 97
2 28
2 99
4 39
7 30
7 44
9 50
< ?
= >
A fter
D F
F inally
H ow
I ON
L abel
M L
P SNR
S H
S eparable
T ARGET
V AE
[ ...,
a v
a ves
c p
c ou
g ather
h ance
i or
i od
j ust
k l
l ine
s ider
t mp
x iv
Ġ Y
____ __
in stance
________ ______
al ks
or ig
en code
Ġs low
Ġs cores
se quent
Ġf ill
Ġin ts
Ġw on
ed ges
is f
Ġp age
Ġp ict
Ġn ested
ĠT q
pl atform
Ġst d
orm ap
Ġ4 00
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ Ċ
Ġ\" /
ĠC ent
ĠC urrent
con text
ĠS p
Ġpre v
96 1
... \")
Ġr ender
________________________________________________________________________________________________ ______________
24 0
24 7
Ġnot e
cl Im
([ \"
Ġma intain
log y
Ġi ss
Ġno isy
Ġk ept
Ġdist ributed
Ġdiffer ence
Ġfollow ed
abil istic
Ar bitrary
Ġcl s
Ġinter pre
normal ized
Ġtrans forms
ress ion
)[ -
Ġdes c
Ġass um
ĠTh ere
Ġmatch ing
ins ensitive
tern al
Ġobtain ed
Ġcomple te
Ġrecommend ed
ĠPro b
Ġra ise
Ġpropert y
Ġscen e
Ġsat isf
DATA SET
upl es
kn own
Ġsever al
schedul es
ĠIgn ored
Requ ire
<? ,
clIm db
% .
/ *
0 28
2 35
5 47
8 97
8 76
A ppl
G ES
I MA
M atch
M ask
N e
O ne
T ext
V isual
] ):
a ct
b l
b ar
f ra
f unc
g if
h er
i ous
n rows
p added
s c
s cope
t able
v an
v olution
v olume
Ġ 98
Ġt ri
Ġt erm
Ġs ide
re ctly
Ġc ategor
Ġin str
Ġp ut
il ated
il dr
id ence
Ġre gress
Ġst op
if e
he atmap
ex pert
Ġbe come
th ers
th reshold
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠ
Ġh al
Ġ\" )
Ġwh y
ĠA ctivation
15 3
ĠS im
Ġcon trast
Ġit self
Ġpa st
Ġ8 2
Ġ8 4
98 0
Ġpro p
Ġr ating
ĠN ormal
Ġal most
Ġacc ount
93 6
94 4
Ġ/ ><
33 3
Ġper forms
Ġhe atmap
Ġmean ing
Ġlog probability
key points
Ġno vel
ctor ies
Po ol
col ors
Ġweight ed
Ġsc ans
Ġany thing
.... ..
Ġco st
Ġcons cience
list dir
Con cl
movie Id
ass ign
pol ated
Ġap prop
Ġscal es
Ġeven ly
Ġinv olution
........ ........
caption s
Ġclo s
Ġpar ts
Ġdis k
Ġgroup s
ĠQ u
Ġdownload ed
Ġserial ization
au ss
Ġfre quency
Ġpropert ies
Ġign ore
Ġexist ing
Zero Padding
ĠPo int
So ftmax
Ġpen alty
ĠIter ate
Ġoverfit ting
charact ers
Ġps nr
ĠMA X
Ġsatisf ied
IMA GES
ildr en
- >
. <
8 96
E ach
G PU
I A
J Speech
M LP
V iT
b ucket
g u
g rams
g oogle
m an
o ple
s ingle
s chedule
t ile
u ber
v qvae
y m
á ¼
Ġ Z
Ġ rand
al low
en hanced
Ġa m
Ġa uc
Ġth ough
Ġs cope
st ages
Ġc map
Ġd eg
Ġin valid
ar k
Ġw om
Ġb ody
ate au
il er
Ġre ference
ens ive
Ġis n
ĠT v
ĠT arget
iv al
Ġg ive
res ults
() ),
() ))
ple te
est ions
ex ist
Ġh orizontal
lab les
Ġex cept
Ġl ines
12 7
ĠC or
batch es
32 8
Ġ* =
ĠS kip
pro ject
pro pert
lar ity
ctiv ely
Ġ7 4
Ġpa ck
Ġen g
Ġ8 7
Ġare a
ĠD isplay
Ġres er
Ġcom es
Ġcom ponents
ĠThe y
ram id
Conv Layer
Ġde viation
cal ed
ations h
Ġmo lecules
uff ling
ĠO ther
Ġun iform
tr uth
Ġgenerat ing
11 1
Ġdo ing
Ġz oom
Ġdif f
np ack
ĠH DF
Ġstate ful
Ġpos itives
ous ly
Ġtrans pose
Ġtransform ations
Ġmod ified
De coded
function al
-------------------------------- ----
pref ix
plic it
multi plier
att n
CA L
uck ets
Ġact ually
ĠEfficientNet B
ral ization
Ġconcaten ation
enc ies
Ġext ended
tfre cords
chedul er
Ġsel ect
Ġdoc ument
---------------------------------------------------------------- ------------------------------------
Trans fer
Ġretrie ve
Ġbelong ing
rep resentation
Ġpop ular
Ġens ure
Require ment
Ġregress ion
Ġapprop ri
auss ian
propert y
) \",
0 24
0 34
7 26
7 08
8 17
8 78
A by
C LASS
G OR
G RU
H inge
I CAL
M obile
P AT
Q u
S h
T S
T ime
a ving
a ilment
b ug
c um
f inal
g d
g g
g o
g it
i ou
l in
m el
m etadata
n odes
p bs
s izes
s gd
t w
t une
v oc
} )
in ian
Ġs ens
Ġs igmoid
el u
el ect
ss inian
re pes
se gmentation
im od
Ġ1 84
Ġ1 138
Ġd raw
Ġin ner
Ġp r
Ġb al
ent ations
Ġ2 20
Ġn d
Ġn ature
Ġ[ ],
pe ed
ic ial
nd ex
Ġe m
Ġre ason
Ġu int
Ġst arts
ot ation
ab ly
Ġbe com
Ġh o
Ġh ence
pt y
ĠC O
ĠC uDNN
con da
Ġpre processed
20 14
Ġat oms
ver ag
Ġ8 3
ĠR un
In stance
In ference
ter m
16 1
16 8
ĠM el
ĠM ap
ĠF Net
14 6
30 3
ĠP atch
Ġne cessary
cl usters
95 8
Ġde coded
Ġde vices
76 5
Ġ{ "
Ġ{ :.
ĠIn stantiate
ĠO ur
str ide
pec ially
40 2
Ġind ependent
ĠK ey
oo se
key point
de c
uction s
Ġspecif ies
ma in
point er
Ġinteg rated
Ġqu estion
Ġcomput es
ĠV iT
Ġmulti pl
smooth ing
Ġinter mediate
posit ory
Ġco py
Ġneed ed
Ġprocess es
Ġconfig ure
Ġloo ps
Ġarchitect ures
To ken
Ġrel e
De ep
De coder
uc ing
ON E
Ġ... ,
other wise
Ġid f
Py thon
Ġag ent
Ġneighb our
ĠInteger Lookup
Ġkeep dims
Ġhel ps
cri pt
Str ing
med ia
Ġupd ates
Ġbeha ve
Ġty pically
Ġhand le
Ġyiel ds
Al so
rest ore
filen ames
135 7
ATE GOR
Ġsent ences
ceiv er
coun ter
ĠCall ing
MI LES
Ġtag s
bile vit
unct uation
ĠCent ralization
Aby ssinian
PAT H
tw img
repes entations
imod al
ATEGOR ICAL
- \"
0 25
4 45
4 85
5 28
6 20
7 75
7 45
7 46
8 56
C lass
C osine
E nd
E CT
H ash
J ECT
N ONE
P NN
R ate
S AMP
T hen
U L
V AL
a ctivity
c os
d ers
d elta
g ged
h ing
h ub
l sh
l ish
m essages
n y
n al
n ect
o chastic
r ide
s plits
t np
z ing
} \"
Î ±
Î µ
Ġ es
Ġ ids
al t
en v
ra graph
ra ries
ch ron
re f
re ma
ut es
Ġ1 35
Ġo ccu
Ġo ld
Ġo ov
Ġf ro
Ġf ree
Ġf latten
Ġc lean
Ġc rops
le t
Ġm essage
ar xiv
Ġw ide
is on
Ġb ott
et y
Ġ2 50
Ġ2 08
Ġ2 70
ag n
ig lot
Ġre use
ĠT hen
Ġg rid
ce ive
10 6
th at
Ġ\" .
par ing
Ġex ponential
18 4
Ġl relu
90 2
ĠC SV
ĠC hem
ĠA uto
ĠA ll
pre processed
Ġan al
Ġse q
98 40
Ġpo st
flow ers
ĠM ulti
ric k
14 7
and ard
13 3
94 5
cl s
our ier
Ġde vice
Ġde bug
99 2
ĠG oogle
us ers
Net V
pec ial
Ġ20 19
Ġappl ications
85 78
ĠU sage
ĠU npack
uce LR
Ġ26 9
Ġaugment ations
Ġj itter
Ġtoken ized
Ġsimilar ities
ĠFor ward
Ġhow ever
Ġca pt
Ġdes ign
Pro gress
Ġback ward
Ġprod uces
Ġcheck points
Ġwork ing
Ġsy mb
Implement ing
ĠTo ken
istic s
Ġ{} \".
Ġconvert ed
Ġsubclass ing
Ġunder stand
]]) >
Learning Rate
Data Generator
Ġspe aker
ash ion
Ġme asure
ĠVal ueError
Ġoff set
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
On Pl
Ġups ample
()` .
ĠAd am
Ġyiel d
Ġexper ience
Predict ing
RO P
erial ize
ĠCT C
Ġworker s
ĠAt tention
Ġcond ition
specif ic
Ġpy dot
Not ice
Ġtrun c
det ections
Ġbas ic
HEAD ER
Ġauto encoder
Or iginal
doc s
Ġincom patible
Ġlik ely
Ġrespe ctively
ival ent
Ġappropri ate
uceLR OnPl
LearningRate S
uceLROnPl ateau
' )(
2 96
4 33
8 24
: :
B ased
C h
C o
C PU
C ON
E IGHT
F unctional
L S
M etric
M ethod
M irroredStrategy
P a
R F
R ep
S C
S ince
] }\")
^ {
b ers
b idirectional
b rightness
c r
e in
g t
h ash
h ttp
i B
i os
o ol
s pace
s lope
t rans
u pervised
z en
or se
en ding
Ġa ccu
es cription
el e
ch mar
re es
st at
Ġv is
it ud
it les
Ġ1 33
Ġ1 80
Ġo bser
Ġf ed
Ġc ou
po st
is odes
Ġb it
Ġb ro
an it
00 3
00 27
ic ks
cy cle
am p
um ps
Ġ3 15
Ġ3 35
Ġre mo
Ġre cognition
ens ity
ad vantage
ĠT NP
ol low
ol let
Ġg rayscale
Ġst ability
Ġst ochastic
un zip
train er
Ġ4 08
10 4
10 5
18 75
12 6
ĠS peed
Ġcon nected
Ġse em
ver sed
Ġlo t
98 2
98 9
ff t
16 5
ĠN N
ĠF ill
ĠF raction
14 0
14 4
14 9
ĠP os
ĠP ath
93 3
Ġne arest
13 1
94 0
art ment
ĠIn ception
ĠG RU
str ategy
Layer N
Ġun mask
40 5
84 31
Ġkernel s
Ġwor st
ĠK aggle
Ġmask s
for cement
Ġmean t
34 4
Ġch oose
Ġclassif ied
da u
85 29
ire ct
ub ic
ized Conv
Im port
ĠV Q
Ġsc an
Ġinter ested
Tensor Board
Ġother wise
ress ure
([[ [[
sl ice
Ġrel ationsh
su bject
ĠRNN s
ml ir
Ġsy n
Ġway s
Ġbound ary
Ġsum mary
Ġmonitor ed
Ġpe ople
Ġoptim ization
Ġact ual
Ġspe ech
ĠEx tract
Ġpar allel
ĠData Frame
Ġclip s
Ġestim ation
Ġestim ate
ĠUn it
Ġconsider ed
Ġknow ledge
ĠCustom Model
Ġquant ity
tfre cord
Ġfre quent
Ġign ored
ceiv ed
Ġsign ific
Ġfin ished
720 6
Crop ping
sel ection
local host
ager ly
ĠPixel CNN
Ġpur pose
MB ED
Buil ding
Ġdesc rib
bl ue
ĠNormal ize
CLASS ES
rema inder
" ))
0 76
0 66
2 20
4 28
4 37
7 50
7 28
7 56
8 50
8 77
8 382
A S
B E
C ell
C ategory
F ile
F loat
F ound
F IG
N C
N OR
P atch
P RO
R otation
S patial
U LE
W I
W EIGHT
Z oom
\ \
` ,
a ut
b ilinear
m u
n ested
s up
s aved
s cores
s imple
t es
v en
x im
} %
} _
in forcement
Ġt ree
Ġt uples
at er
Ġa im
Ġa ff
es h
Ġs mooth
st op
la ge
it ing
Ġ1 20
Ġ1 30
Ġo thers
Ġf f
Ġd en
le ar
Ġm et
Ġm ade
Ġin verse
ed ge
Ġp ha
Ġp rom
Ġp ick
an y
an ces
an ford
ro t
Ġ2 76
ep ts
ul l
ul es
ith m
10 7
th eta
qu ant
Ġas pect
ill ion
Ġex pla
Ġl stm
Ġl ife
12 4
15 5
15 9
ĠS plit
Ġim bal
Ġen ough
35 3
ver ted
17 0
98 1
Ġpro per
Ġres pon
Ġr untime
16 3
ĠN ot
ĠM B
(\" ./
14 5
ĠP lot
mo vielens
94 6
back wards
95 84
pa ss
pa ct
pa rams
our ces
oc i
Ġde cision
Ġper iod
ta ilment
84 80
Ġmax imize
ant ly
36 9
ĠW GAN
Ġ26 8
Ġ` (
Im ports
Ġcl usters
Ġinter est
Ġinter nal
CH ED
Res izing
Ġdet ection
Ġdet erm
Ġstart ing
Ġhigh est
Ġfloat s
St yle
vector ize
Random Rotation
dist ribution
Ġdoes n
Ġevery thing
Ġregular izer
ĠTh at
depth wise
Ġcomb ine
auto encoder
Ġ{} ".
DT r
crop ped
014 8
Ġstructure d
ĠVal idation
ner f
Ġlib raries
ilo c
Ġpercent age
fre quency
078 1
Ġenable d
Ġintrod uced
Network s
timest eps
buil der
Ġequ ivalent
integ ers
Ġsuff er
Ġfiel d
Ġiss ue
Concl usion
Ġbecom es
Ġrele vant
CON FIG
Ġpha se
CHED ULE
" ]
" ).
' /
0 38
0 77
1 30
2 75
3 30
3 97
3 46
4 78
4 56
5 96
6 28
7 90
7 25
7 38
7 180
8 38
9 24
9 56
9 97
B B
B y
C SV
D B
D ate
D isplay
D escription
G enerate
H ub
M onitor
N ext
O U
O ption
R un
R ATE
S ome
S imilarity
T arget
T op
a a
b ra
c ard
e arch
g ray
h id
m emory
n eg
p ation
p pen
p rior
s imilar
v iz
Î ¿
Ġ ess
Ġa ccuracies
lo od
Ġth ird
Ġs k
Ġs pecial
re te
ut f
Ġv ol
it al
Ġ1 15
Ġ1 47
Ġ1 29
\" ][
Ġf un
Ġd ual
Ġm ixed
an chors
et uning
Ġ( [
Ġ2 000
Epoch s
ig ure
Ġ3 08
Ġ3 72
Ġg ain
() [
() ).
Ġst ream
Ġ6 50
Ġ4 03
di stance
Ġy e
10 3
th rough
Ġas k
Ġh y
Ġex port
Ġex ternal
Ġl it
con s
ĠA verage
32 9
Ġan not
ir plane
ap s
96 4
pat ience
Ġen cou
Ġen hance
35 5
35 8
Ġlo ve
98 3
98 44
98 65
98 51
ĠR ed
ĠR etinaNet
Ġpro pose
Ġdef init
Ġpo se
Ġr ates
Ġr nn
ĠM PNN
Ġcom par
(\" \
ĠF F
Ġ10 9
ĠP PO
Ġar bitrary
conv olutional
Ġnot ice
com mon
ual ity
str uct
ject ory
em antic
19 1
mat plotlib
21 1
Ġcall s
Ġfol ders
sum s
Ġadd on
Ġvector izer
Ġkey points
Ġsub tle
Ġ. /
rit ical
Ġover all
ĠV ariable
]] ]
Ġ18 1
cent age
Ġsc i
Ex periment
Tensor Flow
Tensor Shape
Ġgo al
Ġ36 928
Ġlat est
Ġad v
Ġad ding
Ġlearn s
Ġpoint wise
Ġpredict ing
ie ce
Ġca re
Ġca usal
Ġ40 96
sub set
Ġdes cent
enet ic
Random Zoom
De cay
En coding
En tailment
Ġsha re
Ġdisc ount
Ġed it
Ġke eps
og s
Ġbound aries
lec ular
Ġcompile d
Ġversion s
Ġframe work
Com pute
new axis
clip value
clip norm
cle ar
Ġcomputation al
LA Y
Ġpla ce
Ġups cale
Al gorithms
3333 3333
Binary Accuracy
ru pt
Ġcontin uous
IT S
######## ########
Ġstan ding
Ġans wer
Ġfast er
Ġsym metric
Ġfilen ame
MeanAbsolute Error
Ġpers on
Ġnat ural
Separable Conv
ĠProb abilistic
Ġtri ple
Ġcategor ies
Ġinstr uctions
String Lookup
Ġes pecially
Ġfro zen
Method s
ĠFill ing
LayerN or
Ġencou ra
% ,
) ],
. ])
0 37
0 782
3 78
5 50
7 37
7 70
8 45
9 90
: ,
> =
A PI
C l
E valuate
H Box
P R
P ixel
R egularizer
S UM
T ransformer
b ust
d ep
m it
m atch
n a
o ccu
o logical
q q
s orted
s pectrogram
x s
Ï ģ
Ġ imagenet
on ds
on ia
Ġs ur
Ġs qua
Ġs quared
Ġs lope
re c
re ference
re cord
st ract
st ead
se x
im db
Ġ1 56
Ġ1 97
Ġ1 21
Ġo pt
Ġf low
Ġm en
Ġm se
Ġm argin
ar ithm
Ġw ish
ed s
Ġp ort
Ġp ressure
Ġb l
Ġb idirectional
Ġto po
Ġ2 35
um onia
Ġe val
Ġ3 20
Ġre m
Ġre pe
Ġre ach
Ġre plic
Ġre verse
ad cast
ĠT rans
Ġg rad
Ġst rip
ot ient
Ġ6 00
ab ove
th al
Ġh uman
Ġwe ak
Ġ5 15
ĠI Python
Ġex ception
Ġex plicit
Ġl r
cod ers
ess ion
Ġout side
con caten
ĠA ction
ĠS ub
ĠS ampling
ĠS iamese
Ġcon stan
Ġit ems
ap i
port ion
Ġen ds
Ġen ables
35 469
Ġ8 9
98 37
ĠR ule
Ġpro j
Ġres earch
ip File
ĠN ow
ĠM ix
Ġacc ept
Ġcom pare
Ġcom patible
ĠThe ory
26 02
Ġnot hing
94 2
94 7
94 9
def ined
95 1
95 3
rel e
rel ation
Ġha pp
ĠG enerat
ĠG NN
ĠG enetic
Ġmo ve
ĠO ver
ĠO ptim
ĠO pen
Ġun specif
34 2
Ġsim pl
tr y
Ġgenerat ive
Ġso ft
ne umonia
Ġsub graph
Ġinitial ized
Se e
Ġqu ite
Max Pool
ST EPS
Ġprob e
Ġinter polated
Ġvari ant
Ġmap ped
Ġgener ally
augment ations
Ġad just
Ġred uced
Ġatt ributes
Ġloo ks
Ġimpro ving
Ġro bust
Ġdes cription
Categorical Accuracy
ĠTransformer Encoder
Ġback wards
Ġrel atively
su ch
'] },
Ġser ies
PO IN
Ġneighb or
Ġiter ations
Ġiter ator
Load ing
ty pes
Ġexp and
Ġ-- :--
Weight Normalization
Ġclo uds
090 8
Ġdis able
ĠGAN s
tem p
Ġpower ful
Ġcrop ping
Ġcrop ped
NAM E
percent age
Ġsent iment
117 2
Ġsl ices
Ġsl ice
Ġmix up
Dist ance
part ition
be low
reconstr uction
ĠAda IN
ĠAda Match
828 4
Per centage
Ġfilen ames
ĠBe cause
MeanAbsolute Percentage
comb ination
Ġbenef its
710 8
Ġdevelo p
gre en
Depthwise Conv
fra c
ĠPoint Net
exist s
project ed
ĠOther wise
VAL ID
Ġsymb olic
chmar k
irect ifier
PRO JECT
Ġdeterm ine
'/ '
Ġess ent
Ġsqua re
Ġunspecif ied
Ġ--:-- :--
MeanAbsolutePercentage Error
) ([
0 65
3 186
4 20
6 86
7 76
8 30
> ,
A b
A uth
C lip
D I
D own
F rom
K L
L I
L O
L oc
L ast
L JSpeech
N E
N orm
S pec
] `.
a vi
b nn
b ins
b igger
b uckets
c am
d A
d iv
d ce
g ur
g ain
g enerate
m ak
m ixed
o ing
o ptional
p apers
s ent
s pe
s pec
t irectifier
u ro
w s
w get
Ġ entropy
Ġ á¼
in come
er st
al so
Ġa ug
Ġs w
Ġs pectrogram
ch ildren
ut er
ut Mix
st ic
st orage
la s
Ġv ert
it es
it Hub
Ġ1 18
Ġ1 64
Ġ1 45
Ġf an
Ġf am
Ġc v
Ġm iss
Ġin vert
ar ial
is ing
Ġb ucket
Ġb ilinear
et imes
Ġ2 90
Ġ2 96
Ġn er
ic ubic
Ġe ver
Ġ3 16
Ġ3 04
id ing
Ġre ached
Ġtf p
Ġg e
Ġst ory
Ġst ored
data gen
th ough
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠ
Ġh ard
Ġ\" \
12 07
ĠC I
ĠC lass
ĠC ase
ĠC heck
con t
ĠA ss
ĠA ctive
15 4
acc ard
pre v
32 3
ĠS ha
ĠS up
ĠS elect
ĠS MILES
Ġnum bers
Ġcon straint
pro gress
tf c
arg e
ap is
20 48
35 7
Ġ8 8
98 12
98 16
98 58
... )
In t
ri ors
ĠD epth
ĠD ownload
Ġr d
ĠM iB
(\" .
ĠF ourier
Ġconv en
Ġconv net
up per
26 0
13 4
13 9
back bone
oc us
art Po
len eck
ĠIn stance
ĠG itHub
27 12
Ġmo lecular
str ength
us ing
ĠE rror
ĠE qual
ĠB ut
ĠB ATCH
ta pe
ta int
ast er
Ġget ting
Ġch ief
36 0
da ily
Ġsa ves
inal ity
ĠU C
[: :-
Ġrep rod
Ġ13 1
23 1
Ġ` [
Ġimplement ations
no isy
ĠV iew
ĠRe ad
ĠRe inforcement
Ġimg aug
Ġmin imum
Ġmin imal
Ġtrans lation
AR Y
.] ])
Ġmod ify
Ġ< =
Ġass oci
reg ex
Ġcode book
gen res
ĠNe RF
itional Embedding
Ġdisc rete
SE ED
lr s
Ġconsist ent
Ġconsist ency
Ġsup ports
Ġimprove ment
dire ctories
Ġhead s
Ġincre ment
CA Y
Th ese
Ġspir its
Ġdl error
Ġcommon ly
Ġme chan
dimension s
ho od
Ġide as
Ġachie ved
iss on
tim es
Ġident ical
TFOp L
DE CAY
078 0
ism atch
coun ts
Ġcontin ue
Log ger
Ġlead s
Ġassign ed
reconstr ucted
Ġcomplex ity
vers arial
ĠPer ceiver
664 4
Pos ition
comb ined
Ġbenef it
CV PR
mix er
Ġfla g
Ġanomal ies
VOCAB UL
Ġpref ix
ĠStyle GAN
ĠCurrent ly
Ġprop ag
Ġclos er
gu ard
verag ing
End point
Ġdebug ging
ĠNN CLR
BE LS
Float Progress
WI TH
card inality
Ġvol um
Ġlit tle
occu pation
Ġrepe ated
concaten ated
Ġhapp ens
ĠOptim ization
Down samples
artPo le
Ġassoci ated
VOCABUL ARY
" ]])
' ;
/ ~
0 75
0 68
2 37
3 90
3 45
4 50
4 64
4 08
4 46
4 88
5 78
5 46
5 44
6 24
6 78
6 97
6 55
7 24
7 47
8 86
: ],
C GAN
D K
E LU
E MBED
G P
G raph
I LEN
L inear
M N
M atches
O T
O ps
R T
R eg
R egular
S L
S elf
S imple
T extVectorization
b ott
c d
d l
d types
f e
h y
h inge
i ation
k k
k it
l im
l relu
n c
r ms
s v
s pa
s ince
s iamese
t ables
t utorial
t itles
u led
x y
x xs
} /
Ġ round
in stances
Ġt w
Ġt ables
at s
er nel
er efore
Ġa ffect
Ġs qrt
Ġ0 3
Ġ0 6
el s
el eb
la p
Ġv s
Ġv ary
Ġc lear
Ġm essages
Ġin it
ar l
Ġw alks
Ġb igger
00 24
iz able
Ġ2 97
Ġ2 75
Ġ2 62
Ġ2 38
Ġn or
Ġn cols
Ġn grams
ur izer
um my
il la
ha ps
Ġ3 07
Ġ3 73
Ġre cent
Ġre move
Ġre pository
ĠT em
Ġmodel ing
ul ate
all close
() ])
Ġ6 54
Ġ6 51
un g
un labeled
Ġ4 32
Ġ4 000
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠ
Ġ5 16
eat urizer
18 1
Ġl ight
ĠC ategorical
ĠC ould
ĠC utMix
con ds
con nection
ou b
ĠA ugment
ĠA ctor
ense mb
32 1
32 2
32 7
ĠS patial
ĠS SL
\") [
Ġcon strain
Ġcon catenate
Ġcon straints
tf ds
port ed
][ -
17 7
17 8
98 26
98 33
98 23
98 06
ĠR ESIZE
... :
Ġpo tent
Ġpo larity
In ception
ĠD oc
ip es
ĠM L
ĠM AE
24 92
Ġal ign
Ġstr en
Ġcom e
(\" -\"
ĠF eed
14 3
30 5
Ġconv ergence
93 1
93 9
Ġsh allow
ĠL ike
13 37
Ġax arr
fer red
95 2
95 4
95 9
pa ir
pa ragraph
([ ],
red uction
rel ative
tensor board
Ġha ppen
27 2
Ġun masked
ĠB iT
Ġ9 248
ast le
19 78
Ġ20 15
Ġ20 16
Ġmax val
de v
de coded
86 27
Ġ: ],
Ġ26 3
Ġpass es
AT O
=[ "
col umn
Ġsub directories
Ġinitial ize
Ġsuper ior
Ġover view
Ġobject ive
ĠV ision
Max imum
Ġinter val
posit e
Ex tract
Ġvari ety
Ġsee ms
ors es
Ġmin utes
Res idual
mon itor
Con figure
Ġad ds
Ġdiscriminator s
ER IC
([[ "
ĠCon struct
UN T
ars ing
ched uled
ĠSe quence
vector ization
ĠTransformer Decoder
Random Normal
Ġent ailment
ĠDe code
Ġcont em
AM ES
reg ister
Ġdisc ard
pen alty
Ġcomb ining
istic Endpoint
ite ms
Ġneighb ors
Ġhel per
yperpa rameters
Ġsep arable
Ġfactor s
Ġshort er
Ġoptim izers
Ġoptim ized
ĠEx ample
014 7
Ġpar se
case d
ĠVal ue
Ġexa ct
Ġups ampling
Ġspirit uality
tfre c
Ġcur ves
Ġcap acity
Ġaggreg ation
efficient net
Ġstat ic
Ġstat istics
stand ard
ĠBatch Normalization
ĠMobile ViT
vis ible
Initial izer
dog s
Ġop posite
Ġconf idence
ĠMask ed
And Position
66666666 6666
ident ity
ĠâĢ ¢
Ġquick ly
Ġdepend encies
Ġpict ure
Ġinterpre ted
/* \"))
Ġhal f
ĠSim CLR
google apis
Ġwom an
Ġbal anced
ĠMel GAN
Ġindependent ly
Ġoccu r
Rep eat
Ġdescrib ed
}% \".
Ġrespon s
ĠNot ice
Ġdiscount ed
LAY ER
Ġtriple t
arithm ic
ĠTrans fer
rele ases
spe aker
taint y
DK it
ILEN AMES
rms prop
AndPosition Embedding
% ;
' ve
( {
. ).
0 33
2 33
3 50
3 64
4 000
5 20
6 90
6 56
6 76
7 00
8 64
8 18181818
8 333
C C
D S
D IR
I SE
L G
L en
L ist
M y
M SE
N T
O ISE
P lot
P ER
P atches
S P
S plit
S ub
V X
X ception
] \",
_ \"
a ir
a clImdb
b ine
b box
c itations
d at
d ro
d eg
f lo
f an
g c
g round
g ments
h older
j umps
l er
m argin
m aster
n ers
p r
r nn
s k
s at
s im
s ci
s quad
s ession
u py
v ent
x ception
y ond
á ½
Ġ $
in ar
in ference
Ġt uning
Ġt alk
Ġt rick
at tr
er n
or es
or ker
Ġs ort
Ġs chem
Ġs cheduler
Ġ0 0
Ġ0 8
el lo
el ines
ch ive
re cated
st it
st ddev
Ġv gg
Ġ1 38
\" ):
Ġf le
Ġf all
Ġf ive
Ġf inally
Ġc r
Ġc ached
Ġc itations
Ġd ilated
Ġm er
Ġm eta
Ġin stantiate
ar m
ar ding
ar ily
Ġp unctuation
Ġp neumonia
Ġb box
et rie
Ġ2 34
ep isode
Ġe ff
il d
il ing
id ity
om n
Ġre versed
iv ing
ol ver
pl ing
Ġg row
ul ative
ce il
ot une
10 8
Ġbe yond
Ġas cent
Ġ\" [
ist ency
Ġ5 13
ĠI ndex
ĠI OU
12 2
ĠC ritic
ĠC CT
ĠC ATEGORICAL
con trast
ĠA fter
ds o
15 98
ĠS cale
Ġcon cer
Ġcon nect
ly ing
Ġim show
Ġ7 68
96 67
Ġ8 00
17 2
98 19
98 47
98 61
ĠR efer
Ġsu it
Ġ' [
ter ms
ĠD CGAN
16 2
test ing
Ġal tern
Ġacc epts
ĠF reeze
ric es
14 8
14 18
14 13
Ġconv ention
93 4
Ġsh ots
ĠL ambda
ĠL abel
94 8
ak es
ak ing
Ġ32 2
Ġ16 000
08 34
99 1
Ġ/ =
ĠIn ter
ĠIn volution
ĠG ated
Ġmo ves
ĠO r
process or
ĠE ng
Ġ28 8
Ġun cer
Ġun known
ĠB ert
tra jectory
ally Con
ĠK ID
ari ational
Ġlog probabilities
Ġch o
Ġch oice
Ġappl ication
36 3
tr im
Ġ15 4
Ġ15 7
Ġcol ormap
ma ke
Ġ: ])
Ġvector ization
co efficient
Ġsub sequent
lat est
Ġover write
Ġover ride
ĠH T
LU MN
Ġdifferent ly
ĠV GG
Ġel if
ay s
ĠRe LU
Ġsc ience
Ġ_ ),
Ġinst in
Ġindex es
Ġman ually
Con stant
Con sider
ĠCom bine
82 35
ie ve
ĠAPI s
Ġatt ached
ĠCon ditional
Ġca use
Ġformat s
ĠConv olution
Ġsplit ting
Ġoper ate
Ġstandard ize
vari able
ĠSt andard
Implement ation
Ġtra ditional
ys ics
dire ction
Ġmatch ed
Ġlinear ly
Ġchan ges
ĠAdd ons
Ġproble ms
Ġloc ally
Load s
Ġunder lying
Multi ply
Ġeas ier
Ġupd ating
Ġoptim ize
015 1
Ġhyperpa rameter
Ġcomp ilation
IG ITS
Ġestim ates
ĠPro ject
Ġextract ed
Ġpla y
Ġdemonstr ation
Ġstrong ly
CO LUMN
Ġconstr uction
Ġconstr uct
.]] ]],
ey e
Ġcap able
erial ization
rest b
ĠIM DB
ĠAl so
Ġtrack ed
Ġconnection s
Ġrec urs
Ġrec ipes
ĠEn code
ĠMy Model
Ġturn s
wav s
866 7
dis able
Wh at
Ġcalcul ated
bound ing
Ġappe ar
Ġregard less
ici ency
Ġunf reeze
Ġcoun ts
Appl ies
Ġreser ved
Ġdiff ic
ĠMap ping
cript or
Ġcapt ure
Ġupsample d
itud e
anit ize
ĠPos itionalEmbedding
aut otune
prior ity
Ġfun ny
Ġconstan ts
POIN TS
PROJECT ION
Clip ping
uro pe
Ġrd kit
Regular ization
arl ier
Ġstren ged
standard ization
818181818 1818
Len Feature
jumps up
upy ter
ĠEng lish
allyCon nected
" ])
' ),
' ))
' ]]
. \
/ \"
0 60
1 64
2 97
3 76
3 66
4 84
4 34
5 64
5 56
5 75
5 76
5 88
6 50
6 08
6 38
7 96
8 84
8 55
8 80
C or
C re
C ol
C ross
C ROP
F ixed
F igure
F ILENAMES
G R
M o
M ol
P ass
R ESIZE
S w
S CHEDULE
T NP
U FF
a ccuracies
b z
c ise
d if
d ilation
e agerly
f ill
f ree
f older
g elu
h t
h and
h orses
i j
k aggle
l s
l inal
m isc
n ed
n ow
o od
p ical
r ng
s w
s cal
s cat
s istency
t ight
t pu
u ss
w alk
w atched
z os
Ï ĥ
Ġt np
Ġt exts
en coders
Ġa c
Ġa clImdb
lo l
es ides
Ġs it
Ġs pect
Ġs light
Ġs quad
re m
re view
se ction
se cond
im ents
Ġ1 10
Ġ1 32
Ġf ra
Ġc ategory
Ġc ycle
Ġd ir
Ġm el
Ġm ention
Ġm illion
po p
Ġin verted
ed ia
ct c
Ġb us
Ġb ook
an ts
Ġ2 17
Ġ2 13
Ġ2 58
ag rad
ag greg
Ġe arlier
Ġ3 28
Ġre peat
ad elta
ol icy
Ġg p
Ġg od
ul um
Ġst ri
un cased
ex cept
th es
Ġh um
Ġh ist
Ġh old
Ġ\" <
Ġ\" \"
Ġ5 17
Ġl iter
ĠC l
Ġout lines
con f
ect ing
ĠA VX
pre h
ĠS T
ĠS top
\") ],
Ġcon sum
Ġan g
Ġan t
Ġse conds
ap or
35 4
35 9
ver ages
17 9
98 68
Ġpro file
Ġpro portion
ampl er
ult imodal
ĠD o
ĠD uring
ĠD ogs
Ġres ources
ĠN ER
Ġ" ""
ĠF it
Ġ10 1
Ġ10 4
14 1
30 8
ĠP atches
up scale
Ġsh uffling
ĠL ib
com ponent
95 56
75 84
Conv ert
pa rable
Ġde al
08 29
99 99
ĠIn stead
27 0
27 3
27 9
Ġma jor
Ġma ster
us es
ĠE valuate
62 1
ĠB inary
ĠB uffer
37 50
70 59
Ġ20 6
Ġ20 7
Ġ20 17
77 9
09 14
09 13
Ġ: -
Ġ26 5
cat s
Ġencod ers
get item
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪ
Ġover lay
index es
Ġ27 9
Ġj et
Ġweight ing
ĠRe move
Ġtoken izer
ful l
ful ly
Ex tra
01 50
ĠCom plete
ress es
Ġatt em
ec g
Adam W
ĠRes caling
Ġmod if
Ġass ume
ze bra
Ġprod uced
ĠSt andalone
ĠSt anford
ON IA
Ġwindow s
Ġconsist ing
Ġgre edy
Ġdep ending
DT H
Com pile
UM ONIA
Ġdown sampled
Ġzip file
multi processing
ĠSet ting
ĠX ception
commend ed
016 2
[[ [
ĠPre process
ĠPre diction
inter val
ctivity Regularization
Ġcomp iler
014 9
Ġty pical
ĠData sets
oment um
Ġoff icial
ĠCustom Layer
Ġra gged
Ġexper iments
Ġ0000 1
Red uceLROnPlateau
Ġsetting s
MultiH e
Min imum
Ġdoc s
TF Record
Ġsign ature
Ġeffect ive
Ġeffect ively
dr ive
Ġefficient ly
Ġpy ramid
Ġview s
ĠPass ing
Ġans wers
Ġtrun cated
Ġrema ining
Ġhim self
Ġspa ces
roll ing
Ġtre ated
Ġflip ping
Ġins p
Ġwrap ped
ĠSw in
ĠSw itch
Ġinfer red
Ġincor rectly
Ġsem antic
clean up
Mask ing
Ġpack age
Ġdocument ation
Ġ184 96
Ġnd image
Ġconfigure d
SAMP LES
ref lect
Ġbott om
Ġtrunc ation
LearningRateS chedule
ele ment
Ġbro adcast
Ġremo ved
Ġrelationsh ips
quant ized
Ġimbal ance
rupt ed
NE UMONIA
Ġge om
nc zos
column s
omn iglot
Ġuncer tainty
trim aps
restb ps
Fixed LenFeature
scat ter
' d
' }
. ),
0 986
3 40
3 121
4 25
4 04
5 26
5 97
5 38
5 84
5 37
6 70
6 80
6 07
7 33
7 157
7 255
8 00
8 90
8 46
8 40
8 85
9 20
9 25
A P
B LE
B efore
D CE
F eed
H e
H uber
M ed
N OISE
P ath
R est
R etinaNet
S um
S ize
S ample
T E
U B
a z
a ran
c ell
c pu
c url
d el
d one
e ar
j itter
l ick
m eric
n cols
p ts
r n
r ink
s p
s pect
u la
u plic
v ideos
w rap
z oom
Ġ imag
Ġ ri
Ġ queue
== =>
in ferred
Ġt ell
Ġt ries
at oms
al e
Ġa st
Ġth ink
Ġs ex
Ġs pat
el er
el ess
ut puts
st all
la ying
Ġv an
se en
se parable
Ġ1 16
Ġ1 46
Ġ1 59
Ġ1 39
Ġ1 85
Ġf ix
Ġf reeze
Ġf ocal
Ġf ocus
Ġc ar
Ġc ir
Ġc our
Ġc odes
Ġd r
Ġd er
Ġd est
Ġd ensity
Ġm ar
Ġm is
Ġm erge
Ġm agn
Ġin c
Ġw ave
ed irs
is ely
Ġp iece
Ġp arsing
Ġb la
Ġb rightness
an not
et une
ro cess
Ġ2 12
Ġ2 98
Ġ2 22
Ġ2 23
ep isodes
ic able
ur b
Ġe y
ig ate
ig ma
ig uous
Ġre ally
Ġre build
ad ing
Ġis instance
ĠT uple
iv ity
ol ved
Ġg ather
Ġg erm
res sed
Ġst ud
Ġst oring
Ġst orage
Ġ6 53
Ġ4 04
Ġ4 09
ab normal
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
qu estions
to chastic
Ġh ub
Ġh inge
Ġ5 14
Ġ5 0000
Ġ5 000
ĠI D
eat h
Ġx ception
ĠA meric
Ġor thogonal
ĠS elf
ĠS parse
ĠS imilarity
ĠS uch
28 0
Ġimage io
96 8
96 95
pat ibility
Ġpa in
ver bose
][ :
17 3
ĠR DKit
ĠR MSE
Ġpro f
Ġpro ced
... ]
stan ding
Ġres izer
ext end
Ġus ual
ĠM in
Ġstr ug
Ġcom patibility
ĠF inally
ud o
ĠP rint
ĠP lease
mo bilevit
97 92
ĠL SH
94 17
0000 0
Ġ32 1
Ġ16 9
Ġ16 512
08 32
08 53
radi ction
ĠG C
ĠG round
Ġmo bilevit
eth ink
str ucture
ĠE ither
Ġ28 4
Ġper haps
float x
ph ological
ph ysics
oo ks
Generat es
Ġlog ic
39 2
idx s
09 35
47 325
Ġdo g
Ġdo gs
Ġ26 7
Re ad
Re cords
co py
np z
Ġbuil ds
Ġsub jection
Ġsub tract
Ġ14 9
MA E
MA L
Ġload s
Ġimplement ing
fn et
cor ners
op en
Im ages
Ġqu estions
Ġqu otient
Ġcomput ing
pect ed
no stic
ĠRe cognition
cent ration
Ġprob ing
Ex ponential
Ġwhere as
optim ization
Ġperform ing
Ġperform ed
Ġco ver
Ġcorrespon d
Ġcons ci
Ġrun s
ving Be
Ġmin im
Ġmin imize
Ġcustom ize
Ġred ucing
Pre processing
Div ergence
token izer
ĠCon catenate
ĠCon trastive
ass erst
pol it
min imum
Ġmod ules
Ġfe el
cre te
ĠTransformer Block
Ġpath lib
Set ting
Ġap pend
Ġregular izers
Ġdisc uss
cud art
off sets
Ġreconstr uct
Ġevalu ated
Ġdep endent
Ġdep artment
ans ion
check points
Ġmatch es
Ġform er
Ġdown sampling
190 7
ĠWh ile
016 5
ĠPre dict
Weight N
Def ining
inter p
inter mediate
015 9
Ġestim ated
yn chron
ĠVal ues
LA BELS
017 4
Ġgen res
094 5
Ġserial ize
Ġserial ized
emb le
.]] ],
Ġmak ing
Ġexper i
Ġappro xim
Ġachie ves
Ġrefer red
Ġ0000 2
Ġ000 05
ĠAl low
Ġexist s
mar ies
Ġproject ed
%| âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
âĢ Ļ
ĠNo Entailment
Ġintrod uce
ang uage
Ġrepla ce
Ġstan ds
ĠPixel ConvLayer
Ġsyst ems
093 3
IR Net
vert ical
ĠMobile NetV
Ġprior ity
Ġpattern s
timest amp
Ġpers onal
Ġcalcul ation
Ġdetermin istic
ĠLog isticEndpoint
ycle GAN
Ġincor por
Ġreview s
Ġagain st
learn er
Ġanomal y
Ġdecre ase
Ġcollection s
Ġrout er
Ġcoun ter
Ġpict ures
Visual izing
Ġmeaning ful
Sh uffling
Ġho st
ĠKey word
Token izer
Hash ing
Ġanal y
Ġaccu mul
Ġcou ple
AS Net
Ġaim s
Ġden ot
Option ally
Ġstream s
Ġreplic as
Ġrobust ness
Ġdisable d
KL Divergence
Loc allyConnected
mak edirs
Ġfam ily
ĠClass ification
Ġreprod uc
Ġmechan ism
times eries
TFOpL am
Ġvolum etric
ĠDoc ker
ATO MS
flo or
vent ure
Ġfle x
ĠHT ML
Ġdiffic ult
linal g
Ġslight ly
Ġhist og
Ġgeom etric
lick r
Ġstud y
ethink ing
vingBe ard
asserst ein
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ |
( *
) /
0 67
0 180
2 78
4 24
4 0000
4 38
4 70
4 86
5 25
5 45
5 85
5 87
6 26
6 04
6 37
7 97
7 941
8 04
8 186
8 137
8 00000
A vg
B ond
B iT
C artPole
C ello
E le
E NC
F it
H ill
H orizontal
H yperparameters
L D
O ptimizer
P NEUMONIA
R E
R N
S er
S AM
S hot
S aving
S upervised
S emantic
V GG
] }
] ',
` )
a ce
b rid
c ritical
c isely
f ort
f reeze
f eed
g rayscale
h n
i able
k ing
l i
l ite
m m
m ing
m ore
m omentum
n is
n ight
o y
o ptions
r ender
r untime
s r
s ign
s peech
s caled
u rable
w alks
x f
y ou
} \".
ð Ł
Ġ er
Ġt rim
Ġt anh
Ġt ips
at ic
at ures
er ter
Ġ- =
or ation
Ġa ctive
es ts
es ian
Ġth erefore
Ġs po
Ġs olution
Ġs ignal
ra st
el ves
ss l
Ġthe ms
Ġthe ta
ch ollet
ut ed
ut ers
st on
se udo
it o
it ation
im plement
im ension
Ġ1 12
Ġ1 93
Ġ1 40
Ġ1 36
Ġ1 44
Ġo ps
Ġo bs
Ġc nn
Ġd at
le aves
Ġm u
Ġm on
Ġm ach
Ġm ind
Ġm us
ar on
ar ds
ct ave
is ible
Ġb i
Ġb ce
Ġb order
Ġb ring
Ġb ool
an i
an um
an ish
et e
ent ity
Ġ( '
Ġ2 28
Ġ2 16
Ġ2 21
ag ged
ag nostic
Ġe ager
Ġe urope
ig ion
Ġ3 60
Ġre cords
one DNN
ens enet
ĠT ake
pl us
Ġg MLP
ce ed
all en
Ġst ra
Ġst age
Ġst ages
Ġst ores
ef t
ith ito
di stances
10 9
Ġbe h
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĊ
qu estion
Ġ5 900
Ġex tent
)) [
ĠC allback
32 84
ĠS c
ĠS caling
ĠS imple
ĠS upervised
Ġcon st
ke ithito
Ġpre par
Ġpre paring
Ġan gle
Ġan imal
Ġse cre
96 22
ver Strategy
Ġbatch ed
num erical
17 4
98 32
98 93
chan ge
ĠR ate
Ġsu ppl
Ġpro cessed
Ġpo le
In volution
eg rated
ri ct
ĠD load
Ġres ha
Ġres cale
Ġr at
Ġr ely
Ġal ph
Ġstr at
Ġacc eler
Ġcom preh
(\" /
ĠF ran
ĠF eature
ĠF ix
ĠF MA
Ġ10 3
Ġ10 7
ind ic
class ed
ĠP ad
ĠP andas
Ġar chive
26 5
conv olution
mo ving
Ġsh ift
ĠL eft
Dense Net
94 3
04 8
04 40
fer d
Ġ16 6
cal culate
76 8
tensor s
ĠG ener
ĠG aussian
ĠG RN
ĠO ptimizer
os Med
Ġun roll
ĠB rain
ĠB ack
tra ck
Ġone API
log it
em a
84 33
Ġi aa
19 95
34 64
Ġch allen
Ġdim s
Ġsim plic
tr un
Ġsa id
ĠU ps
09 22
Ġab s
Ġab ility
ĠTensor flow
ĠW I
ne ar
For ward
87 36
co ords
Ġencod es
Ġcor rectly
Ġdist ort
Ġdist ances
88 00
col ormap
Ġkey point
Ġta u
cor relation
ĠH ence
Im gur
ĠV ector
ĠV isual
ĠV AE
Ġ27 2
Ġj o
regular ization
Ġmat ter
ĠRe ceived
IN IT
Ġinter vals
Ġco eff
Ġco ords
01 96
Ġgraph viz
pha se
Ġtrans cription
ĠIm ages
Ġdet ections
Con trastive
Ġad vant
Ġcre ation
ĠCon sider
Ġorder ed
Ġdefault dict
Ġlow res
Ġimpro ves
SN LI
Ġro le
sub dir
Ġent ries
Ġstandard ization
Ġrel ated
graph ics
Ġnegat ives
Ġdistribution s
GAN s
Ġscal ars
Ġ... )
cud nn
'] ],
Ġser ve
Ġser ves
ys is
Ġimprove ments
Ġdep recated
Ġdep rocess
ans wers
Ġpat ient
Ġpip elines
Ġdeep er
ĠTF Records
ĠUp load
Ġiter atively
Ġloc ations
multi ply
ty pically
crop ping
Ġexp ansion
ĠX ferd
rameter Ser
ĠWh ere
016 0
016 9
Ġlower case
Ġindic ate
Ġ96 4
ĠTPU s
015 3
015 6
eb ra
ĠLayer s
Ġextract ing
Ġsuccess ive
Ġbel ieve
Ġpres ence
Ġpres ents
sha de
Ġquant ization
An other
TR AN
Ġext ension
ID F
Ġcent ral
ĠAr ray
neighb ors
Ġsepar ately
Ġ000 04
DE C
DE F
ATE NT
Ġhelp ful
Ġautomat ic
Ġtrack s
ĠNUM ERIC
cap ital
ĠCal cul
Call ing
âĢ Ķ
fin etuning
Trans lation
095 8
ĠPass es
TPU Strategy
No ise
ends with
Ġpur poses
Ġrema inder
Ġrequire ments
Ġphilosoph y
Pos itives
ĠSpecif ying
comp iler
Wh ile
Ġrot ation
Un iform
Ġinvol ves
Ġpreser ve
Ġfla gs
ĠCh ollet
Ġsem i
Ġdecre asing
Ġmult imodal
extract all
rat ios
ster ior
orig ins
ĠSp ent
Ġprev ent
sc an
ĠQu ery
ĠZ ipFile
Ġam ong
Ġdeg ree
Ġeng ine
Ġreser ve
Mobile NetV
Ġsens es
Ġdraw n
Ġnd array
Ġem pty
ĠCO CO
ĠPatch Encoder
cos h
env iron
Ġflatten ed
Ġanal ysis
ĠToken AndPositionEmbedding
Ġsyn chron
Ġsignific ant
Spatial Dropout
Ġaff ine
rot ation
similar ities
Ġsk learn
Ġenhance ment
Ġcompar ison
ĠFF T
Ġsci py
Ġadv ance
Ġplace holder
Ġencoura ged
Cl uster
ĠMix Up
Ġsubgraph s
Ġexpand ed
Ġessent ially
Ab stract
Auth or
DI O
ĠAss emble
Simple RNN
ensemb le
Ġpotent ially
ĠML IR
Ġsuperior ity
register ed
Ġrespons ible
Ġschem e
Ġeff iciency
Ġconnect ivity
Ġsuit able
Ġaltern ative
direction s
Cor pus
ht ml
Ġmention ed
ĠLib rary
laying Cello
Ġgerm an
Ġproced ure
polit ics
ĠAllow ed
Hill shade
SAM E
Ġmach ines
agged Tensor
Ġ5900 80
Ġsuppl ied
Ġalph anum
osMed Data
Ġsimplic ity
Ġadvant ages
rameterSer verStrategy
% ].
' ].
' )))
( =
( ...)
) [:,
+ +
. --
. ))
. ')
0 30
0 937
2 26
2 985
4 77
6 96
6 75
6 33
6 84
6 85
6 87
6 961
7 22
8 70
9 26
C N
C R
C ATEGORICAL
D o
E X
E Y
F eatures
F ollow
G lob
G lorot
I AL
I ndex
K EY
L ING
M M
M NIST
M ake
N A
N ame
N egat
O ver
O bject
O ptional
O ptions
P G
R ES
R untime
S ha
T wo
T uple
V P
W GAN
W ord
[ [\"
] \"
] \")
` `
a e
b a
b il
b io
c f
c ub
c ient
d est
d oing
e e
f c
f bs
g ate
g est
g nn
g cp
h igh
h ow
h ard
h ome
h uman
i et
i hood
n py
o ot
o he
p c
p et
p df
p unctuation
r b
s le
s om
s erial
s cheduled
t b
t ility
t icks
t restbps
w d
| \",
á ¿
Ġ rom
Ġ },
Ġ ě[
Ġ 986
in ion
in ess
in com
in ks
in ning
in cluding
Ġt en
Ġt ends
at rix
er ts
al ed
on a
on str
en chmark
Ġa ge
Ġa way
Ġa part
lo ts
Ġth y
Ġs m
Ġs he
Ġs oc
Ġs alt
ra gged
el ist
el ection
el ihood
ch a
ch ol
re ated
ut ation
Ġv e
Ġv ir
se gments
it ers
im read
Ġ1 86
Ġ1 77
\" ]]
Ġf its
Ġf our
Ġf ft
Ġf lat
Ġf chollet
Ġc at
Ġc art
Ġc op
Ġc uDNN
Ġd an
Ġd oub
Ġd eath
le ading
Ġm ot
Ġm ismatch
po larity
Ġin her
ar ing
Ġw id
Ġp le
Ġp rim
Ġp ython
Ġp riors
Ġb in
Ġb ig
Ġb log
Ġb ranch
Ġb onds
Ġb icubic
an k
an cy
00 31
ro uter
Ġto wards
Ġ( `
as ion
Ġ2 25
Ġ2 0000
Ġ2 95
Ġ2 44
Ġ2 42
nd er
am ps
ag ation
ur y
ur ch
ur ate
ur ve
ur ally
il i
il it
il der
Ġ3 25
Ġ3 05
Ġ3 54
Ġre ci
ens us
ens ely
ĠT est
iv ari
ol ds
Ġg r
Ġg ram
Ġg ives
Ġg ym
Ġst able
Ġst ay
if ted
ts v
Ġ4 59
ex ang
ab cd
low res
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠ
Ġas ynchron
Ġh or
Ġh yper
Ġ\" \")
ist ian
Ġ5 72
ĠI ds
nel l
Ġex er
Ġex pose
18 3
90 9
90 67
cod ataset
12 9
ĠC ol
ĠC heckpoint
ĠC reating
ĠC ROP
Ġout er
con sum
ou se
label led
ect ified
ĠA p
ĠA nd
ĠA dapt
15 84
mb ar
ment ation
Ġcon tra
Ġcon cat
Ġcon ception
Ġpre cisely
Ġan chors
ir ds
Ġse c
Ġse quential
ap h
35 1
][ \"
100 000
num s
Ġ8 320
Ġ8 192
Ġlo st
ization s
98 30
98 09
98 54
98 72
ĠR el
ĠR ethinking
Ġsu gg
Ġ' ,
eg mentation
ri end
ĠD et
ĠD own
ĠD CE
ĠD IGITS
Ġres ample
Ġres caling
Ġr ule
Ġle verage
Ġle veraging
ĠM ol
ĠM etric
ĠM achine
Ġal though
Ġcom ponent
Ġ10 6
Ġ10 8
30 47
Ġconv ersion
ĠP y
Ġby tes
ram a
arning s
conv ers
300 1
94 09
04 39
Model s
75 00
Conv LSTM
Ġ16 7
Ġ16 00
art ments
08 50
08 65
rel ated
pos itional
Ġ64 5
ĠG radients
ĠG radientTape
Ġint u
os h
os ing
ĠE pisode
Layer s
Layer No
Ġ28 0
Ġun supervised
Ġfil ms
ĠB oth
ĠB ay
ĠB lood
ĠB aron
tra ces
work s
Ġi o
Ġwor th
ph i
ĠK ernel
Ġhe art
mask ing
70 10
70 64
Ġ11 1
Ġlog istic
Ġch urch
Ġappl icable
200 9
36 1
Ġno ises
80 33
Ġsa cr
85 71
Train er
Ġcol lage
05 45
09 18
Ġab sl
Ġinteg ral
ign ore
ĠTensor RT
ĠW ars
rim e
=' ')))
87 38
Ġyour self
co codataset
Ġcor pus
tal k
Ġinitial izers
Ġ14 7584
rit er
cor a
AU DIO
Ġ27 3
Ġj ob
]] ],
]] ]],
Ġmulti ply
ĠRe ceive
Ġ18 3
02 1978
state ful
Ġsc re
Ġprob s
Ġprob ably
Ġsimilar ly
Ġ_ )
Ġco lo
ous ing
Ġfa ce
()) ),
Ġindex ing
\"] ),
ĠNum erical
Ġtrans l
Con fig
ree zing
code book
Ġbias es
ĠImage DataGenerator
ĠCon t
St ate
(" \
69 12
ĠRes ize
ĠRes hape
Ġmod es
ĠConv Mixer
Ġsmall est
Random Crop
Random Translation
wh ile
Ġdire ctories
De cision
vari ant
Ġcont ents
ĠSt ate
ĠSt orage
Ġlength s
uc ation
old peak
ml m
ĠAn y
Ġtra cker
ob j
Ġpresent ed
ĠStr ides
Ġ{} ,
prop agation
DT rans
Ġkeep ing
Ġdown scale
Ġinv est
Ġincre ases
Ġexp ensive
Th reshold
mn iglot
xt icks
Ġla ck
Ġla nczos
ĠEpoch s
Ġrest rict
015 4
Ġtry ing
Ġreg ister
Ġreg arding
Ġpair wise
down stream
Ġrecommend ations
ĠUn rolling
Ġlook ing
Ġdrop ped
ĠPro cess
Ġskip ped
017 5
017 9
Ġadapt ed
sha red
Ġquant izer
On ce
010 3
010 7
An tirectifier
CO UNT
Start ing
Ġml m
Ġexper ts
Ġlimit ed
Ġ0000 3
Ġ0000 6
rest ecg
Ġident ity
lower case
050 7
020 8
IC ML
pixel cnn
Ġrank dir
Ġfeed forward
Ġworkflow s
875 3
Ġorig inally
096 0
gb ar
Dist ributed
Not es
093 1
Get Idx
Ġapproach es
Ġphilosoph ers
ĠDist iller
grad cam
Ġrot ations
loc ation
lay out
Ġdetermin ed
Keras Layer
Ġinf lu
des criptor
clean ed
:]) (
Be cause
Ġexpl ore
Ġpref etch
Ġslow ly
ĠSp inning
Ġprev ents
sc ans
Ġterm inal
Ġhal ve
ym metric
Ġdeg rees
Ġwom en
Ġpack ages
Ġzoom ing
Cosine Similarity
Ġbott leneck
Ġdesign ed
LearningRateS cheduler
Pa rameterServerStrategy
Ġboundary x
Ġboundary y
Ġsignific antly
NOR MAL
Ġmet aph
Ġprom pt
Ġproper ly
\"][ \"
Ġannot ation
ĠRed uce
ĠRed uceLROnPlateau
Ġdefinit ion
Ġcare ful
33333333 3333
dep artment
match ing
Ġstrip ped
thal ach
Ġdevelop ment
sent ences
Ġsw itch
Ġmiss ing
Ġhard ware
Ġconven ient
ĠEqual izedConv
Ġrepeated ly
Reg ression
tutorial s
lap ping
Sub tract
Pass ing
TNP Dense
now ledge
scal es
zebra s
ctivityRegularization Layer
TFRecord Dataset
rink age
Ġcour se
Ġmagn itude
Ġbla ck
ĠSparse Tensor
Ġprof ound
Ġstrug gle
Ġexperi ences
sr c
rast ive
Ġthems elves
Ġbeh ind
Ġprepar ation
Ġrat ios
trun cated
ĠWI DTH
Runtime Error
bil enet
cub las
ilder ness
Ġreci pe
ivari ate
ĠBay esian
Threshold ed
' },
* .
, .
, ]
, ).
, )))
0 111
4 40
4 47
4 87
5 24
5 80
6 30
7 48
8 20
8 22
8 933
9 104
: \
A Net
A irplane
B P
B ert
C r
C hem
D isc
D em
F i
F inal
F eaturizer
G C
G aussian
H y
L ite
M E
M any
M osMedData
O C
S ci
S iam
V as
W A
a f
a red
a ctive
b os
b olic
b onds
b inar
c reate
c ategory
d uring
d eta
f ts
f name
f raction
f usion
f riend
g p
h ere
i kip
j upyter
k dir
l ins
m or
m et
m ind
m essage
m erge
n ist
n ote
p ers
r s
r pi
s m
s n
s y
s in
s caling
t ak
u cl
v q
v ersion
w atch
w ide
w hen
w gan
w ani
x axis
y axis
y ticks
} \",
} .\")
¾ ½
Î »
á ¾½
Ġ ).
Ġ 999
Ġ Zero
in c
Ġt ar
Ġt pu
Ġt une
or ts
or thogonal
en e
en ing
en ess
en nis
lo y
Ġth al
Ġth row
Ġs cc
Ġs il
Ġs miles
el per
ss ible
st l
st em
la m
im in
Ġ1 55
Ġ1 91
Ġo l
Ġo u
Ġo cc
\" --
Ġf resh
Ġc um
Ġc ce
Ġc ore
Ġc ifar
Ġc ritical
Ġc sv
Ġm ed
Ġm id
Ġm ark
Ġm sle
Ġm nist
po wer
Ġin di
Ġin ception
Ġin stanti
Ġw a
ed it
Ġb ins
Ġb lood
an e
an ge
00 11
et c
et itive
et Images
ro us
ent ailment
as array
Ġ2 18
Ġ2 30
Ġ2 11
Ġ2 47
Ġn n
Ġe agerly
ha ract
ig rads
Ġ3 30
Ġ3 36
Ġ3 136
Ġ3 303
id ean
om ial
atch ing
Ġre used
Ġre ceive
Ġfor est
Ġfor ces
Ġtf record
Ġtf sim
Ġg t
Ġg nn
ul ated
res izer
res ized
Ġst udi
if act
ef lection
he el
), ]
un ed
un masked
un compiled
un roll
est ero
Ġ4 05
Ġ4 640
ex pected
ab us
th y
qu encies
ateg ies
Ġas ide
Ġh on
Ġh it
Ġh ur
Ġh ours
Ġh orse
ding s
ist ry
Ġ5 20
Ġ5 24
Ġ5 19
Ġ5 11
Ġ5 65
ĠI van
Ġex clud
Ġl ung
per form
ĠC eleb
ĠC astle
con ll
Ġwh ite
ĠA ctivityRegularizationLayer
pre pare
ĠS ave
ĠS emantic
ĠS tochastic
ĠS egmentation
Ġret ain
lar ge
ve c
=\" |\",
ir ely
Ġse es
Ġ7 20
96 33
96 40
96 63
96 82
Ġen c
35 6
out lines
Ġ8 000
Ġ8 68
98 14
98 80
98 67
98 02
ĠR est
ĠR aggedTensor
Ġdef ining
In stantiate
stan ford
ĠD i
ĠD isc
ĠD NN
ĠD iscriminator
ĠD ay
Ġres caled
Ġle ave
Ġle verages
16 00
ĠM ore
ĠM irroredStrategy
ĠM IRNet
Ġal gorithms
Ġstr eng
ĠF ashion
Ġ10 2
78 90
Ġconv s
Ġconv olved
ĠP olicy
56 64
up d
26 88
Ġsh uff
97 10
97 78
end ulum
ĠL R
ĠL JSpeech
Ġnot es
300 0
04 97
04 94
04 38
04 65
04 43
def aults
cl one
95 70
95 42
75 95
Ġde cor
We ights
08 35
08 97
08 55
08 83
08 49
76 28
rel igion
tensor rt
99 20
Ġma pe
ĠO bject
ĠO utputs
ĠO CR
max pool
ector s
us h
us r
ĠE d
ĠE arlyStopping
Ġ28 1
ĠB a
ĠB ig
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
Ġpl us
Ġ9 00
Ġ9 27
log ies
ta u
84 35
84 70
ĠK ing
ition ally
Ġhe av
19 93
34 182
Ġ20 1
Ġ20 5
(( -
tr t
86 55
Ġfeature wise
80 72
da y
85 33
Ġspecif ication
05 12
05 15
05 13
09 50
09 25
09 30
Ġso il
ca pe
29 2
ĠW ide
ĠW ords
Ġ26 0
Po isson
65 71
87 45
=[ -
Ġcor ru
col lage
Ġ23 1
Ġsub sample
Ġ14 1
MA CH
ized Dense
ĠH ub
Ġqu eries
67 33
AU L
Ġ27 1
Ġpos es
Ġcl on
Ġcl one
ĠRe cord
ĠRe pository
ell ig
Batch Dataset
Ġsc ient
IN E
Ġvari ants
79 90
Ġmin val
Ġindex ed
\"] :
\"] ].
Res ize
Ġman if
Con sistency
ĠCom put
predict or
not op
Ġlearn er
Ad agrad
Ad adelta
Ad venture
token ized
([[ -
ĠCon fig
Ġtransform ers
St andard
ĠModel s
te e
ĠSe cond
Pro gbar
Ġmod ern
Ġ21 12
Ġfe wer
Random ly
Random State
Ġnormal izer
Ġent er
Ġlar gest
Ġev il
Ġcont exts
Ġcont iguous
Test ing
graph viz
Ġprod uction
ĠSt art
ĠSt udent
ĠTh us
Ġ] ],
style gan
por ary
Ġ... ).
Ġalong side
Ġcomb in
iter ator
auto contrast
Ġneighb oring
Ġep isodes
Ġsum s
Ġsum maries
Ġform ula
Ġdown sample
Ġincre ased
Ġencoding s
Ġmor phological
Ġexp ress
Ġcontent ed
Ġ66 048
016 1
Id entity
Up Cosine
Ġact s
015 8
Ġcomp etitive
090 6
090 7
greg ate
ret ization
Ġmy self
apt er
Ġoff ers
Ġhand led
Ġhand writ
Ġreconstruction s
utom obile
Ġbel ief
Ġhash ed
017 2
Ġadapt ation
Ġquant ized
Ġide al
ĠDense Net
010 2
094 1
094 7
094 8
Ġran ging
Ġlocal ity
Ġcomm un
Ġcell s
Ġyiel ding
RO OT
over lapping
Ġcap ability
Ġsuccessful ly
Ġ000 08
Ġident ifier
Ġexperiment al
Ġtrack ing
020 5
Ġdoc ker
Ġproject s
Ġben chmark
abs path
filter ed
%| âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
âĢ ¯
Ġfin etuning
fin etune
Ġdiv ergence
Ġcond uct
Ġcond itions
Ġshif ting
Ġactor s
small er
Ġdynam ically
Ġrepla cement
095 3
Ġavo ids
Ġscen ari
093 4
093 6
Ġstack ed
ĠCNN s
60000 0
ĠMobile Net
978 7
Per form
Ġrema ins
ĠBe low
Ġparticular ly
buil t
ĠRandom ly
ĠDist ance
ĠDist ribution
Ġcontrol s
Ġcenter ed
Ġ10000 0
Ġequ ation
Ġinvol ved
735 7
778 8
MI SC
ν ÏĦ
ĠMo vielens
Ġaccording ly
264 2
Ġref lect
integ rated
"" "
Ġrout ing
imes eries
Ġfiel ds
Ġexpl oration
Ġunf reezing
=> ................
How ever
cou pling
Ġmaintain ing
Ġinterpre t
Ġassum es
Ġassum ed
/* .
Ne w
Ne ural
van illa
Ġstop ped
Ġthough t
cum ulative
git lab
Ġmultipl ied
rick et
Ch an
Ġobser ved
Ġseem ing
Ġrelationsh ip
Ġparallel ism
Ġfrequent ly
Category Encoding
NOR M
sup ports
Ġaff ected
Ġsmooth ness
Ġexpla ined
Ġperiod ically
Ġinterest ing
CONFIG S
Ġhy brid
Ġwish es
Ġtopo logy
Ġexplicit ly
ĠGenerat or
ites pace
cont radiction
ĠTem poral
Residual B
666666666666 67
({ \"
sk ff
arm UpCosine
Ġconcer ned
ĠOr iginal
Ġcho osing
Ġinstin ct
ĠStandard izedConv
Ġrecurs ive
Cre ates
Sw ing
dif ference
Ġang les
Ġmajor ity
Feed Regression
TE ST
uplic ate
Ġcir cum
Ġdest ro
annot ation
Ġdenot es
Ġspo ken
Ġsecre t
track ing
Forward FeedRegression
DEF AUL
ĠCalcul ating
Ġalphanum eric
EX AMP
Glob a
MM ON
serial izable
Ġ986 24
incom plete
Disc retization
Dem onstr
Vas wani
bos ity
ikip edia
lins pace
ucl idean
ennis Swing
Ġscc e
Ġocc asion
estero v
ĠIvan na
ĠCeleb A
MACH INE
Consistency Loss
ForwardFeedRegression Network
% ]\",
' ).
, \
. ě[
0 12
0 62
0 984
0 185
1 14
1 999
2 76
2 38
2 955
3 12
4 14
5 30
5 40
5 74
6 100
6 500
6 77
6 964
7 402
8 87
8 120
8 156
8 003
9 784
9 906
A V
A da
A uto
B S
B esides
C ent
C heck
C alled
C over
C osh
D l
D rama
E A
E C
E y
E val
E ven
F Net
G iven
I I
I P
K CategoricalAccuracy
L ab
M el
N adam
O L
O ther
P T
P rint
P ReLU
P PO
P erm
P lease
R o
R GB
R andAugment
R etrie
S K
S Y
S p
S im
S cale
S ave
S MILES
S anitize
S UB
U nder
V ocabulary
V ariational
W arning
W orker
X M
Z eros
Z ipFile
[ "
[ {
[ ~
] ')
_ (
` ](
a ption
b i
b oolean
b icubic
c u
c ep
c mu
c eleb
c wd
c ilit
d id
d ensenet
e very
f oo
g lo
g down
g rn
h at
h old
i res
j ector
k ps
l ik
m im
m eta
m iss
m ismatch
p riors
r d
r en
r ust
r ily
s es
s port
s ys
s eries
s av
t or
t ally
t rees
u x
u ed
x c
x imation
y pically
} %\")
Î Ń
Ġ ====
Ġ 988
Ġ ÏĦ
== >
in set
in ds
at us
at forms
er se
er ve
er Crop
al s
al ities
lo op
es la
Ġth read
Ġs ke
Ġs peak
Ġs iamese
Ġs ampler
Ġs igma
ra cing
re wards
re verse
ut ral
ing s
st imation
Ġv apor
se par
im ate
im posed
Ġ1 14
Ġ1 13
Ġ1 76
Ġ1 99
Ġ1 87
Ġ1 88
Ġ1 74
Ġ1 73
Ġ1 152
Ġ1 405
Ġo k
Ġf ashion
Ġc ult
Ġc ast
Ġc astle
Ġc riter
Ġd ay
Ġd ummy
le m
Ġm esh
Ġin fo
Ġin variant
Ġw ing
ed ucation
Ġp ra
Ġp ure
Ġp ci
Ġp lots
cc c
Ġb s
Ġb ud
Ġb uckets
an ds
an omal
an imation
00 50
00 28
00 39
00 60
as cent
Ġ2 14
Ġ2 40
Ġ2 66
Ġ2 37
Ġ2 19
Ġ2 36
Ġ2 92
Ġ2 51
Ġn ations
ep end
Ġ[ ====
ic ense
layer normalization
rain ed
ag ed
ag ger
ur ations
ur ves
Ġe ase
Ġe ma
Ġ3 90
Ġ3 32
Ġ3 67
Ġ3 63
Ġ3 137
om ents
om ance
om etimes
Ġ[================ ========
Ġre ce
Ġre cept
Ġre ceived
Ġfor ce
ĠT urn
ĠT ext
ĠT akes
ĠT ypically
ĠT esla
iv ed
pl ate
Ġg ate
Ġg ave
Ġg rat
ce eds
() ]
Ġst ops
orm a
ple x
), ))
Ġtrain er
Ġtrain ability
Ġ4 12
Ġ4 17
Ġ4 26
Ġ4 160
Ġ4 9409
di ag
ab ling
10 43
10 57
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠ
Ġh at
Ġh ot
Ġh olds
int eger
Ġ\" '
Ġ\" -
Ġ\" _
Ġ5 10
Ġ5 27
Ġ5 54
Ġ5 73
ĠI AM
pt ing
par sing
Ġex c
Ġex agger
)) ],
12 80
ĠC reated
con nect
ĠA L
ĠA ccuracy
ĠA rt
ds pp
batch s
ĠS mall
ĠS AMP
ĠS CHEDULE
Ġcon c
Ġcon se
Ġcon ce
Ġcon sequent
Ġcon centration
Ġcon crete
Ġpre view
ir ing
Ġim p
Ġim med
Ġ7 50
Ġ7 55
Ġ7 86
28 21
20 1
20 12
20 16
Ġat tain
96 00
96 50
96 56
96 80
96 77
Ġpa ragraph
25 28
25 000
out er
17 94
17 75
98 97
98 95
98 89
ĠR MSprop
ĠR etrie
ĠR ectified
ĠR eflection
Ġdef ines
ult ane
In stall
64 22
ĠD imension
Ġres ource
Ġr ated
Ġr ational
ach es
Ġcan did
Ġle aves
ĠN egat
ĠN ASNet
ĠM ethod
Ġstr ategies
Ġcom ing
(\" -
(\" .\")
ust ed
ĠF in
ĠF rom
ĠF EATUR
ĠF iles
ĠF ollow
Ġ10 5
30 30
78 50
78 78
78 70
78 09
]) [
]) ]
Ġar g
Ġar bit
Ġlabel ing
Ġby te
conv A
conv B
conv s
conv erter
93 62
mo lecules
mo bilenet
Ġsh ame
97 90
97 12
97 98
97 27
97 38
97 40
97 74
ĠL J
ĠL oo
ĠL anguage
13 46
com plex
ug ging
300 2
300 5
94 55
04 30
04 62
04 85
04 44
04 88
04 41
from array
cl us
95 28
95 13
95 38
75 48
wor ld
Ġfunction ality
pa ram
Ġde com
Ġde cent
([ "
([ ])
08 98
08 13
08 95
08 60
08 89
cal led
76 96
Ġ{ :
ise ase
pos ing
33 6
33 41
ĠG lobal
45 4
Ġmo bile
ĠO f
Ġ128 64
46 13
us ually
ĠE mbed
ĠE LU
ĠE fficient
ĠE POCH
ĠE ANet
img ur
Ġun tar
Ġun ified
relu A
relu B
62 3
ĠB lock
ĠB ST
sh ots
ject s
Ġper f
Ġpl atforms
Ġ9 30
log probability
em i
em pty
66 67
84 13
84 46
84 88
ĠK e
Ġimport ance
load ing
70 28
34 56
Ġ20 18
Ġ20 14
Ġlog ged
Ġmax im
39 32
39 22
Ġch ars
Ġch arge
Ġch apter
200 7
Ġsim ultane
de cision
36 94
tr l
86 96
86 76
86 82
args ort
77 38
Ġ15 1
Ġ15 2
Ġ15 3
Ġcol lect
05 75
05 11
09 12
09 15
09 17
09 56
09 19
09 23
Ġab stract
point wise
Ġso on
Ġ256 64
29 15
ĠW orker
Po int
Po ints
000 2
Ġz ebra
125 7
For dA
07 78
07 70
87 64
87 33
87 22
87 37
co st
Ġk inds
get cwd
88 82
ĠDef ining
Ġta il
Ġ14 2
Ġ14 8
MA SK
cor nell
Ġnew er
Ġnew ly
ĠH o
ĠH z
ĠH um
ĠH ugging
67 2
67 98
Ġaugment er
Ġdifferent iation
Ġdifferent iable
ĠV OCAB
ĠV ariational
Ġel imin
Ġmat rices
Ġmulti processing
Max imal
Max Norm
92 16
Ġtoken ization
Ġinter pol
Ġvari ation
68 64
ĠFor dA
strain s
Ġco efficient
42 38
Ġfa v
Ġfa ir
Ġfa cilit
dir s
31 19
use ful
und ant
01 94
54 98
Res ults
Ġman ner
Con t
Con strains
Ġstart ed
57 92
Ġred uces
Pre paring
LE ARNING
Ġpredict or
udi os
Ġ512 64
Ġread uc
iven ess
uto ff
St ep
St anford
Ġpart ially
61 12
width s
ĠModel Checkpoint
(" ...
Ġdi ag
83 50
83 18
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
69 90
69 13
Ġdes ire
Ġdes erialization
min i
min imize
Ġ[[ [[
Categorical Hinge
Num py
41 95
FO LD
wh o
wh at
Ġback end
Ġdire ctor
dist iller
with out
Ġrel u
Ġrel ig
Ġrel ational
Ġrequ ests
Ġrequ iring
Ġextra ctor
Ġtimest amps
Ġev ent
uc ial
Ġgu aran
Ġexpect ing
classif er
ON D
ĠNe ed
TA L
Ġdisc rep
Implement s
ĠPa per
IM E
user Id
Py ramid
embed ded
Ġresolution s
Ġdeta il
ĠLoss es
Ġallow ed
Ġallow able
ĠAn chor
ĠAn other
eger Lookup
Ġtra ced
Ġevalu ating
Ġevalu ator
Ġdep ends
ans wer
Ġ204 9
Ġ49 280
Ġthrough out
Ġ{} ;
Ġlong est
DT ran
Ġchan ging
ĠTF DS
Ġsp an
Ġob vious
Ġmonitor ing
Ġdict s
Ġposs ib
Ġunder st
Ġunder standing
ĠNeural Decision
Ġexp lo
016 6
016 7
016 8
rid ing
inter polated
Ġcomple ted
Ġact ing
Ġ124 17
Ġrest art
Ġcomp iling
014 0
014 6
arch ive
Ġreg ions
090 2
090 3
ret rie
Ġvisual ized
std v
Ġdis patch
Ġrecommend ation
ĠUn freeze
yn c
Ġph ases
Ġph ys
_{ }/
Ġoff sets
Ġhash ing
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ |
âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
017 0
tem poral
Ġstrong er
ĠOn ce
010 8
094 9
CO MMON
order ed
ĠAd ding
group by
.]] ))
Ġlevel s
Ġappro ximation
neighb our
Ġsepar ator
ĠAl gorithm
Evalu ation
ĠLoad ed
Ġsom etimes
050 5
coun try
Squared Hinge
âĢ ¦
âĢ ĸ
Ġnorm ally
Ġdiv isible
ĠNo isy
875 5
Ġmix ing
Ġefficient net
Ġretrie val
Ġrepla y
Log arithmic
Log Cosh
Dist ribution
HE IGHT
ĠMy Antirectifier
Ġmini batch
Ġassign ments
Ġbelong s
Ġ384 64
ĠPer form
Ġart ifact
MeanSquared Logarithmic
Ġsym path
Ġrequire ment
Ġvisualization s
Ġphilosoph er
buil ding
quad Example
ĠSpecif ically
290 4
480 1
480 2
Ġtre at
Ġtre es
Ġop inion
Ġins pect
Ġwrap ping
Ġprogress ively
Ġcalcul ating
808 8
bound aries
HEAD S
Ġsol ve
Ġsol ved
Ġinf init
ĠMask ing
Ġdevelo ped
Ġappe ared
Ġpreser ves
264 5
Or thogonal
des erialize
Ġref lection
ĠRep resentation
Ġdirection s
Ġincom ing
Depthwise Co
ici ents
097 5
SH UFF
SH AP
hance ment
ĠSp anish
Ġraise d
028 6
Appl y
...... ]
Ġclos ely
ĠQu ant
ĠCor es
plicit ly
Ġselect ive
034 9
Qu AD
lin ks
verag ed
ĠMel Spec
ĠViT s
Ġmultipl ication
ein sum
trans cription
Ġaccu rate
Ġobser ve
Ġremo ving
ĠTNP Dense
ĠInception V
Import Error
Import antly
220 2
Category Cross
ull ModelCheckpoint
Ġexpla n
Ġimbal anced
275 2
BB BP
Top KCategoricalAccuracy
ο ι
Ġhy po
ĠFF N
Pixel CNN
Ġ197 121
Ġreach es
Ġadjust ment
Ġessent ial
div ergence
sent iment
uter Layer
Ġvert ical
Ġvert ically
ĠSup ports
ĠSup ported
Int egrated
Int egerLookup
(\". \"),
Ġconven ience
ĠEqual izedDense
ĠUC F
Ġ131 328
724 6
bott om
sv hn
Ġinit ially
Ġ262 144
Ġlight weight
Inception V
ĠFeed forward
Ġdiscard ed
666666666666 66
Repeat Vector
LAYER S
dro logy
sat urate
Ġcr ucial
ĠRefer ence
ĠInter polation
Ġsit uation
Ġspect ator
aggreg ation
Ġ328 96
Ġrepeat s
Ġstri ctly
Ġliter ature
conf idence
Ġinsp ired
0986 123
Rest oring
Ġspat io
Ġvan illa
Ġmar ker
ĠAmeric an
Ġ169 985
Ġcover ed
Ġconsci ous
Ġreproduc ibility
470 6
Bond Type
Ele ments
ðŁ ĵ
Ġmus ic
Ġstra ight
indic ies
ĠUps cale
Ġcoeff icients
hard ware
Ġdan ger
Ġhor ror
Ġhyper bolic
Ġscre en
Ġcolo ur
Ġinvest igate
Ġmetaph ys
Thresholded ReLU
Bert Model
Hy drology
binar ized
sn li
tak en
Ġou put
Ġstudi es
ĠDisc ount
upd ated
Ġshuff led
Ġscient ific
Ġinterpret ation
ricket Shot
DEFAUL TS
Demonstr ation
Cent erCrop
SUB FOLD
Worker MirroredStrategy
cep tr
Ġ==== |
Ġthread ing
Ġske w
Ġcriter ia
Ġrece ives
Ġrecept ive
ĠEPOCH S
Ġsimultane ously
Ġreaduc r
Ġdiscrep ancy
retrie ve
MeanSquaredLogarithmic Error
SHUFF LE
SHAP E
CategoryCross ing
SUBFOLD ER
! !
% :]
' m
) [\"
) },
) [::-
, --
- {
. """
0 100
0 500
0 979
0 192
0 987
0 182
0 323
1 974
1 142
2 25
2 0000
2 986
2 979
3 96
3 167
4 96
4 97
4 200
4 120
4 902
5 94
5 70
5 36
5 48
5 255
5 344
6 00
6 32
6 176
6 974
6 127
6 992
6 107
6 954
7 27
7 40
7 000
7 001
7 333
7 958
7 139
8 27
8 938
8 955
8 368
8 936
8 944
8 958
8 902
8 959
8 363
8 621
9 96
9 001
9 940
9 947
: \")
: ].
= --
> ]
A cc
A to
A ctor
A nn
A udio
A ll
A vailable
A ctive
A BLE
B O
B ack
B ase
B UFF
B OND
C at
C al
C allbacks
C apt
C ycleGAN
D raw
D With
E M
F ine
F ind
F rames
F lickr
F ace
F trl
G NN
G rid
J ust
K A
K FF
K ernel
L L
L t
L ike
L IT
L arge
L ATENT
M er
M ore
O B
O UR
P ut
P ATCH
P unch
P iece
P layingCello
Q i
R M
R em
R omance
S pecif
S imilar
S miles
S XM
T B
T N
T able
T ree
T ermin
T ION
T imeseries
U TF
V ari
W idth
[ <
` :
a N
a i
a w
a cent
b on
b ut
b rain
b all
b efore
b ases
c ar
c an
c map
c osine
c urves
d o
d umps
e o
e ess
f b
f i
f m
f eat
f ly
f path
f ixed
f eaturizer
g y
g ro
g ener
g row
g file
g ru
g gregate
g rained
h al
h as
h am
h os
h uber
h orse
i en
i est
i ers
i ately
j acent
l ig
l imit
m and
m Dataset
m Downloading
m achine
m atches
m pty
m esh
m ultimodal
m rb
n t
n an
n able
n ip
n omial
o is
o ston
p ur
p ick
r nd
r istian
s ort
s ph
s ert
s ized
s iam
s erialize
s ymmetric
s ync
t v
t on
t ion
t ropy
t gz
u ations
v s
w ik
w ikipedia
x imal
x ford
x lim
y c
y ear
} ).
} _{
¶ ν
Î ¬
Î ¯
Ï Ģ
Ġ ut
Ġ um
Ġ ith
Ġ qkv
__ ,
in ception
in ci
in vert
Ġt iss
Ġt ang
Ġt itles
at c
at he
at ically
er ving
en a
en ced
Ġa da
Ġa veraged
es ide
es sed
es cape
Ġs ing
Ġs ore
Ġs cheduled
Ġs nip
ra ce
ra ge
ra vel
ra rily
Ġ0 1
el se
ch ing
re cognition
re move
re cons
re eds
re commended
ing Callback
la n
Ġv ox
Ġv ae
se gment
it us
it ening
Ġ1 96
Ġ1 72
Ġ1 71
Ġo mit
Ġo ctave
\" \
Ġf m
Ġf ps
Ġf ather
Ġc os
Ġc ited
Ġc table
Ġc utoff
Ġd pi
Ġd ark
Ġd ensely
Ġd isease
od ay
Ġm g
Ġm it
Ġm em
po ssible
Ġin tention
Ġin fin
Ġin variance
ar se
Ġw er
Ġw ine
Ġw av
Ġw ater
Ġw asserstein
Ġw arnings
Ġp ie
Ġp hot
Ġb oard
Ġb irds
00 10
00 35
00 38
00 63
et ime
ro g
ent ry
Ġ( "
as ic
as ons
Ġ2 10
Ġ2 32
Ġ2 26
Ġ2 33
Ġ2 39
Ġ2 29
Ġ2 48
Ġ2 5000
Ġ2 368
Ġn a
Ġn et
Ġn ib
ep h
Ġ[ _
Ġ[ `
Ġ[ {'
ic le
ic ity
cy cl
nd array
am ount
am az
layer ed
ur k
ur ity
um ing
il ter
ha usted
Ġ3 18
Ġ3 14
Ġ3 26
Ġ3 33
Ġ3 55
Ġ3 34
Ġ3 77
Ġ3 44
Ġ3 52
Ġ3 68
Ġ3 31
Ġ3 82
Ġ3 51
om en
Ġre mar
Ġre using
Ġre implement
Ġre asons
ad ays
Ġu l
ĠT O
ĠT ype
ĠT wo
Ġtf c
iv id
iv ial
pl ies
Ġg if
Ġg ame
Ġg ran
Ġg ru
ul ly
ot or
if ies
if ying
Ġ6 20
Ġ6 94
Ġ6 66
Ġ6 55
Ġ6 52
Ġ6 5792
ck et
un s
un ix
un mask
data bases
Ġtrain s
Ġtrain ig
Ġ4 10
Ġ4 98
Ġ4 24
Ġ4 95
Ġ4 80
Ġ4 07
Ġ4 48
Ġ4 61
ex ternal
10 40
10 37
10 87
th ere
50 7
low ers
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
Ġh our
Ġh orizon
Ġ\" #
Ġ\" ./
ist s
ist ent
ers ely
Ġ5 75
Ġ5 66
ĠI nd
ĠI ts
lab or
Ġex hausted
18 88
18 02
Ġx f
], )
90 94
90 62
90 38
90 48
90 51
90 83
12 94
12 70
ĠC ross
ĠC ho
ĠC artPole
ĠC ats
ĠC ycleGAN
ou ble
ĠA ttributes
Ġon line
Ġor gan
15 10
15 64
15 27
pre ad
pre training
32 10
32 98
32 56
ĠS V
ĠS al
ĠS ch
ĠS ection
ĠS ome
ĠS pace
ĠS election
ĠS KFF
Ġnum eric
Ġcon tr
Ġcon cept
Ġcon sequence
Ġit erate
ly nomial
=\" \
tf a
tf hub
Ġpre fer
Ġpre pared
âĸĪ |
Ġse a
Ġse quent
Ġim plicitly
Ġ7 00
Ġ7 28
Ġ7 30
Ġ7 95
Ġ7 92
Ġ7 71
28 34
20 3
96 90
96 32
96 94
96 08
96 88
96 74
Ġen for
Ġen cap
35 75
35 85
35 63
35 42
35 58
Ġ8 96
Ġ8 256
Ġlo ved
98 24
98 78
98 56
98 04
98 75
98 08
98 34
98 77
98 88
98 79
chan ged
ĠR AM
ĠR ob
Ġsu g
Ġpro pos
Ġpro fil
Ġpro gram
Ġpro ceed
ampl ers
... ě[
Ġpo sterior
ff ine
In spect
Ġare as
ri er
ri ends
64 34
64 09
64 43
ĠD es
ĠD is
ĠD ep
ĠD AU
ĠD ATA
ĠD ilated
Ġres ume
ach ers
ext raction
16 25
16 30
16 94
ĠN ext
ĠM S
ĠM V
ĠM e
ĠM essage
24 1
24 00
24 62
Ġstr uct
Ġcom pact
ĠF B
ĠF ind
ĠF ocal
ĠF igure
ĠF lickr
ĠF ren
ĠF lowers
ĠF riends
14 46
14 39
14 05
78 56
78 13
78 92
78 68
unction s
ind ividual
ĠP unch
Ġar ises
up sample
26 50
26 32
26 17
26 08
26 55
Ġsh aring
Ġsh rinkage
97 22
97 07
97 67
97 42
97 01
97 61
ĠL oc
ĠL ocal
13 38
com put
com patible
com fort
ug s
Ġax ins
94 78
94 76
94 87
94 88
04 28
04 66
04 37
04 70
04 92
04 73
04 71
back up
fer ent
True Positives
95 15
95 24
95 30
95 94
95 52
95 73
95 49
75 28
75 38
75 42
75 49
Conv olution
Ġ16 1
Ġ16 2
Ġ16 640
Ġde mo
([ '
08 25
08 17
08 78
08 56
08 52
08 79
08 72
08 57
08 82
08 81
08 61
08 51
red it
76 00
76 78
76 97
76 84
76 23
radi ct
radi ctory
99 56
Ġ64 9
33 67
33 150
33 779
ĠIn puts
ĠG IF
ĠG PT
Ġint el
Ġint ended
Ġint ellig
27 98
27 08
27 48
45 47
Ġma st
ĠO mniglot
ĠO xford
46 10
46 20
46 98
46 16
46 33
46 36
46 63
us ions
ĠE very
ĠE MBED
img s
Ġ28 2
Ġ28 6
Ġ28 9
Ġun ne
Ġun rol
Ġun seen
Ġun shared
Ġun changed
ĠB uil
ĠB NN
ĠB eta
ĠB idirectional
ĠB GR
ĠB enchmark
sh ot
sh ifted
Net s
so ft
38 56
40 96
40 26
Ġper ceptr
Ġ9 78
log dir
log ger
em plo
ib ler
22 18
84 29
84 44
Ġi a
Ġi e
Ġwor ry
37 45
ĠK nowledge
Ġpadding s
Ġhe a
19 94
19 27
70 17
70 24
Ġ20 2
Ġlog ging
39 10
Ġch ain
de viation
36 7
36 78
36 08
36 54
86 3
80 14
80 39
Ġsa w
Ġsa ke
77 25
77 14
77 94
77 46
Ġ15 8
85 96
85 14
85 76
85 86
ĠU tility
Ġcol ors
05 10
05 25
05 64
05 26
05 27
05 43
05 71
09 2
09 10
09 28
Ġab normal
ire ctory
Ġup right
47 93
__( *
Ġfol ded
29 35
29 98
29 94
NN CLR
ĠTensor s
ĠW ill
ĠW armUpCosine
Ġ26 2400
000 3
Re constr
SI TION
07 50
07 20
07 19
44 00
65 1
map s
87 10
87 50
87 08
87 44
87 31
87 43
co lo
co is
Ġ` -
Ġ` .
Ġk id
Ġk aggle
get s
Ġcor rupted
Ġdist iller
Ġdist rust
52 32
88 14
88 93
Ġsub t
Ġsub st
Ġsub sets
Ġsub directory
MA P
Ġsuper f
Ġsuper st
Ġsuper imposed
Ġover riding
cor rect
ese arch
ĠWe ight
Ġmethod o
tt y
ĠV SN
Ġ27 4
Ġ12 90
Ġcl f
ĠRe al
63 75
02 50
02 18
02 25
02 24
ST ABLE
TO TAL
Ġprob abilistic
Ġinter section
Ġvari ations
68 39
.... ]
Ġend point
Ġend urable
Ġsee k
74 10
74 16
74 94
dir name
31 30
03 98
01 90
01 17
01 98
01 64
01 16
01 13
54 90
72 78
06 76
Res ized
Ġthan ks
ĠIm gur
Ġman age
Ġdet ect
Con tent
Ġcontain ed
Ġ36 1
Ġhigh ly
Ġad am
Ġad vised
Ġad mit
Ġad versarial
Ġad jacent
Ġred undant
LE CT
AR T
fa ce
82 26
Error Print
Ġconfig uring
Ġconfig urations
Ġpredict s
ĠImage Ops
Ġstand alone
Ġstand ards
Ġ24 9
Ġca uses
read lines
91 32
91 64
chitect ure
Ġread y
313 1
St atus
61 50
ĠModel Net
sub tract
Ġdi ss
sl ider
69 98
69 94
Adam ax
min val
Ġ[[ [
ĠRes erve
itive Attention
Ġmod alities
Ġreal istic
Random He
Random Width
Ġback ground
Ġback propagation
Ġnormal izes
scale Block
Ġent irely
Set s
Ġoper ator
Ġoper ates
Ġap p
Ġregular ize
vari ation
Ġass ess
ĠDe coder
Ġcont radict
ĠSt ar
ĠSt ore
ĠTh reshold
Ġshow ing
uc i
Ġgu ess
gen re
run k
run s
Ġresult ed
Ġscal ed
En code
En tropy
Ġ... ])
ĠNe w
user content
exec ution
plic ative
Ġcomb ines
Ġallow ing
ĠAn tirectifier
Ġsup p
Ġsup posed
ĠAppl ications
Ġnon linear
Ġtransfer red
Ġdep loy
ĠLe arn
Ġsum med
ĠAdd itionally
ĠTF Lite
Ġinv ersely
:] ),
Ġiter ative
Image DataGenerator
Image Ops
Load Status
Ġnow adays
Ġdisplay ed
Ġexp ression
tern atively
])) .
ĠJ ust
ĠJ accard
ĠJ upyter
Checkpoint LoadStatus
Data Frame
LSTM Cell
Ġ90 6
Ġdel ight
Ġoptim al
ĠDeep mind
ĠEx ponential
Ġbeha ves
Ġcomp ression
Ġbuffer ed
Ġ46 24
090 1
090 4
090 5
090 9
down scale
Ġvisual izing
ĠData Generator
Ġclip ping
adam atch
Ġph i
Ġconsider ing
Ġconsider able
ĠGAN Monitor
Ġhash es
017 1
Ġadapt ing
Ġadapt ive
Ġpla ced
ĠCustom Dense
ĠCustom RNN
Ġquant ities
On es
On ly
Ġconcaten ates
010 4
010 5
Ġran ges
order ing
()` )
ĠAd versarial
Ġconstr ucted
OR G
group s
pip eline
Ġcross ed
Ġcomm it
Ġserial izing
Ġserial izable
Ġenviron ments
Ġext end
Ġext rem
Al pha
AD A
RNN Cell
Ġ0000 7
neighb or
Ġ000 09
imal RNNCell
ĠAl though
Ġident ify
Ġaggreg ate
Ġwar m
includ es
Ġexist ence
050 2
020 6
020 85
117 5
Ġeffect s
Ġeffect iveness
814 2
814 4
cut ive
replic as
Ġstat us
Ġprevious ly
900 3
900 8
Ġdiv ersity
Ġdiv iding
Ġshif ts
Ġintrod uces
875 2
Custom Model
Custom Layer
ific ial
ĠMax Pooling
ĠPo oling
Ġretrie ving
Ġnoteb ooks
ĠEn coder
Ġrepla ced
Ġlead ing
ĠMy Layer
pectro grams
Ġscen es
837 7
sel u
Ġview ing
ĠPer iod
TRAIN ING
978 1
978 3
866 0
866 9
Pos itive
ĠSpecif y
Ġcoordin ate
Ġcontrol led
={ "
={ \"
github usercontent
upl ens
Ġwrap per
Ġpen alt
Ġrot ate
Ġrot ating
808 6
Un it
Ġdetermin es
Ġinvol ving
735 3
Ġincor rect
Ġrecord ed
ĠMo vie
Ġpreser ving
475 7
And ErrorPrint
des cription
ĠRep la
ĠRep eat
Ġdecre ases
Ġproduct s
027 3
027 7
764 7
bal anced
Ġq a
Ġurl s
Ġurl lib
Ġnat urally
extract ed
064 2
rat ic
ĠÎ º
Ġrespe ctive
Ġnamed tuple
056 6
197 7
Separable Co
orig in
247 9680
876 1
876 6
Mask ed
sc ratch
ĠSim Siam
Ġcost ly
Concl usions
exist ing
Ġselect ing
Ġpopular ity
024 6
817 8
878 6
Ġpr ison
Ġho pe
ĠCO UNT
ĠRun ning
Instance Normalization
025 3
620 9
745 1
Class ification
SAMP LE
α ι
ĠAuto encoders
Ġmeasure d
Ġcondition ed
Ġtrunc ate
433 7
824 4
trans lation
ele ments
stat us
Ġvis it
anit ization
437 2
850 8
877 9
rot ate
ull back
ĠPlot ting
Ġsuffer ing
077 7
456 6
838 6
Ġye ar
Ġye ars
737 3
770 6
dep artments
rec ation
Ġtopo logical
Ġrem ote
Ġweak ly
ĠSub sequent
Ġresearch ers
ĠOpen AI
Ġadjust ed
065 2
Auth ors
From Smiles
LO C
Ġá¼ Ģ
ĠSha vingBeard
Ġincrement ally
Ġpropag ated
068 1
488 2
747 1
Graph ConvLayer
bott leneck
kk kk
Ġtw ice
ĠTem perature
ĠAugment ation
Ġ263 168
ĠLabel s
ĠBert Semantic
Ġinstin ctive
Ġrecurs ively
060 2
434 8
796 2
Col or
hand le
Ïĥ ι
thes is
Ġhum idity
ĠCl usters
Ġconsum e
Ġproportion ally
Ġdeal ing
Ġattem pts
'} ]
urb ations
Ġey e
Ġsubtract ed
Exponential Decay
Ġapproxim ately
Ġpersonal ities
Ġincorpor ate
Ġanaly zing
Ġaccumul ators
Ġflex ible
Ġflex ibility
Ġhistog ram
Ġhistog rams
587 2
night ly
Ġtrim esh
3284 3
Ġconst rastive
Ġresha ped
ĠFran cois
ĠFix Res
TRAN SITION
Ġsynchron ous
Follow ing
Negat ives
Sha vingBeard
ona ws
Ġsoc ial
Ġwid ely
ili ar
Ġ459 2479680
Ġexer cise
ĠAdapt ive
Ġcontra ry
ĠDown scaleBlock
convers ations
Ġintu ition
ĠCont rol
Ġtracker s
Ġprefetch ing
333333333333 34
deta iled
fts ign
Ġsil ent
Ġol der
Ġcum ulative
Ġ330 24
Ġhur t
Progbar Logger
Ġcombin ations
Ġscenari os
Chan ging
ResidualB l
Ġdestro y
EXAMP LES
Retrie ves
celeb a
lik elihood
mim save
ĠSAMP LING
Ġconse cutive
Ġconsequent ly
Ġimmed iately
ĠRetrie ve
ĠReflection Padding
ĠNegat ive
Ġarbit rarily
ĠLoo kup
clus ive
Ġrelig ious
Ġunderst ood
Ġartifact s
Ġexplan ation
ĠUpscale Block
%:] \"],
Ato ms
BUFF ER
OUR CE
Put ting
gro uplens
wik i
Ġtiss ue
Ġtang ent
Ġinfin ity
Ġpie ces
amaz onaws
Ġhorizon tally
Ġsequent ially
Ġencap s
ĠFren ch
Ġunrol led
RandomHe ight
Ġpenalt ies
AndErrorPrint ingCallback
ĠBertSemantic DataGenerator
% ]
' ][-
) !
) *
) ;
) =
) _
) \"
) âĢĸ
, -
, )]
, >=
. :
. >
. \",
. ',
. =--
/ )
/ {
0 22
0 157
0 200
0 189
0 176
0 128
0 187
0 784
0 999
0 938
0 121
0 325
0 992
0 231
1 13
1 152
1 325
1 153
1 944
1 140
1 159
2 100
2 30
2 156
2 960
2 987
2 328
3 15
3 784
3 152
3 188
3 182
3 355
3 968
4 118
4 979
4 136
4 161
4 946
4 143
4 270
5 90
5 33
5 34
5 240
5 106
5 191
5 342
5 173
6 62
6 05
6 000
6 88
6 955
6 765
6 322
6 991
7 101
7 324
7 936
7 765
7 184
7 172
7 148
7 948
7 141
8 25
8 99
8 91
8 469
8 391
8 986
8 988
8 166
8 326
8 945
8 405
8 355
8 342
8 181
8 336
9 16
9 30
9 118
9 937
9 907
9 248
9 980
9 358
9 260
: (
: :\",
= ...,
> '
A c
A re
A dapt
A BELS
A ffine
B idirection
C ritic
C haract
D O
D d
D ep
D iscriminator
D AR
D Embedding
D Logger
D IGITS
D PG
F ant
F ourier
G I
G u
G an
G ated
H eadAttention
H elper
I ZE
I ES
I MAX
J N
L b
L ens
L ib
L OR
L anguage
M a
M ult
M etrics
M UL
M ultimodal
M atrix
N G
N M
N ER
N CO
N ASNet
N LL
O pen
O OV
P Z
P d
P art
P ets
P TH
P olicy
P etImages
R L
R ay
R Embedding
R OR
S up
S cor
S entence
S ER
S FO
S caling
S chedule
S cope
S lope
S WA
S ometimes
T P
T r
T ip
T ransform
T run
T ennisSwing
U V
U SER
V x
V ery
V erse
V Lb
W ar
W rit
W ords
W ilderness
X LA
X TN
X Ray
Y U
Z JN
\ \'
] }\"
_ .
a o
a ccu
a ie
a iled
b c
b en
b tain
c ct
c our
c us
c rib
c ry
c ubic
c ensus
d c
d ual
d ates
d nn
d ynam
d igit
d ummy
d uplicate
e k
e ach
e ability
f ine
f ix
f ire
f old
f iel
f ather
f ocal
f ashion
g a
g mlp
h ouse
h ousing
i py
i rable
j et
j ug
k i
k p
k y
k ed
l se
l ic
m er
m en
m is
m as
m ig
m oments
m NM
n as
n cy
n the
n ative
n Start
o ctave
p ense
p ink
p seudo
p rime
r iv
r ine
r ates
r iller
s ure
s uff
s ay
s ely
s To
s igma
s pread
t in
t as
t ot
t ure
t ri
t ree
t uned
u k
u id
u ctive
v isual
v ided
w el
w as
w ill
w ind
x b
x xt
z ed
z ation
z un
{ }
} }
} ):
¥ ï
§ ois
¸ ı
 ²
à ©
à §ois
Î ¸
Î ¼
Ï Ĩ
Ï ī
Ġ ill
Ġ ener
Ġ ir
Ġ radi
Ġ ensemb
Ġ ensemble
Ļ ¥ï
in f
in o
in ct
in uous
in stall
Ġt ab
Ġt ill
Ġt ast
Ġt te
Ġt ick
Ġt xt
Ġt onal
at ent
at ives
at ural
at uration
er bosity
al y
al ogs
al thy
on to
or n
en able
en hancement
Ġa int
Ġa ware
Ġa irplane
Ġa verages
Ġa ux
Ġa udios
lo ver
Ġth resh
Ġs ic
Ġs qu
Ġs oo
Ġs ound
Ġs chedul
Ġs lower
Ġs anitize
Ġs pectrograms
Ġs anitization
el a
el eph
Ġthe aie
ch o
re at
re qu
re versed
re uters
st o
st age
st ft
st raction
Ġv i
Ġv ers
Ġv ib
im its
Ġ1 78
Ġ1 300
Ġ1 94
Ġ1 95
Ġ1 500
Ġ1 19
Ġ1 70
Ġ1 5000
Ġo on
Ġo as
Ġo lin
Ġo ohe
\" -
\" },
Ġf eat
Ġf ri
Ġf nn
Ġf lu
Ġf etch
Ġc b
Ġc p
Ġc ere
Ġc nt
Ġc yc
Ġd iscrimin
Ġd rops
le vi
od ic
Ġm ag
Ġm ill
Ġm art
Ġm itch
po b
po w
po isson
po sterior
Ġin format
Ġin active
Ġw is
Ġw all
Ġw ider
Ġw heel
ed ly
ct ed
ct rine
is k
is in
is odic
Ġp print
Ġp seudo
Ġp ush
Ġb ed
Ġb oo
Ġb eside
an ity
an ne
an ks
an other
an cing
00 2
00 64
00 30
00 78
00 37
00 34
00 36
00 05
00 71
et ween
et itions
ro logy
ro adcast
Ġto y
Ġto ler
ent le
Ġ( {
as y
as en
as pect
Ġ2 64
Ġ2 94
Ġ2 27
Ġ2 45
Ġ2 46
Ġ2 52
Ġ2 54
Ġ2 57
Ġn g
Ġn x
Ġn ation
Ġn one
Ġn ine
Ġn our
Ġn ice
Ġ[ .
Ġ[ ============
ic ed
ic ate
am a
am ine
ate ver
ag ate
ur ies
um p
il ight
ha vi
ig m
ig ated
Ġ3 93
Ġ3 66
Ġ3 70
Ġ3 87
Ġ3 42
Ġ3 71
id ities
Ġre ct
Ġre cal
Ġre cogn
Ġre cons
Ġfor e
Ġfor ms
ad ult
ad versarial
Ġu cf
ĠT able
ĠT ry
ĠT ree
ĠT ARGET
ĠT aking
iv ers
iv ide
ol ve
Ġg ree
Ġg cp
Ġg aussian
Ġg iving
Ġg entle
ul y
ul ation
res cale
res caling
res olver
Ġst l
Ġst y
Ġst up
Ġst abil
Ġst ret
Ġst air
ot ing
ot ic
if ice
.. ]
igh tf
Ġ# ##
Ġ# ################
ef s
Ġ6 12
Ġ6 32
Ġ6 39
Ġ6 23
Ġ6 87
Ġ6 73
Ġ6 61
he ar
he ights
ck s
un ts
un less
un stack
un ately
un truth
un sorted
un labelled
train val
est er
est ing
est XRay
Ġ4 15
Ġ4 16
Ġ4 99
Ġ4 38
Ġ4 22
Ġ4 37
Ġ4 53
Ġ4 06
ex port
ex posed
ex ponential
di alogs
Ġy label
10 10
10 12
10 15
10 28
10 14
10 95
10 75
10 76
10 27
10 66
10 77
10 47
10 23
10 65
10 53
10 67
10 31
10 72
10 58
10 73
10 49
Ġbe i
50 97
50 67
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠ
qu ality
to wer
Ġh ar
Ġh om
Ġh its
Ġh ocus
Ġh ete
Ġh ouse
int ensive
Ġ\" \".
Ġ\" -\"
Ġ5 35
Ġ5 25
Ġ5 64
Ġ5 33
Ġ5 80
Ġ5 81
ĠI s
par ts
Ġex ponent
Ġex ceed
Ġex ceeds
18 22
18 77
18 05
Ġx xt
Ġl ive
Ġl ives
Ġl ink
Ġl inks
Ġl icense
urn s
)) ):
ran k
90 96
90 25
90 17
90 98
90 78
90 33
90 47
90 23
90 87
cod es
per m
per ience
12 00
12 25
12 11
12 05
12 71
ĠC allbacks
ĠC osine
ĠC ycle
ĠC LASS
ĠC aption
Ġout perform
con st
con centration
con crete
Ġwh itespace
Ġwh atever
ĠA I
ĠA tt
ĠA TO
ĠA ggregate
Ġor d
Ġor ac
15 76
15 55
mb ol
32 35
32 78
32 08
32 46
32 66
32 59
32 77
32 47
32 88
32 06
ĠS E
ĠS cal
ĠS aving
ĠS quadExample
ĠS OURCE
Ġnum er
Ġret racing
pro portion
=\" ::\",
Ġpre m
Ġpre train
Ġpre achers
Ġpre comput
Ġpre tty
Ġuse f
ir l
Ġse gments
Ġim pact
Ġim possible
Ġ7 66
Ġ7 37
Ġ7 39
Ġ7 89
Ġ7 169
28 7
28 00
28 19
28 86
20 5
96 15
96 28
96 25
96 24
96 14
96 75
96 84
96 86
96 60
96 57
96 81
96 61
Ġpa ired
Ġen com
35 00
35 28
35 35
35 62
35 11
35 65
35 79
100 3
Ġbatch ing
Ġbatch norm
Ġ8 71
Ġclass ic
17 1
17 16
17 95
17 84
17 36
17 41
98 10
98 90
98 96
98 25
98 22
98 70
98 85
98 11
98 07
98 53
98 71
98 82
ĠR L
ĠR esearch
Ġsu ited
Ġpro s
Ġpro poses
Ġpro xim
Ġ' .
Ġpo pu
In puts
In valid
In stead
ri otic
64 9
64 80
64 03
ter ies
ter eo
ĠD ue
ĠD ivide
Ġr y
=( (
=( *
ip Hash
16 96
16 35
16 03
ĠN ested
Ġ" /
ĠM od
ĠM onitor
ĠM erge
ĠM illion
ĠM atrix
ĠM atching
24 45
Ġal chem
Ġal levi
Ġacc om
Ġacc essed
vi a
(\" [
(\" _
(\" ----
ust ry
ĠF eatures
ĠF ast
ĠF ace
ĠF ullModelCheckpoint
ĠF ilter
ĠF ully
ud e
Ġ10 20
Ġ10 56
Ġ10 46
14 95
14 34
14 80
14 31
30 50
30 73
78 40
78 66
78 84
78 37
78 72
78 58
78 73
Ġconv ers
]) >
class ing
ĠP art
ĠP layingCello
ĠP endulum
and restore
ĠThe ir
56 9
56 16
56 95
56 08
56 80
56 79
Ġar en
Ġar xiv
26 6
26 94
26 36
26 027
93 90
93 76
93 33
93 47
93 44
93 87
Ġsh ot
Ġsh ip
97 00
97 50
97 04
97 33
97 55
97 05
97 09
97 29
97 44
97 68
97 06
97 43
97 57
97 71
97 91
end point
Ġne cess
ĠL ow
ĠL ite
ĠL ATENT
ĠL OL
ĠL ABELS
13 93
13 48
13 60
13 31
ents ion
300 00
94 98
94 13
94 27
94 157
94 21
94 47
94 31
94 73
04 9
04 55
04 36
04 86
04 77
04 29
04 67
04 79
04 06
04 91
0000 1
back ground
ak pa
Ġ32 7
95 32
95 16
95 76
95 40
95 22
95 37
95 80
95 47
95 23
95 74
95 82
75 90
75 20
75 98
75 24
75 75
75 77
75 51
Conv olutional
Conv erts
Ġ16 8
=" ",
Ġde a
Ġde coding
([ (
08 90
08 30
08 75
08 76
08 84
08 21
08 47
08 23
08 88
08 63
08 74
76 1
76 35
76 98
76 30
76 95
76 75
76 08
76 70
76 92
76 03
76 91
76 51
rel ational
tensor dot
ise d
99 00
99 18
99 17
99 98
99 14
99 13
Ġ64 0
Ġ64 8
Ġtop ic
33 15
33 94
33 65
33 88
33 49
ĠIn verted
ĠIn sert
ption ally
ĠG e
ĠG o
ĠG roup
ĠG rad
ĠG lorot
ĠG iB
27 20
27 70
27 31
27 485
27 746
45 18
45 42
Ġmo vielens
ĠO thers
ĠO uterLayer
ĠO btain
Ġ128 0
Ġ128 80
46 8
46 50
46 94
46 02
46 74
ĠE qu
ĠE valu
ĠE arly
ĠE NC
ĠE uclidean
ĠE stimation
Ġ28 5
Ġun pack
Ġun change
Ġun expected
Ġfil elist
ĠB aseline
sh ip
sh runk
38 88
38 02
38 73
38 57
40 9
40 18
40 14
40 78
40 76
40 38
40 52
40 60
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ Ġ
ng le
Ġper t
Ġind uced
Ġind eed
Ġind epend
Ġind ivid
log arithmic
work ed
500 5
ib zun
66 18
66 85
66 79
84 47
55 40
55 37
55 54
37 24
37 38
37 22
37 11
ĠK L
for est
for get
Ġhe althy
19 20
load ed
load txt
70 76
70 79
70 54
Generat ive
34 98
34 13
34 08
Ġ20 3
Ġ20 10
Ġmax ed
mat rices
39 50
39 35
Ġch e
Ġch ol
Ġch un
Ġch ime
Ġch ildren
157 4
False Positives
False Negatives
200 1
36 15
36 76
36 11
36 82
86 5
86 10
86 13
86 74
86 91
86 51
80 9
80 32
80 96
80 56
80 26
80 95
80 22
80 58
Ġsa fe
77 1
77 7
77 12
77 45
77 11
ance Scaling
Ġ15 97
85 32
85 16
85 30
85 56
85 13
85 45
85 22
85 44
85 42
85 73
85 49
ĠU til
initial ized
11 50
11 12
11 15
Ġspecif ically
05 28
05 33
05 37
05 39
05 77
05 47
09 00
09 96
09 16
09 97
09 95
09 11
09 29
Ġab straction
point net
Ġlist ed
47 56
47 94
47 99
Ġour sel
29 28
ĠTensor Shape
ĠW indow
ĠW ave
ĠW ord
ĠW asserstein
ne utral
Ġdo ctrine
Ġtext ure
Ġtext ual
AT ION
Ġvector ized
Re call
Ġ13 1584
07 12
07 64
07 56
07 76
07 34
44 18
44 32
44 04
44 80
65 94
87 28
87 35
87 25
87 24
87 56
87 93
87 94
87 23
co ver
co ped
weight ed
=[ [
patch ed
Ġk p
Ġnetwork x
row d
Ġcor a
Ġcor relation
Ġcor related
Ġdist ill
Ġdist inct
52 94
52 34
88 22
88 37
88 34
88 21
88 23
88 87
Ġsub l
Ġsub s
Ġsub classes
Ġdiffer ences
Ġ14 3
Ġ14 33
Se cond
unt arily
nn ing
Ġnew sw
ĠH N
ĠH e
ĠH yperparameters
Ġcomput ations
67 3
67 32
67 28
67 96
67 25
67 14
67 26
67 39
67 36
no ises
ient ed
ĠV M
ĠV isualize
ĠV erbosity
Ġj accard
Ġ12 960
Ġel ect
60 98
60 26
]] ])>
Ġmat uring
Ġmulti plier
Ġmulti plicative
ĠRe c
ĠRe uters
63 12
63 96
63 94
92 94
92 33
92 37
92 36
generat ing
wise Constant
Ġ18 2
ell cubic
02 15
02 35
02 64
02 14
02 26
02 99
02 33
02 38
02 37
Le ibler
ST EM
Ġprob a
zip s
176 9
Ġinter action
Ġinter rupted
68 94
68 37
bias es
Ġco her
pend ulum
42 16
42 14
79 12
79 35
79 78
Ġ30 75
Ġmin ned
31 16
und er
\"] ):
\"] ))
03 40
ract ed
01 99
Ġcal c
Ġcal m
06 15
06 13
06 92
Res olver
Ġtrans ition
Ġtrans poses
ĠIm plement
Ġman ip
Ġman ual
58 9
73 32
73 30
Ġdet ector
Ġgo es
Con straint
Con trast
Con ditional
prob a
ĠCom edy
Ġprov iding
ĠLo L
43 50
43 66
43 19
Ġhigh res
57 76
57 33
57 45
Pre cision
71 98
fa ith
ress ive
82 75
82 39
ER ROR
Ġ17 75
Ġ24 1
ĠCon sistency
91 99
UN ITS
UN DAR
lib cudart
lib cublas
Ġread s
bo ston
81 50
81 90
81 12
81 32
jo ints
Ġpart ition
51 12
sub classed
83 64
83 16
69 28
69 96
69 95
69 29
Ġdes erial
Ġdes cript
Ġdes erialize
Ġdes criptor
Ġ50 7
Ġ50 240
Ġ[[ '
Ġmost ly
ĠRes cale
Ġwould n
vector ized
41 98
Random Uniform
Random Contrast
wh l
Ġsome what
Ġrel ation
Ġrel ies
Add itiveAttention
Global Max
Global MaxPool
Global Avg
Ġtimest amp
Ġev ents
Ġcont ribute
graph s
Ġprod ucing
Ġ200 3
ĠSt ick
su ccess
ĠTh erefore
Ġmay be
Ġexpect ation
Ġfilter ing
ish ment
BatchN orma
704 9
En coded
Ġ... ),
Ġ... ],
Ġwrit er
rough t
Ġdisc over
'] ),
Ġser ious
Ġfit ting
ĠCompute Sum
og ram
Ġtem plate
off icial
Ġtra cing
Ġtra jectory
Ġtra jector
GE LU
iter ation
Ta ke
Ġutil ize
Ġutil ized
Ġutil izing
Ġpat riotic
Loo k
Ġerror s
Ġtype guard
IF IC
Ġchan ce
Com pared
ĠAdd itional
Ġdeep ly
new s
Ġcaption ing
Ġinv ersion
cri pts
Ġloc ated
Ġposs ibility
Ġsep erate
Image Net
Multi WorkerMirroredStrategy
112 1
Iter ator
Ġwho se
ĠX LA
Ġauth or
........ ]
mul ator
250 8
Th at
016 3
Ġla m
Ġla unch
Ġpreprocess or
Ġ90 4
Ġ90 5
Ġdel tas
123 45
rad igm
Up date
wa it
Ġrest ored
ĠResNet V
ĠDeep Lab
Download s
ĠEx perts
ĠEx perience
015 2
015 5
Ġpar ent
Ġreg ion
CT C
Ġow ing
Ġcomputation ally
Ġmy model
Ġclip norm
ě[ ?
Ġdis pense
ĠUn known
Ġme as
ĠPro file
Ġknow s
ci ous
Ġtr ivial
convert ed
rgb a
NUM ERIC
017 8
Ġpla in
Ġdemonstr ated
(' /
Ġgen re
Ġlib cudart
Ġlib cublas
Ġconcaten ating
010 6
094 3
094 4
094 6
CO CO
()` ).
180 180
ĠAd agrad
ĠAd adelta
emb er
Ġra ce
Ġfre q
Ġfre quencies
Ġ47 247
Lambda Callback
ik l
Ġcent uries
Ġyiel ded
Al gorithm
Ġgeneral ization
utomat ic
ey ond
over write
over lay
Ġcap ped
ĠAU TO
mlp mixer
Ġsepar ated
writ er
writ ing
Ġstates m
Ġamo unts
Ġ000 11
Ġident ically
135 6
As pect
DE PTH
Normal ize
Ġ125 3
Ġdot ted
ĠLoad ing
078 8
ermin istic
rap ping
Ġequal s
150 8
Ġtruth s
050 6
050 9
020 3
IC UB
mp nn
mar ital
ceiv ing
TF T
TF BertModel
Ġsign atures
ĠCal lable
ĠSh ort
814 3
814 7
814 8
skip ped
loo ps
Ġfin dings
Ġstat eless
return s
199 1
900 2
900 4
900 6
fin ished
Ġ58 9824
Ġintrod ucing
Ġfeed ing
875 7
875 8
Ġmix es
ResNet V
096 1
096 5
096 6
720 9
ict s
reak out
ĠCo NLL
proj ectors
ĠPo ints
cated Normal
Ġtoo k
ĠEn coding
Ġrepla ces
Ġrepla cing
095 1
095 4
095 7
Dist iller
Ġpy plot
sel ected
rep resent
reconstr uct
Ġexec uted
ĠBatch Norm
TPU Cluster
non cudnn
center ed
Ġturn ed
()} .\")
Ġart icle
Ġsym pa
110 4
110 6
110 9
828 5
828 6
978 021978
So il
Initial izing
ĠSpecif ies
ĠRandom Fourier
ĠDist illation
comp iling
290 5
480 6
710 8433
SS L
Ġbas is
ĠGraph ConvLayer
826 2
826 3
826 6
808 0
808 3
Type Error
Type Spec
Un like
Un labeled
kn ow
loc ity
ĠSw AV
Ġconf usion
Ġconf ident
Ġ/> \",
ĠResidual Block
Ġinvol untarily
.\" --
778 6
chem istry
Ġdevelo ping
Ġappe ars
Ġpreser ved
gre ater
mix up
learn able
ĠCh an
ĠCh est
Ġsem ant
GG LE
Pl F
Ġsuff ix
Ġperm eability
Ġrout ed
055 3
055 5
055 7
430 5
430 7
Box Loss
prod uct
ĠÎ ´
Ġbar bar
Ġbar rier
Ġexpl ored
ĠâĢ Ķ
097 1
097 7
197 2
730 4
730 6
744 9
950 6
950 8
VAE s
VAE Trainer
ĠY our
Ġfill ing
Ġrender ing
Ġrender ed
247 7064
Ġmaintain s
Ġiss ues
Ġassum ing
ĠProb ability
028 7
897 0
897 3
Appl ying
Visual izations
896 4
man y
Ġzoom ed
Ġstateful ness
034 1
726 32
708 0
Qu ick
Time Distributed
cum sum
Ġsens ible
Ġpr inci
Ġem its
Ġem plo
ĠPatch Embedding
ĠPatch Extract
Token AndPositionEmbedding
445 8
528 4
775 2
775 3
746 2
856 7
ĠAuto encoder
ĠAuto Encoder
ĠAuto Augment
ĠMulti HeadAttention
ĠUnpack ing
Ġsymb ol
ĠToken ize
Ġspeaker s
Ġmeasure ment
ĠCTC Layer
Ch ildren
Ch estXRay
Ġcou rage
post process
ĠTNP ForwardFeedRegressionNetwork
ĠPos itive
Ġsyn c
076 9
066 3
428 4
428 5
877 2
Ġsmooth ing
stop ped
quant izer
Ġaspect s
ĠSplit ting
Ġdecision s
Ġinternal s
Style GAN
Ġsuffer ers
038 5
077 2
397 2602
397 26027
628 1
790 8
725 4
924 3
956 2
997 1
By tes
CSV Logger
Run ning
bra cket
Ġsk image
Ġ147 9
Ġask ed
Ġannot ate
ĠMPNN Model
ĠMPNN Dataset
211 94157
Ġsubtle ty
################ ########
Ġencoura ge
API s
Pixel Con
Transformer Block
mit t
Ġport ion
ĠGenerat ing
Ġsimpl er
Ġsimpl est
Ġsimpl ify
Ġneighbor hood
420 6
686 3
776 6
830 7
830 9
Ab out
div ide
Ġá¼ Ķ
Ġfam iliar
Ġmiss es
Ġner f
ĠSha pes
Ġpropag ation
Ġpropag ate
Ġvolum es
345 8
446 7
546 2
678 6
697 2
697 2477064
655 2
Ġtw ilight
Ġaffect s
Ġvary ing
Ġpotent ial
Ġalign ed
Ġalign ment
Residual Network
Ġcontem porary
Ġoccur r
Repeat s
Ġrespons ibility
033 6
233 1
700 2
SP LIT
dro gen
deg C
sk y
Ġmer ged
Ġmer ging
arm Hash
Ġconcer ning
Ġsubsequent ly
ĠConditional GAN
588 2
880 170
Cre ator
Col lect
Mo vies
sw ish
Ġsit uations
Ġspect ral
Ġfra ud
Ġbus iness
aggreg ated
Ġ517 60
ĠST L
Ġmodif ies
ĠStanford Extra
Ġinsp ir
340 6
425 1
425 4
670 9
607 1
885 8
Sum mary
ear th
Ġimag ing
Ġri ch
===> ........
Ġtell s
Ġast rology
Ġsex ual
Ġ146 84
Ġfix res
Ġdr ugs
Ġmis leading
Ġey es
Ġgather ed
ĠMin imum
Ġconsci ously
Ġminim ized
Ġdiscuss ion
ĠPredict ed
Ġhost ile
Ġanaly ze
Ġreproduc ible
067 3
0180 180180
804 4
Ġdat at
Ġbi ased
Ġcompreh ensive
ĠFran çois
ĠGener ation
Ġchallen ging
Ġdistort ion
ĠVector ize
TRAN SFO
Ġsynchron ously
CN Callback
Glorot Normal
Glorot Uniform
KEY POINTS
Over ride
`` `
som ething
á¿ ¶Î½
Ġve locity
Ġvir al
Ġflat teries
Ġcop ies
Ġbig rams
Ġgr pc
Ġasynchron ous
Ġasynchron ously
consum ing
Ġconcat ted
ĠRel ative
Ġsugg ested
ĠPy ramid
Ġsacr ifice
Ġinflu ence
ivariate Normal
met r
sm uch
ene w
Ġthrow n
Ġmid day
Ġmark ed
abus j
ĠDi ctionary
Ġdecor ator
ĠKing ma
Ġheav ily
Ġcorru ptions
Ġclon ed
ĠComput er
ĠConfig uration
Ġexpress ions
Ġhandwrit ten
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
incomplete XTN
Auto Encoder
Mel GAN
Perm ute
Ro ad
SY STEM
cu sparse
glo ve
miss ion
tor onto
Ġ988 16
Ġspeak s
Ġbud get
anomal ies
Ġgrat ification
Ġexagger ations
Ġconc epts
ĠFin ish
ĠFEATUR E
Ġbyte code
Ġperf ecting
ĠKe ep
ĠHum idity
ĠHugging Face
Ġfav or
Ġfair ly
Ġfacilit ate
Stanford Extra
Ġdiag onal
Ġguaran tee
ĠNeuralDecision Tree
Ġsympath y
Ġmetaphys ic
BO UNDAR
Capt ure
Grid Image
KA GGLE
RM ER
Similar ly
Vari anceScaling
gener ation
hal f
has ibzun
ham ming
Ġsnip pet
Ġmem or
Ġphot o
Ġremar ks
ĠTO DO
labor ative
ĠSal ut
Ġpropos ity
Ġprofil ing
ĠDATA SET
Ġstruct ures
backup andrestore
Ġmast ers
ĠOxford Pets
Ġunne cessary
ĠBuil ding
Ġperceptr on
Ġia io
1927 7108433
colo urs
Ġadmit te
Entropy Loss
Ġextrem e
Alpha Dropout
02085 782
ĠMovie Lens
ĠRepla cing
Classification Loss
recation Warning
Are a
Dd GI
Fant asy
Language Model
Mult ivariateNormal
MUL T
Open AI
PZ PlF
Pd Vx
Scor ing
Trun catedNormal
VLb Qi
Writ ing
accu mulator
cus olver
dynam ic
mis leading
mig ration
suff ix
sTo GridImage
visual ization
Ġill ust
Ġener gy
Ġensemb ling
Ļ¥ï ¸ı
eleph ant
Ġcere m
Ġcyc led
Ġdiscrimin ating
Ġmitch ellcubic
Ġinformat ive
Ġboo st
anne aled
Ġtoler ance
Ġnour ishment
havi or
Ġrecal ib
Ġgree ks
Ġstup idities
Ġstair case
Ġ################# ########################
Ġexponent ially
ĠATO M
Ġorac le
ĠScal able
Ġproxim ity
Ġalchem y
ĠLOL Dataset
akpa ul
Ġunchange able
wiseConstant Decay
Ġdescript ors
GlobalAvg Pool
Ġtrajector ies
IFIC IAL
Ġ47247 36
ICUB IC
TPUCluster Resolver
978021978 021978
ĠRandomFourier Features
Ġbarbar ic
Ġprinci ple
39726027 3972602
6972477064 2202
0180180180 1802
TRANSFO RMER
incompleteXTN ZJN
BOUNDAR IES
hasibzun air
19277108433 735
DdGI J
PdVx VLbQi
! \".
" ):
% )
% :
% ')
' ])
( _
( \",
( '.
) [:
, ",
- \",
. '
. {
. \".
/ ),
/ \")
0 70
0 59
0 36
0 125
0 118
0 256
0 291
0 120
0 320
0 988
0 368
0 188
0 136
0 127
0 989
0 353
0 369
0 191
0 327
0 359
1 15
1 128
1 955
1 167
1 169
1 158
1 326
1 980
1 165
1 149
1 155
1 163
2 27
2 352
2 36
2 176
2 641
2 784
2 999
2 158
2 980
2 161
2 765
2 945
2 327
2 931
2 162
2 392
2 3456
3 18
3 157
3 782
3 120
3 979
3 160
3 988
3 941
3 906
3 402
3 147
3 945
3 140
3 149
3 940
3 124
3 353
3 163
3 964
3 181
3 959
3 172
4 18
4 90
4 16
4 001
4 180
4 382
4 986
4 138
4 320
4 985
4 167
4 158
4 168
4 402
4 184
4 126
4 982
4 140
4 344
4 951
4 260
4 273
4 265
4 367
5 32
5 35
5 22
5 189
5 128
5 469
5 641
5 152
5 936
5 184
5 902
5 140
5 405
5 369
5 949
5 154
5 305
5 931
5 939
5 934
5 273
6 98
6 782
6 123
6 907
6 258
6 325
6 175
6 988
6 158
6 941
6 944
6 333
6 982
6 144
6 131
6 124
6 163
6 329
6 949
6 779
6 092
7 34
7 200
7 36
7 176
7 128
7 469
7 641
7 784
7 907
7 138
7 186
7 120
7 192
7 166
7 368
7 169
7 960
7 005
7 240
7 168
7 147
7 133
7 945
7 131
7 405
7 953
7 154
7 360
7 162
7 174
8 19
8 000
8 128
8 782
8 123
8 784
8 937
8 192
8 974
8 169
8 987
8 906
8 111
8 992
8 104
8 155
8 981
8 358
8 191
8 357
8 322
9 22
9 000
9 187
9 186
9 152
9 192
9 160
9 102
9 987
9 153
9 147
9 165
9 140
9 131
9 124
9 353
9 145
9 964
9 983
9 951
9 953
9 322
9 273
: \"
> \"
? .
A ction
A ctivityRegularization
B U
B v
B ut
B ig
B ow
B ERT
B rightness
B ICUBIC
C Y
C ode
C ore
C CT
C uDNN
C lear
C rime
C ricketShot
D A
D et
D uring
D og
D ilated
D ensely
E d
E r
E qual
E NCO
F C
F in
F la
F ire
F reeze
F urther
F LECT
F ailed
G N
G l
G o
G od
G ER
G oogle
H P
H int
H orse
I O
I nd
I off
J Y
J asen
K ey
L ine
L atent
M P
M V
M an
M ap
M ind
M emory
M essage
M PNN
M aps
M PER
M IRNet
N ode
N ested
N VP
N aN
O M
O S
O ptim
O utputs
P rop
P neumonia
Q N
R C
R eturn
R ules
R DKit
R ema
S l
S u
S cal
S AN
S ource
S core
S CA
S avedModel
S iamese
S chem
S aves
S elect
S erialize
S DS
S ampler
S olved
S tochastic
S election
S emi
S QuAD
T em
T ry
T akes
T IME
T urns
U ps
U tility
V e
V ert
V ox
V ER
V ID
X iv
Y D
Y our
Z h
] ([
_ %
` ;
a ware
a irplane
a utomobile
b u
b x
b in
b an
b ir
b oth
b row
b order
b mp
b ird
b ank
b atc
b asic
b roadcast
c el
c ad
c ites
d t
d y
d ition
d raw
d ependent
e valu
e ither
f s
f ar
f ic
f ric
f uture
f ollow
f rog
g ent
g ap
g ated
g ender
g uns
h um
h om
h op
i i
i ber
i ance
i wer
i ans
j er
j accard
j ena
k r
k el
k its
k ind
l m
l le
l ations
l ished
m e
m i
m es
m ol
m ide
m sed
m ethod
m kdir
m otor
n or
n ier
n msed
o or
p m
p res
p ub
p ress
p ets
r x
r ong
r rg
r ho
r mse
s oc
s ale
s erving
s cripts
t if
t we
t age
t ick
t uples
u v
u z
u ra
u ge
v ide
v anced
v ron
w ad
w ave
w rn
w arnings
w heel
x is
y lim
{ \\
{ }\".
| -
| âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ|
} ",
~ \"),
 ¿
à ³
à Ĺ
Î ´
Ï Ĥ
Ï ħ
Ï į
â Ī
Ġ \
Ġ elf
Ġ >>>
Ġ lamb
Ġ \\
Ġ á½
Ġ ÏĢ
IJ λ
__ )
in an
in able
in ance
in stanti
in ner
in fra
Ġt d
Ġt s
Ġt net
Ġt ermin
Ġt reating
Ġt restbps
at ory
at ari
at urally
er ing
er Net
er ino
al d
al ing
al ong
al gorithm
al mar
on om
on ality
or p
or et
or ward
or row
or iented
en um
Ġa f
Ġa ro
Ġa ms
Ġa ir
lo s
lo Ve
es is
es pecially
Ġth er
Ġth om
Ġs v
Ġs ch
Ġs ul
Ġs un
Ġs par
Ġs end
Ġs lot
Ġs ix
Ġs ized
Ġs sl
Ġs ite
Ġs queeze
Ġs ources
Ġs orts
Ġs amplers
ra ps
Ġ0 2
ss es
ss im
Ġthe ory
ch e
ch es
ch re
ch ristian
re cogn
ut y
ut ter
ut ual
ing u
st e
st ore
la nd
la nguage
la nczos
Ġv ice
se g
it ting
it ively
im ated
Ġ1 98
Ġ1 75
Ġ1 79
Ġo dd
Ġo mniglot
\" }
Ġf i
Ġf ly
Ġf ault
Ġf bs
Ġf net
Ġf names
Ġf ade
Ġf obj
Ġf als
Ġc la
Ġc ct
Ġc as
Ġc atch
Ġc lock
Ġc ry
Ġc iting
Ġc ats
Ġc itation
Ġc aches
Ġd x
Ġd y
Ġd in
Ġd ar
Ġd ate
Ġd il
Ġd ram
Ġd ept
Ġd ays
Ġd uplicate
le e
le ast
od ing
Ġm d
Ġm al
Ġm ent
Ġm pl
Ġm irror
Ġm abusj
po und
po oled
po lynomial
Ġin co
Ġin cent
Ġin place
ar ound
Ġw v
Ġw ent
Ġw atch
Ġw ast
Ġw aves
Ġw atching
Ġw rong
ed i
ed Sl
is ation
is ms
is ot
Ġp i
Ġp x
Ġp an
Ġp as
Ġp ul
Ġp un
Ġp ri
Ġp ub
Ġp hen
Ġp run
Ġp ull
cc l
cc ccc
Ġb re
Ġb rain
Ġb all
Ġb rows
Ġb lu
Ġb ird
Ġb inar
Ġb esides
Ġb ooks
an ization
an gular
an gle
00 93
00 97
00 94
00 75
00 66
00 84
00 09
00 29
00 65
00 68
00 61
00 49
00 41
et o
et ic
ro b
ro ph
Ġto wer
Ġ( \"
Ġ2 500
Ġ2 59
Ġ2 53
Ġ2 43
Ġ2 955
Ġ2 326
Ġof fer
Ġn ms
Ġn rows
Ġn esterov
Ġn ccl
ep age
ep rint
Ġ[ ========
ic ing
ic it
ic ode
am less
ate On
ur i
um ar
um ents
il f
il low
il led
Ġ3 10
Ġ3 50
Ġ3 17
Ġ3 56
Ġ3 97
Ġ3 0000
Ġ3 75
Ġ3 99
Ġ3 45
Ġ3 40
Ġ3 37
Ġ3 19
Ġ3 59
Ġ3 80
Ġ3 11
Ġ3 47
Ġ3 000
Ġ3 58
Ġ3 91
id ers
om Featurizer
Ġ[================ ====
Ġre w
Ġre train
Ġre ve
Ġre port
Ġre cre
Ġre vers
Ġre loading
Ġre instanti
Ġfor get
ad er
ad ratic
ĠT P
ĠT an
ĠT ow
ĠT ask
ĠT op
ĠT ranspose
ĠT ennisSwing
ĠT IME
iv ation
ol s
ol ding
ol kits
pl es
pl ation
pl ish
Ġg ra
Ġg it
Ġg ap
Ġg ray
Ġg conv
Ġg ating
Ġg down
Ġg lorot
Ġg irl
ul ates
res izing
() }\")
Ġst a
Ġst agn
ction less
ction aries
ot ion
ot ate
if i
if ical
if ications
if ferent
ef ig
Ġdata base
Ġ6 10
Ġ6 75
Ġ6 34
Ġ6 36
Ġ6 05
Ġ6 67
Ġ6 79
Ġ6 58
Ġ6 81
Ġ6 69
Ġ6 5664
ple ted
ck ey
un ter
un sup
un truncated
un icode
Ġ4 18
Ġ4 76
Ġ4 70
Ġ4 11
Ġ4 23
Ġ4 87
Ġ4 68
Ġ4 57
Ġ4 81
image io
ex pl
ex clusive
ab c
ab sl
set Le
set ting
Ġy o
10 90
10 20
10 96
10 35
10 17
10 64
10 22
10 19
10 34
10 86
10 88
10 48
10 63
10 79
10 41
Ġbe am
th en
th eless
50 3
50 10
50 90
50 32
50 98
50 27
50 46
50 66
50 34
50 73
50 61
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĊ
to g
to olkits
Ġh all
Ġh un
Ġh int
Ġh df
Ġh ither
Ġ\" ]]
Ġ\" :\",
Ġ\" \").
Ġ\" {}
Ġwe b
Ġ5 50
Ġ5 32
Ġ5 28
Ġ5 78
Ġ5 76
Ġ5 38
Ġ5 84
Ġ5 39
Ġ5 29
Ġ5 43
Ġ5 83
ĠI V
ĠI OB
par is
Ġex tr
Ġex ten
Ġex ang
Ġex poses
18 00
18 17
18 95
18 46
18 11
18 03
Ġx label
Ġl u
Ġl sh
Ġl unch
Ġl imits
)) ))
)) ([
ran kdir
90 32
90 93
90 75
90 76
90 66
90 59
90 88
90 60
90 89
90 41
per forms
12 32
12 64
12 56
12 26
12 75
12 33
12 22
12 37
12 19
12 60
12 02
12 68
12 91
ĠC C
ĠC ode
ĠC ours
ĠC OV
ĠC ategory
ĠC urve
ĠC haract
ĠC ricketShot
Ġout performs
con texts
ou pling
ou vron
Ġwh itening
ow ing
ect s
ax s
ĠA T
ĠA re
ĠA cc
ĠA udio
ĠA bsolute
ĠA SC
ĠA ppen
ĠA pr
ĠA utomatic
ĠA xis
Ġon to
Ġor thog
Ġor ders
15 00
15 12
15 32
15 16
15 46
15 86
15 11
15 44
pre vious
32 17
32 14
32 97
32 13
32 76
32 23
32 44
32 52
32 68
32 49
ĠS u
ĠS er
ĠS he
ĠS core
ĠS peech
ĠS eparable
ĠS urve
ĠS WA
ĠS emi
ĠS QuAD
ĠS ky
ĠS aturation
ĠS ipHash
ĠS TFT
ile ged
ort e
ort unately
\") [-
Ġtensor board
Ġcon sequences
Ġcon stit
pro xim
pro xy
pro vided
lar ing
tf lite
arg ument
Ġpre qu
Ġpre pend
Ġpre ferred
Ġan cient
ir t
ir y
ir ical
ir ty
ir tight
Ġse gment
Ġse ven
Ġse amless
Ġim per
Ġim ply
Ġ7 64
Ġ7 93
Ġ7 45
Ġ7 40
Ġ7 09
Ġ7 65
Ġ7 48
Ġ7 31
Ġ7 49
Ġ7 41
Ġ7 4400
28 5
28 94
28 66
28 39
28 77
28 44
28 73
py dot
20 7
20 10
20 15
20 30
20 26
20 70
20 59
20 36
20 11
20 44
Ġat tra
96 20
96 35
96 64
96 78
96 93
96 97
96 76
96 99
96 38
96 66
96 70
96 21
96 36
96 85
96 11
96 23
96 07
96 52
96 42
96 01
96 58
96 43
96 71
96 875
port ing
Ġpa y
Ġpa ra
Ġpa radigm
Ġen counter
35 20
35 96
35 17
35 56
35 95
35 46
35 19
35 47
35 52
35 48
35 54
35 57
35 71
][ [
][ :,
25 2
25 00
25 90
25 14
25 78
25 26
25 99
25 38
25 84
25 80
25 52
25 60
25 92
25 51
100 1
100 2
100 4
100 6
100 7
100 8
num bers
Ġ8 28
Ġ8 20
Ġ8 98
Ġ8 56
Ġ8 75
Ġ8 07
Ġ8 005
Ġ8 1920
Ġlo se
Ġlo ves
17 00
17 90
17 17
17 24
17 56
17 04
17 76
17 99
17 22
17 03
17 06
17 83
98 00
98 18
98 28
98 17
98 98
98 13
98 94
98 99
98 27
98 38
98 39
98 36
98 60
98 74
98 03
98 83
98 69
98 49
ĠR E
ĠR egular
ĠR ather
ĠR MS
ĠR ange
Ġsu cc
Ġpro ve
Ġpro ud
Ġpro position
Ġpro tot
Ġ' /
... ',
Ġdef icit
In str
In verse
eg ressive
Ġ) [
64 6
64 10
64 50
64 96
64 24
64 08
64 84
64 85
64 05
64 92
64 73
64 71
64 82
64 61
64 69
arn er
flow er
ĠD r
ĠD ual
ĠD ensenet
ĠD irectory
ĠD QN
ĠD almar
Ġres izes
Ġres emb
Ġr x
Ġr id
Ġr ho
Ġr mse
Ġr isk
Ġus able
16 28
16 26
16 62
16 86
16 65
16 52
16 67
16 79
16 58
16 51
16 900
ĠN LP
ĠN OT
ĠN esterov
ĠN VID
Ġ" ./
ĠM on
ĠM ust
ĠM etrics
ĠM SE
ĠM aking
ĠM abus
ĠM erino
24 2
24 80
24 85
24 65
24 87
24 91
Ġcom posed
Ġcom paring
ge o
(\" |
(\" ...
ust ness
ĠF inal
ĠF use
ĠF uture
ĠF usion
ĠF actor
ĠF unctions
ud gment
Ġ10 17
Ġ10 94
Ġ10 40
Ġ10 52
Ġ10 625
14 27
14 85
14 43
30 12
30 15
30 64
30 14
30 78
30 99
30 38
30 23
30 48
30 71
30 61
78 3
78 9
78 28
78 96
78 24
78 97
78 08
78 76
78 99
78 46
78 38
78 19
78 86
78 44
78 48
78 63
78 79
78 54
78 57
78 69
Ġconv erge
Ġconv erts
]) (
class method
ĠP en
ĠP our
ĠP rop
ĠP hot
ĠP RO
ĠP etImages
ĠP illow
and dogs
56 8
56 00
56 25
56 56
56 75
56 34
56 59
56 36
56 52
56 53
56 67
56 31
56 71
Ġar Xiv
up And
26 8
26 35
26 24
26 97
26 66
26 37
26 59
26 05
26 73
26 81
93 64
93 30
93 93
93 99
93 38
93 37
93 19
93 70
93 72
93 61
93 83
Ġsh util
97 18
97 25
97 64
97 26
97 97
97 76
97 99
97 46
97 37
97 19
97 77
97 03
97 73
97 69
97 41
ĠL i
ĠL u
ĠL ast
ĠL ook
ĠL arge
13 97
13 33
13 40
13 19
13 36
13 85
13 44
Ġnot ed
Ġnot iced
Dense Layer
Dense Variational
com ing
com pat
com ponents
com pact
300 3
94 15
94 24
94 97
94 08
94 22
94 59
94 79
94 58
94 71
04 24
04 26
04 93
04 04
04 08
04 76
04 99
04 33
04 84
04 80
04 42
04 31
04 03
04 82
04 61
04 69
0000 000
ak ly
cl f
cl imate
Model Net
Ġ32 00
Ġ32 15
95 7
95 90
95 17
95 14
95 97
95 55
95 19
95 34
95 29
95 87
95 31
95 58
95 43
95 41
75 7
75 32
75 35
75 17
75 56
75 76
75 70
75 21
75 23
75 87
75 52
75 54
75 72
75 71
75 83
Conv Mixer
pa y
pa rameters
oc ular
oc iate
Ġ16 3
Ġ16 5
Ġ16 53
Ġde er
Ġde ad
Ġde mand
([ *
art works
08 0
08 9
08 18
08 15
08 28
08 20
08 93
08 94
08 33
08 46
08 40
08 37
08 19
08 70
08 39
08 36
08 86
08 09
08 44
08 67
08 48
08 92
08 02
08 42
08 54
08 58
08 73
08 91
08 69
76 2
76 50
76 18
76 90
76 15
76 17
76 16
76 24
76 80
76 88
76 68
76 31
76 06
76 61
76 89
rel y
rel ationsh
ber g
ber kel
99 10
99 50
99 15
99 28
99 24
99 30
99 97
99 22
99 29
99 999
Ġha p
Ġ64 000
dd dd
33 78
33 13
33 77
33 42
ĠIn ference
ĠIn stit
ĠG iven
ĠG ather
ĠG ithub
ĠG loVe
Ġint ensity
27 79
45 90
45 20
45 64
45 30
45 78
45 97
45 13
45 38
45 84
45 39
45 36
45 80
45 87
45 88
45 72
45 73
Ġma ss
ĠO R
ĠO ord
46 7
46 28
46 84
46 55
46 05
46 23
46 52
46 53
46 67
46 54
46 81
46 83
ĠE mp
ĠE urope
Ġ28 7
Ġ28 04
Ġun c
Ġun zip
Ġun iqu
Ġun sup
Ġun labelled
Ġun ordered
Ġun limit
Ġun ivers
62 28
62 35
62 16
62 24
62 13
62 75
ĠB en
ĠB ond
ĠB ott
ĠB oston
ĠB reakout
ĠB SDS
sh rinkage
so il
so ftsign
38 50
38 20
38 75
38 22
38 21
38 65
40 56
40 94
40 75
40 77
40 11
40 53
40 79
40 54
40 73
40 51
Ġper ce
Ġper cept
Ġper ceive
Ġ9 90
Ġ9 22
Ġind uctive
log istic
log ging
log cosh
work class
em ic
ib m
66 50
66 64
66 04
66 55
66 59
66 53
66 02
66 72
66 82
22 76
84 10
84 15
84 64
84 08
84 45
84 34
84 87
84 74
84 72
84 43
84 82
84 89
55 14
55 56
55 95
55 77
55 53
55 92
55 42
55 31
55 72
55 73
55 43
55 91
55 83
ast ing
37 10
37 64
37 56
37 04
37 05
37 48
ĠK night
for sale
Ġhe ights
19 98
19 26
rib le
70 50
70 90
70 15
70 16
70 56
70 70
70 29
70 60
70 31
70 71
Ġall reduce
34 16
34 78
34 04
34 19
34 36
34 85
34 88
34 48
34 92
34 73
34 43
34 82
Ġ20 9
Ġ20 21
Ġlog it
Ġlog arithmic
59 17
59 78
59 21
39 00
39 12
39 96
39 95
ant izer
Ġch em
Ġch ron
Ġch ild
200 0
200 8
Ġsim siam
de w
de er
resent ations
21 12
21 35
36 96
36 14
36 56
36 19
36 34
36 53
36 74
tr uck
tr ued
tr ived
Ġno ble
Ġno body
clud ed
86 7
86 32
86 20
86 98
86 33
86 85
86 05
86 88
86 53
86 57
86 81
86 83
Ġclassif er
Ġclassif iers
80 1
80 28
80 35
80 98
80 94
80 37
80 59
80 11
80 52
80 92
80 74
Ġsa f
Ġsa ying
77 18
77 90
77 32
77 64
77 30
77 78
77 26
77 93
77 99
77 92
77 42
77 74
77 71
85 7
85 50
85 18
85 98
85 99
85 70
85 21
85 85
85 23
85 43
85 83
ĠU RL
11 18
11 32
11 17
Train s
Train Monitor
05 18
05 20
05 56
05 76
05 99
05 38
05 21
05 36
05 85
05 23
05 48
05 74
05 72
05 73
05 81
05 89
05 49
ma c
09 32
09 24
09 94
Ġab lations
Ġinteg ration
47 10
47 96
47 35
47 24
47 04
47 46
47 29
ca NN
29 10
29 96
29 17
29 16
29 93
29 13
ĠW a
ĠW ind
ĠW ER
ne ck
Ġpass ion
sum maries
Ġadd ressed
Re al
Re cent
Re commended
SI M
SI NG
ong er
125 8
23 11
For est
07 35
07 17
07 75
07 45
44 96
44 98
44 56
44 93
44 70
44 36
44 77
44 11
44 47
65 10
65 20
65 98
65 76
65 22
65 34
65 39
65 47
65 73
87 20
87 26
87 13
87 75
87 46
87 39
87 47
87 92
co b
Ġprint ed
=[ '
Ġk B
Ġk size
Ġk ps
Ġk ne
tain ed
fit ting
Ġcor ner
Ġdist ribute
52 24
52 30
52 33
88 32
88 56
88 97
88 95
88 75
88 85
Ġsub r
Ġsub layers
Ġsub dir
Ġsub network
Ġsub stit
Ġfile d
Ġinitial izing
Ġ14 00
Ġ14 35
118 1
unt ing
Ġimplement ers
rit ish
ote Monitor
fn ames
ath works
53 14
53 99
53 66
Ar chitecture
ĠWe ights
ĠH istory
ĠH idden
ĠH ash
ĠH uber
ĠH orse
ĠH elper
Im plies
rop ic
rop Path
Ġqu iet
Ġqu adratic
ound ing
Mean while
head attention
67 10
67 24
67 04
67 95
67 48
48 00
48 11
Ġaugment ers
ĠV P
ĠV it
ĠV ideos
ĠV apor
ĠV isible
Ġj iwer
Ġ12 12
Ġ12 25
Ġ12 352
Ġ12 37
60 1
60 32
60 78
60 75
60 22
60 65
]] ),
PU T
ĠRe call
ĠRe view
ĠRe verse
ĠRe commended
63 50
63 32
63 93
63 13
63 46
Ġblock ing
92 32
92 98
92 14
92 26
92 97
92 95
92 75
Dataset Multi
Ġ18 9
Ġseed s
02 17
02 94
02 75
Le arner
ST ART
cent ers
ful ness
zip ped
176 1
IN P
IN T
Ġinter actions
Ġinter rupt
appl ication
Ġany more
68 20
68 78
68 75
68 62
68 55
68 70
68 11
68 87
68 31
optim ized
:// ",
respon ding
Ġco vers
Ġco efs
feature wise
Ġsee ing
Ġgener ic
128 1
Ġcons iders
uster ing
Ġrun nable
42 18
42 32
42 64
42 78
42 26
42 76
42 27
42 39
79 28
79 20
79 56
79 22
79 23
Ġfa il
Ġfa ils
74 30
74 93
74 27
74 36
Ġ30 1
Ġ30 3
Ġ30 90
31 12
03 12
03 35
03 64
03 94
03 45
03 46
01 14
01 30
01 93
01 97
01 19
Ġmovie Id
54 56
54 93
54 97
54 04
54 40
54 70
54 77
54 88
72 50
72 12
72 96
72 17
72 24
72 94
72 95
72 99
72 34
Ġcal lables
06 00
06 18
06 32
06 96
06 25
06 16
06 95
06 33
06 38
06 34
06 59
06 77
06 07
Ġgraph ics
Ġtrans actions
Ġtrans mitt
Ġman ager
Ġman aged
58 28
58 17
58 04
58 33
58 21
58 80
73 18
73 76
73 62
Ġcustom er
Con struct
ĠCom mon
ĠCom pact
ĠCom pleted
predict ing
43 17
43 16
43 78
57 18
57 46
57 23
Ġad van
Pre process
71 90
71 12
Ġlearn t
Ġ29 1
Ġpoint ers
82 96
82 25
82 24
82 240
ie ves
Ġcolor ed
Ġatt end
utor egressive
ĠCon dition
chit z
Ġca used
read s
read able
91 12
91 15
91 96
91 16
91 94
Ġread able
Ġread ily
313 3
313 4
313 9
St ar
St eps
St oring
Ġro ugh
Ġpart I
Ġpart ial
61 10
61 90
61 17
61 30
ĠModel ing
51 96
51 17
pol ates
Ġdi ctionaries
83 10
83 90
83 35
83 62
83 19
69 20
69 25
69 27
69 22
89 10
89 98
89 97
89 21
89 29
Ġ19 97
Ġdes ires
Ġdes irable
Ġ50 3
Ġ[[ "
49 10
49 12
49 17
49 24
49 56
49 29
Embedding s
te ch
ĠSe ed
ĠRes et
ĠRes ized
Ġfe els
Num Py
Ġreal ity
41 13
ES P
') `
wh itespace
Ġnormal izing
422 2
422 9
Ġent a
Ġent ities
Ġdire cted
dist ributions
Ġrel axes
Add itional
Ġrequ est
Global M
ĠDe cision
Ġcont ribution
graph y
ĠSt ack
ĠSt age
su is
su ally
Ġcheck ing
Average Pool
ĠTh anks
base ball
Ġ25 80
ĠInt eg
ĠInt egrated
points On
gen ds
Ġscal able
704 0
704 8
En able
Ġwrit es
ĠNe arest
ĠNe ws
ml d
ml inks
Ġsy mlinks
ted ly
493 3
pen ding
'] }\")
Ġser ving
Ġfit ted
ĠShape Net
exec ute
Val ue
Ġtem porary
\". <
ideo Capture
Ġag o
cond ition
Ġsoul s
Ġver ify
Ġver bosity
Ġtra de
rg anization
the y
lec un
Ġplot ted
Ġtransfer ed
idd le
ges ts
Ġdep artments
url retrieve
ĠTrain Monitor
Ġep isodic
Ġwant ed
Ġ[( '
ribut ing
ĠStr ategy
Ġund irect
Ġhead ers
Ġform ulation
Sparse TopKCategoricalAccuracy
Com pare
ĠAdd Noise
\"]) [
ins ert
190 6
resh er
Ġsp in
Ġzip ped
Ġ| ->
Ġ| âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ|
476 5
476 6
476 7
multi headattention
At Min
by tes
Ġexp ense
Ġexp resses
])) (
ĠJ a
ĠJ an
ĠJ udgment
commend erNet
Checkpoint Options
Loss AndErrorPrintingCallback
lecule Net
seq len
Th us
Th riller
Ġgreat est
Ġgreat ly
Data sets
Ġla w
Ġla nd
ĠPre fix
clo sing
ATUR E
Ġdel ic
inter polates
Ġoptim izing
Ġest ab
Ġact ress
amb d
Ġrest ecg
ĠDeep Speech
ĠDeep Chem
ĠDeep Mind
Ġvalid ate
Ġvalid ating
ĠEx amples
Ġcomp r
Ġcomp ressed
014 1
IG H
IG GER
Ġbuffer ing
586 0
DIM S
down sample
down sampling
Ġvisual s
ĠData Frames
gh t
Ġdid n
Ġestim ator
ĠUn its
ĠUn supervised
ĠUn ited
Ġlook ed
ĠPro ximal
ho ckey
Ġtr uck
Ġtr igger
Ġhand les
Ġgroup ed
eff iciency
ffect ively
Ġ160 10
Ġadapt ively
Ġpla n
Ġpla ne
ĠCustom Embedding
Ġquant ify
Ġcount ing
Ġups caling
010 1
010 9
094 2
An chor
An imation
CO LOR
Ra ise
ift i
ĠAd ds
ĠAd venture
Ġspirit ual
Ġcross ing
Ġcomm ands
Ġext ensive
Ġra re
Ġra rely
Ġ95 2
Ġ95 7
worker s
ik h
Ġcent ers
Ġlimit ations
ĠInput Layer
fre quencies
Ġrefer ences
Ġrefer enced
Ġgeneral ize
AD ME
disc ount
Ġ000 10
adapt ive
ĠAl ternatively
Ġident ifying
135 1
135 5
135 8
ĠTime History
ĠTime Distributed
Ġexperiment ation
078 7
Min MaxNorm
With Kernel
150 1
Ġ94 1
Ġ278 5
050 4
050 27
020 7
020 9
625 4
IC K
pixel s
117 7
117 8
SV RC
resnet v
ĠAt rous
ĠAt omFeaturizer
ĠSh i
ĠSh ow
ĠSh ould
filter ing
filter bank
814 0
814 1
814 5
dr ift
Ġfin ish
Ġfin etune
Ġcontext ual
Ġbehavi our
Ġrank ing
Ġdiv ide
Ġdiv ided
Ġintrod uction
875 1
AL L
Custom Dense
Custom Callback
Custom RNN
til de
Ġrec reate
096 7
720 4
IT IZE
pack age
ang les
omal y
ĠCo unter
proj ector
ĠPo isson
MAX LEN
hist ogram
Ġretrie ved
Log isticEndpoint
095 9
Ġter rible
Ġmini ature
837 2
928 7
be cause
Ġsat ur
Ġexec ut
ron ics
Ġwalk ing
No on
No Entailment
vers erial
Ġturn ing
Ġart istic
place holder
Ġsym metr
110 2
110 7
664 9
978 0
Ass ign
Per forms
Per ceiver
[' ',
pp m
Ġrema in
Ġstddev s
flatten ed
ĠSpecif ic
ĠSpecif ication
decay ed
480 3
={ }):
Wh ere
Wh ether
Ġop posed
Ġnam ely
Ġcertain ly
826 0
826 5
808 5
HT able
loc ator
Ġequ ally
Ġdetermin ing
ĠLog its
ĠLog ging
Ġmoral s
)` :
400 6
735 5
735 9
778 3
FF N
Ġsol ving
Ġsol ves
Ġinf l
ips chitz
ĠMo vies
ĠMo leculeNet
264 4
gre edy
schedul er
}. ".
Ġref resher
ĠCh ange
ĠRep ort
ĠRep lay
ĠBuild LS
thogonal Regularizer
027 0
764 4
764 5
764 8
Ġurl retrieve
Ġmult ivariate
Ġdec ide
Ġdec laring
Ġperm uted
Mixer Layer
064 3
064 7
064 9
026 0
026 1
026 2
026 3
026 5
026 9
055 9
430 2
430 4
859 2
Buil t
Buil ds
ÏĦ αι
ÏĦ ῶν
ĠÎ ¼
Ġdomain s
Ġlik elihood
Ġcorrect ed
ĠâĢ ĺ
Ġsystem atic
056 1
056 9
097 6
197 0
197 5
197 6
228 3
299 2
730 2
730 8
744 1
744 2
744 3
744 4
744 8
950 1
950 7
ĠY UV
Ġwon der
Ġprev ided
Ġassum ptions
028 2
235 9
547 4
897 7
876 3
876 8
Ne ighb
Ne RF
Text Line
Visual ization
Visual ise
Ġcategor ized
Ġput ting
threshold ed
................ ........
ĠQu otient
ĠMAX LEN
896 2
896 3
896 7
gu ide
á¼ ±
ĠZ h
ĠZ CA
ĠTarget s
ĠCor pus
Ġeng lish
Ġdiff ers
024 4
024 9
034 3
726 6
726 7
726 8
708 6
817 0
817 4
878 1
878 9
Mobile Net
Mobile ViT
Qu antizer
Ġsens ations
elect ronics
Ġ184 64
Ġdraw ing
Ġdraw back
Ġpr inc
Ġbal ance
Ġreason able
Ġbecom ing
ĠKey point
ĠKey Points
ĠKey pointsOn
Ġmultipl ies
Ġmultipl ying
Deep Speech
025 1
025 7
445 5
485 3
485 4
528 6
620 1
620 6
745 4
745 8
746 6
856 0
856 2
Class es
Class ifier
Cosine Decay
SAMP LING
α νÏĦ
Ġold peak
Ġclean ed
Ġ208 0
Ġcapt ures
Ġcapt cha
Progress Style
Ġtrunc ating
296 3
296 8
433 6
824 1
Pa irs
^{ -
cr er
hash ing
trans forms
chmar ks
Ġvis ually
itud es
Ġ133 7
Ġobser ving
ĠPath Like
ĠVQ VAETrainer
Ġdescrib es
066 1
220 7
428 0
437 4
750 4
728 3
756 2
756 3
756 5
850 2
877 7
WI DTH
aut os
Ġden o
Ġprom ote
Ġexpla in
pass ing
130 2
130 6
275 4
330 7
478 1
790 4
738 4
738 14
838 1
924 5
956 3
Display s
Display ing
Similarity Loss
ο νÏĦ
Ġhy drogen
Ġexport ed
cons cience
Ġdefinit e
Ġdefinit ions
Ġcompar es
Ġsubtle t
Ġsci ences
Ġadv anced
Ġframework s
Ġperson ality
Ġtriple ts
Ġencoura ges
037 1
037 3
378 7
550 4
550 6
737 7
845 2
845 9
990 1
990 4
Cl usters
Ïģ ά
Ġ197 0
Ġ197 632
Ġflow s
Ġport able
Ġbl ue
Ġbl itting
Ġtopo logies
Ġreplic a
ĠSub set
ĠSub classed
ĠMix ture
ĠGenerat ive
Ġmove ment
Ġsoft en
Ġsoft ware
065 8
686 9
776 0
DI SP
LI P
cam era
Ġá¼ IJλ
Ġsw ing
Ġsw ap
Ġ164 352
ising ly
ĠSha red
ĠDepth wise
ĠDownload ing
ĠInstance Normalization
ĠUC I
ĠUC R
Ġreprod uce
SEED S
Ġconsistent ly
TFOpL ambd
075 3
075 5
237 7
345 4
450 6
464 4
488 3
488 9
544 8
624 5
747 4
886 7
GP T
Linear Unit
Ġ262 272
Ġnor ms
Ġrecent ly
ĠSpatial Dropout
Inception ResNetV
ĠDoc s
ATO M
Ġcontem plation
ĠMasked LanguageModel
/*\")) [
/*\")) [:
233 4
364 3
520 1
656 9
676 1
864 7
deg ree
deg rees
sci py
á½ °
á½ ²
Ġsort ing
Ġfall ing
Ġeff ort
Ġ\"[ %
ĠIndex edSl
ĠLambda Callback
ĠLabel Encoder
ĠGated ResidualNetwork
ĠOr thogonalRegularizer
Ġcho ices
ĠMapping s
060 1
060 6
164 7
376 7
484 4
564 8
575 9
588 9
650 1
608 9
638 0
796 6
880 7
Mol FromSmiles
TNP ForwardFeedRegressionNetwork
rem ote
Ġ132 096
Ġhold out
ĠCl ustering
conf usion
ĠST EPS
ĠStop ping
Ġconsum ption
Ġang ry
Ġant i
cats anddogs
Extra ction
Ġattem pting
Ġmodif ying
Ġmodif ications
ĠSwin Transformer
'} ).
526 9
670 5
846 5
840 6
925 1
Rest ore
TE MPER
Ġspat ially
Ġ185 28
Ġfocus es
Ġdr ift
Ġinc ert
Ġinc ident
ĠID s
ĠAmeric ans
ĠMin imalRNNCell
ĠGC S
Ġsubtract ing
Ġminim izing
Ġfeel ing
Ġdiscuss ed
Ġapproxim ate
Ġcounter parts
Ġhost ed
Ġaccumul ated
Ġdenot ing
Ġdifficult y
438 1
486 9
587 9
626 8
604 9
797 2
Ele vation
RE FLECT
Shot Memory
]} :
sign atures
implement ation
Ġdat etime
Ġmon tage
Ġstra ightf
ĠSimple Dense
Ġstrat ified
Ġstrat ify
Ġstrat ification
Ġacceler ator
(\"/ \")[-
ĠFix Match
indic ating
ĠGener al
ĠBack propagation
Ġchallen ge
ĠUps ampling
Ġdistort ions
Ġjo int
Contrastive Loss
Ġndarray s
226 2
696 7
675 8
687 1
870 9
Index ing
Negat ive
Over view
cf g
ee cs
high res
iet z
ona h
Ġvir t
Ġ186 24
Ġcop ied
Ġinher iting
Ġwid gets
Ġple as
Ġprim ary
Ġprim arily
Ġbranch es
ili ary
Ġgr ids
consum ed
ĠAp pend
ĠMol GAN
convers ation
Config uration
Ġregister ed
333333333333 33
440 3
748 3
GC S
Gaussian Dropout
Gaussian Noise
mor phological
Ġthal ach
Ġfresh ly
Ġmed ical
Ġinstanti ated
Ġinstanti ating
Ġwa it
Ġhon est
Ġ524 4929
Ġexclud e
ĠStochastic Depth
ĠRest ore
Ġheav y
Ġcorru ption
Ġclon ing
Ġmanif old
Standard ize
Ġhandwrit ing
Ġcommun ity
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
Perform ance
ĠDistance Layer
Ġreflect ing
=>................ ........]
ĠTemporal Split
incomplete P
062 9
574 9
6100 1
Ada IN
BS R
Other wise
Sp anish
Sim CLR
Save Options
Sanitize Mol
Sanitize Fla
Under standing
`]( /
bi ased
grn s
sav eto
sav efig
ĠÏĦ ε
==> ...]
separ ated
Ġcult ure
Ġ[==== =>........................]
Ġ332 80
Ġ[======================== ==>...]
Ġ412 16
Ġconce aled
Ġattain s
Ġparagraph s
Ġcandid ate
Ġcandid ates
(\"- \")[
Ġdecom posing
decision s
Ġcollect ed
ĠWorker s
Point Net
ĠHo pe
ĠVariational AutoEncoder
Ġelimin ate
Ġelimin ates
Cont radictory
who le
ĠAnchor Box
Ġinfinit e
Ġinfinit ely
Ġdanger ous
Ġskew ed
396 3
996 6
Acc ording
Ann otation
Back upAnd
Cal culate
Mer ging
Piece wiseConstantDecay
Rem oteMonitor
Termin ateOn
bon nier
fi ction
mesh grid
pur pose
pick lable
athe ism
Ġvox el
Ġomit ted
Ġmit igated
Ġnib abel
Ġ[_ [\"
cycl es
Ġ424 97
Ġorgan ized
ĠSV M
Ġcontr al
Ġenfor cing
ĠRob ustness
Ġsug gests
ĠDis abling
ĠDep recated
ĠLocal ization
Ġintel lect
soft plus
emplo y
Reconstr uction
Ġsubst ion
Ġsuperf icial
Ġsuperst ition
Ġmethodo logy
Resized Crop
Ġadam atch
Ġdiss imilar
Ġdeploy ment
Positive Pairs
ĠClusters EntropyLoss
ĠControl s
Ġencaps ulate
Adapt ive
Dep recationWarning
Gu ide
Part Annotation
cry pt
fold ers
fiel d
house hold
jug ated
tin y
tri ple
xb crer
Ġtick et
Ġaux iliary
Ġsound s
cho ices
requ est
Ġvers a
Ġfri ctionless
Ġnone mpty
ama as
Ġrect angular
Ġhom epage
perm utation
Ġprem ise
Ġprecomput ed
Ġpopu la
Ġaccom plish
(\"---- \"
ĠFilter ing
Ġconvers ation
27485 72632
Ġunpack ing
Ġpert urbations
Ġindepend ence
Ġindivid ually
Ġchun ks
Ġoursel ves
Ġsubl imal
Ġnewsw ire
ĠRec ieve
Conditional GAN
Ġpartition ed
Ġdeserial ized
success ive
ĠDeepLab V
ĠChan nel
Ġsemant ics
Bytes List
Collect ing
Ġinspir ation
Ġdatat ype
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
Road ways
Ġillust ration
Ġrecalib rate
Bv ro
Big Transfer
Clear ing
ENCO DE
Fin ished
Hint on
Ioff e
Node Classifier
Rema inder
Scal ar
SAN ITIZE
Score Callback
SCA LE
Schem atically
Tem perature
Ups ampling
Vert ical
VER SE
bir th
brow n
kr iz
lle val
mide ast
motor cycles
âĪ Ĵ
Ġams grad
Ġdil ations
isot ropic
Ġphen omen
Ġblu eprint
Ġreinstanti ated
ĠTow ers
setLe vel
setting s
ĠCOV ID
ĠCategory Encoding
ĠASC II
Ġorthog onality
ĠSurve y
proxim ate
pydot print
Ġencounter ed
ĠRMS Prop
Instr uctions
ĠNVID IA
Ġ1094 82240
ĠPour suis
ĠProp agate
relationsh ip
berkel ey
ĠInstit ute
Ġunlimit ed
Ġchron ological
trued iv
trived Model
ĠHash ing
ĠVisible DeprecationWarning
DatasetMulti ShotMemory
Ġtransmitt ance
Ġrough ly
AveragePool i
ĠNews group
Ġundirect ed
AtMin Loss
WithKernel Regularizer
ĠBuildLS HTable
TextLine Dataset
Ġprinc ip
ĠKeyPoints Dataset
ĠKeypointsOn Image
DISP LAY
ĠIndexedSl ices
TEMPER ATURE
Ġstraightf orward
SanitizeFla gs
BackupAnd Restore
TerminateOn NaN
DatasetMultiShotMemory Sampler
! #
! \
! \")
" ]))
" ]).
" }.
$ %
$ ,
$ ++
% ).
% .\")
% ]`.
' >
' [
' ):
' }.
' ->
( .
( {'
( ...,
( \\
( âĢĸ
) \
) \".
* +
* \")
+ \",
, ,
, >
- %
- *.
. ",
. )),
. *\")
/ #
/ (
/ ')
0 18
0 300
0 352
0 11
0 255
0 382
0 186
0 974
0 640
0 137
0 326
0 980
0 765
0 126
0 981
0 329
0 355
0 358
0 983
0 211
0 134
0 139
0 360
0 181
0 321
0 991
0 363
0 183
0 292
0 1888
0 1331
1 98
1 19
1 157
1 641
1 937
1 938
1 986
1 138
1 985
1 192
1 160
1 137
1 941
1 936
1 328
1 133
1 989
1 131
1 983
1 951
1 134
1 327
1 939
2 10
2 15
2 17
2 98
2 16
2 93
2 125
2 782
2 907
2 138
2 320
2 192
2 175
2 137
2 168
2 146
2 133
2 126
2 989
2 159
2 983
2 947
2 953
2 342
2 139
2 321
2 952
2 948
2 109
3 10
3 98
3 16
3 125
3 176
3 128
3 999
3 938
3 151
3 320
3 166
3 974
3 102
3 169
3 960
3 987
3 324
3 142
3 153
3 936
3 127
3 328
3 161
3 126
3 982
3 144
3 933
3 107
3 155
3 159
3 170
3 103
3 191
3 942
3 951
3 177
3 178
3 122
3 621
3 356
4 10
4 100
4 26
4 27
4 352
4 157
4 189
4 128
4 469
4 123
4 258
4 186
4 152
4 325
4 175
4 160
4 955
4 988
4 166
4 248
4 974
4 102
4 640
4 185
4 906
4 324
4 142
4 961
4 247
4 944
4 111
4 133
4 992
4 131
4 405
4 159
4 353
4 145
4 369
4 103
4 329
4 358
4 949
4 357
4 139
4 178
4 952
4 272
4 162
4 991
4 354
4 179
4 968
4 173
5 10
5 98
5 300
5 500
5 200
5 77
5 125
5 79
5 73
5 187
5 123
5 180
5 938
5 979
5 160
5 955
5 166
5 640
5 368
5 960
5 984
5 906
5 326
5 142
5 961
5 153
5 328
5 146
5 402
5 992
5 165
5 170
5 981
5 329
5 358
5 942
5 357
5 139
5 177
5 108
5 148
5 359
5 308
6 352
6 34
6 59
6 157
6 391
6 784
6 999
6 151
6 320
6 979
6 160
6 248
6 368
6 987
6 136
6 906
6 240
6 958
6 184
6 989
6 940
6 170
6 145
6 103
6 355
6 942
6 178
6 143
6 939
6 148
6 934
6 354
6 179
6 141
6 308
6 621
6 1480
6 957
7 18
7 0000
7 352
7 23
7 938
7 151
7 320
7 985
7 955
7 248
7 640
7 158
7 906
7 961
7 980
7 111
7 161
7 902
7 003
7 989
7 933
7 344
7 981
7 145
7 946
7 983
7 178
7 272
7 991
7 363
7 270
7 279
7 392
8 93
8 13
8 62
8 352
8 500
8 157
8 29
8 125
8 189
8 187
8 256
8 641
8 180
8 999
8 101
8 138
8 320
8 979
8 985
8 325
8 175
8 248
8 102
8 167
8 188
8 158
8 984
8 941
8 182
8 153
8 980
8 184
8 133
8 105
8 126
8 165
8 940
8 344
8 159
8 946
8 211
8 323
8 134
8 939
8 952
8 122
8 162
8 991
8 109
8 351
8 361
9 10
9 12
9 35
9 14
9 13
9 94
9 352
9 200
9 21
9 128
9 101
9 156
9 320
9 979
9 985
9 175
9 169
9 960
9 941
9 182
9 324
9 961
9 161
9 168
9 902
9 105
9 126
9 981
9 942
9 231
9 321
9 177
9 931
9 954
9 272
9 108
9 122
9 354
9 308
9 270
9 279
9 173
9 109
9 351
: ;
: {
: ]:
; --
< =>
= %
= ())
= ...)
> .
> \",
? @
? \"
? --
? \",
? \"--
A A
A m
A p
A x
A ak
A LU
A utomobile
A fric
B en
B ag
B ST
B aseline
B ucket
B ird
B GR
B atc
B LOC
B etween
B IGGER
C I
C L
C P
C S
C b
C ar
C an
C IFAR
C ycle
C itations
C urve
C aption
C JY
C LIP
D i
D r
D el
D is
D ual
D ay
D ER
D ING
D Shape
D ark
D OU
D oing
D imension
D irectory
D DPG
E G
E t
E w
E ss
E st
E ase
E very
E AE
E ARNING
E ager
E stimation
E lse
F K
F P
F e
F our
F ox
F IF
F ashion
F ullModelCheckpoint
F rog
F unctions
F armHash
G S
G U
G c
G il
G IF
G oing
H A
H N
H O
H ence
H and
H ave
H yperpa
H DF
H Sp
I OU
I BU
J ap
J SON
J accard
J az
J FIF
J Gc
K S
K e
K ing
K nowledge
K ullback
K umar
K Jaz
L Y
L u
L v
L ion
L ow
L IN
L ink
L icense
L MAP
L ATION
L SVRC
L ipschitz
M Z
M w
M od
M ar
M ot
M and
M us
M uch
M athe
M DEmbedding
N eg
N ST
N eck
N ain
N odes
N CE
N LI
N OT
N aturally
O c
O f
O h
O ut
O uterLayer
O rganization
P M
P S
P rior
P AD
P apers
P riv
P EG
Q M
Q REmbedding
Q ao
R B
R Z
R el
R ad
R ow
R atings
R ather
R ED
R TS
R ethinking
R aggedTensor
R ectified
R DLogger
S D
S R
S y
S ingle
S mall
S kip
S igmoid
S eries
S peed
S erialization
S quadExample
S tereo
S caNN
S SIM
T L
T X
T im
T om
T un
T ri
T ES
T arch
T IAL
T oday
U h
U s
U sed
U npack
U EA
U ses
U Action
U sually
U CJY
V G
V Q
V an
V ocab
V ision
V AR
V SN
V IA
V apor
V ideoCapture
V ALU
W u
W or
W est
W ind
W Le
W IN
W indow
W ER
W Mol
W riter
W armUpCosine
W rapping
X S
X ent
X IA
X EAE
X XS
Y F
Y OL
Y Cb
Z ebra
Z IP
[ (
[ [-
] ][
] ",
] \"]
] \"],
^ _
_ "
_ /
_ [
` {
` ).
a qu
a per
a ff
a vailable
a ret
a veraging
a udios
a unting
b b
b d
b k
b m
b la
b id
b ly
b and
b rel
b lob
b eck
b reak
b abilistic
b ij
b enchmark
b lan
b etween
c m
c it
c un
c val
c ity
c lock
c and
c oc
c ases
c ached
c uDNN
c redit
c é
d h
d an
d om
d transpose
d cnn
d pi
d vision
d ilated
d ensity
d pr
d uplic
d ouble
e u
e z
e al
e en
e con
e coder
e ase
e ks
e chn
f z
f el
f am
f ur
f if
f ect
g f
g i
g l
g r
g on
g ar
g ens
g ating
g ca
g pus
g MLP
g ym
h ar
h ep
h ic
h ol
h ence
h its
h our
h ide
h ari
h ert
h df
h fa
h ours
h stack
h ancing
i Y
i at
i ker
i ot
i us
i ated
i ept
i pob
j s
j am
j unction
j ie
j onah
j brown
j fif
k g
k es
k pt
k ap
k able
k ay
l w
l ate
l ive
l ies
l ated
l ong
l ery
l ined
l filter
m d
m r
m v
m ic
m ust
m end
m pos
m atched
m irrored
n H
n b
n s
n x
n st
n ms
n ce
n est
n model
n oc
n ay
n ason
n lin
n eath
n ifti
n ietz
n Today
o q
o z
o ss
o ct
o cc
o id
o ue
o ken
o BE
o king
o ptionally
o ader
p b
p an
p id
p ens
p rom
p and
p print
p enet
p ression
q m
r h
r m
r r
r v
r se
r ig
r ly
r ides
r uction
r uth
r ately
r strip
r dA
r fc
s a
s ion
s un
s low
s ures
s ri
s ible
s wer
s ensitive
s aving
s alt
s pecial
s cape
s amplers
s che
t el
t re
t ens
t un
t ity
t end
t ely
u er
u ion
u able
u ated
u cs
u las
v c
v in
v et
v ity
v type
v ations
v ated
v ides
v ous
v ob
v olutional
v lin
v Qao
w l
w y
w in
w es
w ing
w he
w est
w age
w ish
w ider
w ilderness
w ald
w HSp
x i
x min
y o
y p
y th
y our
y pes
y au
y stem
y ching
y uv
z W
z y
z es
z eg
z sh
z ca
z ier
z oid
| }
} :
} \
} ][
} ].
} \")(
} ]:
} ')
} :\")
± :
º :
¾ ε
à ´
à Ń
Î ³
Î ·
Î º
Ï ĩ
â Ļ¥ï¸ı
Ġ ;
Ġ Ã
Ġ ing
Ġ ur
Ġ ].
Ġ kw
Ġ eps
Ġ utils
Ġ Ïĥ
Ġ ðŁ
Ġ á¿
Ġ igrads
Ġ ðŁĵ
Ģ \
ij Ł
__ ():
__ .__
in st
in form
in ity
in format
in cre
in son
in verted
in variant
Ġt v
Ġt or
Ġt ion
Ġt it
Ġt an
Ġt ul
Ġt ight
Ġt we
Ġt ray
Ġt end
Ġt uned
Ġt oday
at i
at ible
at Lib
er d
er ging
er Table
al icy
al oader
on y
on ge
Ġ- --------------------------------
or k
or er
or al
or is
or ity
or ry
or atory
en ot
en ly
Ġa mb
Ġa ud
Ġa head
Ġa va
Ġa wa
Ġa utom
Ġa veraging
Ġa utomobile
Ġa cycl
lo de
lo pen
es per
Ġth es
Ġth re
Ġs s
Ġs on
Ġs en
Ġs ad
Ġs ensor
Ġs ight
Ġs ap
Ġs out
Ġs pec
Ġs ps
Ġs ca
Ġs pare
Ġs word
Ġs quee
Ġs ensitive
Ġs oci
Ġs sim
Ġs anity
Ġs coped
Ġs orry
ra cker
ra ged
ra jp
ra ses
el p
el low
el lar
el son
el ete
el vin
Ġthe er
ch r
ch ow
ch air
ch ester
re ed
re tra
re code
re ative
ut ations
ing Model
st ing
st ich
st ub
st ery
st ikh
la ps
la unch
la nning
Ġ= \",
Ġv a
Ġv o
Ġv q
Ġv ent
Ġv il
Ġv oc
Ġv ign
Ġv ocabular
Ġv idual
Ġv oice
Ġv ict
Ġv ects
se p
se at
it ess
it ure
it ual
it ert
it ched
it Distance
im s
im y
im ic
im inary
im ates
im pose
im iter
Ġ1 100
Ġ1 200
Ġ1 999
Ġ1 156
Ġ1 000000
Ġ1 974
Ġ1 102
Ġ1 960
Ġ1 333
Ġo t
Ġo vers
\" ([
\" ',
\" )))
\" [{
Ġf c
Ġf r
Ġf er
Ġf al
Ġf lo
Ġf ate
Ġf urn
Ġf ran
Ġf allback
Ġf path
Ġf em
Ġf ath
Ġf use
Ġf und
Ġf lower
Ġf ron
Ġf unct
Ġf ool
Ġf using
Ġf ood
Ġf oot
Ġf uz
Ġc m
Ġc le
Ġc ud
Ġc ard
Ġc red
Ġc ert
Ġc rim
Ġc pu
Ġc ru
Ġc redit
Ġc kpt
Ġd m
Ġd t
Ġd am
Ġd ce
Ġd ive
Ġd ie
Ġd read
Ġd ream
Ġd ang
Ġd edu
Ġd types
Ġd ouble
Ġd lopen
le x
le ctual
le gends
le Neck
od ed
Ġm b
Ġm p
Ġm as
Ġm il
Ġm one
Ġm ist
Ġm ir
Ġm isc
Ġm ons
Ġm irrored
Ġm ild
Ġm edia
Ġm ale
Ġm oments
Ġm utual
Ġm ols
Ġm iddle
Ġm imic
po t
po ist
Ġin ch
Ġin for
Ġin cer
Ġin stantiates
Ġin ital
Ġin jects
ar p
ar es
ar re
Ġw ro
Ġw ist
Ġw ind
Ġw ished
Ġw ife
Ġw ool
Ġw ilderness
Ġw raps
Ġw ilf
ed g
ed ip
ct ime
is dir
Ġp t
Ġp al
Ġp ric
Ġp rel
Ġp us
Ġp ng
Ġp ars
Ġp unch
Ġp icks
Ġp rices
Ġp endulum
Ġp orn
Ġp mi
Ġb a
Ġb h
Ġb n
Ġb ra
Ġb iz
Ġb ef
Ġb its
Ġb uff
Ġb read
Ġb by
Ġb oy
Ġb reeds
Ġb bx
Ġb orrow
Ġb ritish
an n
an om
an ding
an ese
an iel
00 4
00 18
00 32
00 16
00 14
00 76
00 33
00 62
00 19
00 70
00 59
00 87
00 67
00 48
00 73
00 43
00 57
et on
et ed
et ter
et ition
et te
ro un
ro ub
ro ute
ro user
Ġto ol
Ġto ward
Ġto ugh
Ġto ld
Ġto mor
ent a
ent h
ent al
ent ication
ent ially
ent irely
Ġ( %
Ġ( .
Ġ( >
Ġ( ((
Ġ( _,
iz atio
as cal
as Net
Ġ2 93
Ġ2 200
Ġ2 784
Ġ2 949
Ġn W
Ġn in
Ġn ic
Ġn eat
Ġn ight
Ġn ud
Ġn ative
Ġn av
ep ar
Ġ[ *
Ġ[ +
pe ctive
pe ople
pe zoid
ic o
ic z
ic an
ic ker
ic ine
nd o
layer normal
ag ing
ag ue
ag aret
ur ating
ur bs
ur ious
um h
um ation
um inance
ker board
Ġe g
Ġe ar
Ġe ight
Ġe arn
Ġe mp
Ġe go
Ġe uclidean
ha ped
ig e
ig ation
ig ating
Ġ3 12
Ġ3 64
Ġ3 95
Ġ3 38
Ġ3 86
Ġ3 09
Ġ3 53
Ġ3 48
Ġ3 43
Ġ3 57
Ġ3 81
Ġ3 83
Ġ3 89
Ġ3 49
Ġ3 180
Ġ3 111
id ends
om ing
om ed
om an
om atic
Ġ[================ ===>........
============ ==
Ġre b
Ġre con
Ġre ap
Ġre ver
Ġre ign
Ġre compile
Ġre cor
Ġre trained
Ġre comm
Ġre vis
Ġre act
Ġre ported
Ġre uses
Ġre jects
Ġre cover
Ġre ceiving
ens ate
ens ible
ens ively
Ġfor th
Ġfor ec
Ġfor wards
Ġfor cing
Ġfor tun
ad vanced
Ġis ol
Ġis ot
ĠT i
ĠT en
ĠT ot
ĠT ran
ĠT oo
ĠT ermin
ĠT imeseries
ĠT racing
ĠT ouvron
ĠT echn
ĠT ruth
Ġtf io
iv er
iv ated
iv ative
ol t
ol on
ol ly
ol ten
ol ling
ol stikh
Ġmodel ling
pl is
pl oring
Ġg lo
Ġg one
Ġg all
Ġg rate
Ġg oogle
Ġg ithub
ul al
ul ing
ul ent
ul ia
res idence
res ources
res haped
() ;
() [-
() *+
Ġst re
Ġst ran
Ġst ft
Ġst der
Ġst ick
Ġst itch
Ġst reeds
Ġst itched
ot y
ot on
ot ed
ot os
ot ely
ot land
orm at
if us
if iers
.. ...]
igh er
Ġ# ####
ef ow
ef its
ef fnet
Ġdata frames
Ġ6 28
Ġ6 96
Ġ6 25
Ġ6 98
Ġ6 56
Ġ6 13
Ġ6 04
Ġ6 0000
Ġ6 62
Ġ6 84
Ġ6 86
Ġ6 80
Ġ6 77
Ġ6 11
Ġ6 09
Ġ6 29
Ġ6 000
Ġ6 07
Ġ6 60
Ġ6 74
Ġ6 31
Ġ6 01
Ġ6 06
Ġ6 71
Ġ6 82
Ġ6 89
Ġ6 121
Ġ6 144
Ġ6 211
Ġ6 172
Ġ6 279
he art
un batch
un ified
un freeze
Ġ4 96
Ġ4 35
Ġ4 30
Ġ4 97
Ġ4 13
Ġ4 27
Ġ4 45
Ġ4 62
Ġ4 40
Ġ4 84
Ġ4 85
Ġ4 88
Ġ4 67
Ġ4 74
Ġ4 58
Ġ4 49
Ġ4 41
Ġ4 9216
ex act
ex cluded
ex ican
di ode
ab out
ab list
set up
Ġy b
Ġy i
Ġy s
Ġy es
Ġy max
Ġy min
Ġy cb
10 25
10 16
10 30
10 26
10 99
10 45
10 62
10 55
10 85
10 11
10 29
10 60
10 71
10 51
10 89
Ġbe er
Ġwith oue
th ese
th irty
50 5
50 6
50 20
50 26
50 94
50 38
50 40
50 84
50 55
50 77
50 47
50 48
50 60
50 63
50 42
50 74
50 58
50 71
50 83
50 89
50 49
qu is
Ġas ymmetric
to f
to y
Ġh ic
Ġh am
Ġh ical
Ġh ers
Ġh us
Ġh ous
Ġh ired
Ġh uber
Ġh ousing
Ġh uge
int ing
Ġ\" \"))
Ġ\" )[-
Ġ\" ¿
ist ed
ist ical
ist ers
ist ically
ist emic
ers on
Ġwe bs
Ġwe ather
Ġwe aker
Ġ5 90
Ġ5 94
Ġ5 55
Ġ5 37
Ġ5 77
Ġ5 87
Ġ5 88
Ġ5 74
Ġ5 58
Ġ5 71
Ġ5 61
Ġ5 69
Ġ5 248
Ġ5 231
Ġ5 943
ial og
ial Constraint
ĠI NN
ĠI NI
ĠI NP
ĠI LSVRC
ĠI rv
pt ed
pt ian
pt cha
par ent
lab V
val ent
val ence
eat her
Ġex cess
Ġex cl
Ġex tern
Ġex cell
Ġex change
Ġex posing
Ġex amine
18 10
18 35
18 14
18 04
18 99
18 40
18 37
18 29
18 87
18 48
18 57
Ġx y
Ġx max
Ġl f
Ġl i
Ġl y
Ġl on
Ġl es
Ġl ate
Ġl if
Ġl ies
Ġl ie
Ġl ord
Ġl ingu
Ġl uminance
)) ]
)) ),
)) ).
)) ])
ran ged
ran nay
90 18
90 15
90 28
90 35
90 64
90 16
90 26
90 95
90 84
90 21
90 85
90 44
90 52
90 79
90 54
90 58
90 71
90 81
per ceiver
per haps
per impose
12 50
12 28
12 20
12 17
12 24
12 45
12 46
12 62
12 34
12 85
12 47
12 23
12 65
12 48
12 31
12 01
12 72
12 06
12 73
12 69
12 41
ĠC ell
ĠC hen
ĠC lean
ĠC lip
ĠC apt
ĠC AD
ĠC els
ĠC ensus
ĠC rowd
con c
con sider
con lleval
ou rable
ou raged
Ġwh om
label ing
label size
ow ed
ĠA ust
ĠA war
ĠA ctivity
ĠA part
ĠA irplane
ĠA RT
ĠA irtight
ĠA SR
ĠA lex
Ġon d
Ġon ely
Ġon wards
Ġor g
Ġor ding
Ġor ient
15 50
15 35
15 25
15 30
15 26
15 97
15 94
15 95
15 99
15 40
15 59
15 39
15 80
15 47
15 29
15 48
15 92
15 42
15 31
15 58
15 43
15 61
15 51
15 89
pre pared
32 00
32 50
32 18
32 32
32 16
32 26
32 95
32 45
32 62
32 40
32 55
32 19
32 21
32 80
32 11
32 29
32 07
32 87
32 60
32 79
32 31
32 54
32 43
32 91
ĠS um
ĠS ex
ĠS ame
ĠS ign
ĠS mooth
ĠS ignal
ĠS imilar
ĠS PO
ĠS ets
ĠS UM
ĠS quared
ĠS ensitive
ĠS caled
ĠS erialization
ĠS anitize
ĠS ometimes
ĠS tereo
ĠS coped
ĠS NLI
ĠS epar
\") ]
Ġtensor rt
Ġcon tention
Ġcon ference
Ġcon ll
Ġcon junction
pro ach
pro file
pro ved
pro gram
lar d
=\" \")
ke ep
tf ul
arg o
arg er
Ġpre g
Ġpre ction
Ġpre de
Ġpre text
Ġpre cise
Ġan imation
Ġwill ing
ir hos
Ġse gregate
ap pe
Ġim pose
Ġim read
Ġim ports
Ġim db
Ġim plies
Ġim plis
Ġ7 90
Ġ7 96
Ġ7 35
Ġ7 17
Ġ7 24
Ġ7 78
Ġ7 97
Ġ7 46
Ġ7 22
Ġ7 21
Ġ7 87
Ġ7 52
Ġ7 60
Ġ7 63
Ġ7 79
Ġ7 74
Ġ7 58
Ġ7 43
Ġ7 57
Ġ7 3856
28 8
28 90
28 32
28 28
28 14
28 30
28 08
28 76
28 99
28 62
28 37
28 67
28 60
28 63
28 02
28 01
28 06
28 71
28 91
28 61
28 69
28 89
28 480
py pi
---- -
20 8
20 9
20 90
20 46
20 66
20 77
20 65
20 53
20 60
20 73
20 57
20 71
20 61
20 69
20 89
Ġat ol
Ġat mo
Ġat least
96 3
96 10
96 18
96 98
96 04
96 46
96 62
96 55
96 37
96 19
96 09
96 47
96 29
96 44
96 48
96 79
96 03
96 73
port antly
pat tern
Ġpa ram
Ġpa cker
Ġen ow
Ġen jo
Ġen closing
Ġen hancing
35 10
35 50
35 18
35 90
35 12
35 15
35 98
35 16
35 78
35 93
35 33
35 84
35 70
35 59
35 86
35 77
35 44
35 53
35 73
35 43
35 91
35 49
ver al
][ :-
25 1
25 4
25 18
25 25
25 98
25 97
25 95
25 45
25 46
25 62
25 40
25 34
25 77
25 11
25 47
25 29
25 23
25 44
25 74
25 57
25 91
25 61
25 89
Ġ8 18
Ġ8 64
Ġ8 14
Ġ8 30
Ġ8 93
Ġ8 04
Ġ8 99
Ġ8 33
Ġ8 55
Ġ8 70
Ġ8 59
Ġ8 23
Ġ8 65
Ġ8 48
Ġ8 42
Ġ8 74
Ġ8 54
Ġ8 72
Ġ8 81
Ġ8 61
Ġ8 51
Ġ8 89
Ġ8 2048
Ġ8 863
Ġlo l
17 50
17 30
17 93
17 46
17 62
17 38
17 70
17 34
17 77
17 09
17 65
17 87
17 63
17 74
17 58
17 71
able Log
98 50
98 20
98 76
98 45
98 46
98 62
98 66
98 86
98 29
98 52
98 63
98 73
98 43
98 57
we ek
we eks
ĠR o
ĠR et
ĠR ad
ĠR eg
ĠR ound
ĠR ept
ĠR outer
ĠR DLogger
ĠR enew
ĠR otate
ĠR TX
Ġsu dd
Ġsu fficient
Ġpro po
Ġpro te
Ġpro of
Ġpro ceeds
ampl itude
Ġ' <
Ġ' ]
Ġ' _
Ġdef ect
Ġdef ici
Ġpo wers
Ġpo ison
Ġpo lynomial
ff old
In ter
In side
In volutional
eg round
ri ed
ri ef
ri sed
ri ched
ri Vox
ri kes
Ġ) [:-
64 32
64 20
64 98
64 78
64 56
64 26
64 95
64 76
64 27
64 62
64 37
64 19
64 36
64 23
64 48
64 60
64 02
64 68
64 31
64 72
64 83
64 41
ĠD E
ĠD ate
ĠD type
ĠD os
ĠD ec
ĠD ream
ĠD og
ĠD EP
ĠD rops
ĠD ots
ĠD escription
ĠD ummy
ĠD PG
ĠD rama
ĠD EC
ĠD DPG
ĠD ifferent
ĠD ropPath
ĠD ALL
ĠD enot
ĠD elete
ĠD ialog
Ġres p
Ġres uming
Ġr h
Ġr m
Ġr it
Ġr ation
Ġr ig
Ġr if
Ġr te
Ġr ules
Ġr enew
ach ing
Ġle g
Ġle ts
Ġle tt
Ġle aving
Ġle ga
ext entsion
=( ...)
Ġ+ ++
its ki
Ġoutput ting
ip ation
16 12
16 17
16 13
16 04
16 08
16 76
16 99
16 33
16 27
16 70
16 05
16 000
16 23
16 88
16 60
16 92
16 57
16 82
16 61
16 357
ĠN on
ĠN ame
ĠN ets
ĠN OISE
ĠN VP
ĠN aN
ĠN atural
cess arily
Ġ" .
Ġ" \
ĠM a
ĠM ode
ĠM AR
ĠM ixed
ĠM emory
ĠM uch
ĠM ark
ĠM akes
ĠM ultimodal
ĠM omentum
ĠM osMedData
ĠM DEmbedding
ĠM athworks
ĠM RB
ĠM exican
24 18
24 17
24 24
24 30
24 56
24 26
24 75
24 08
24 76
24 55
24 39
24 47
24 48
24 60
24 63
24 01
Ġal s
Ġal t
Ġal one
Ġal ter
Ġal ike
Ġal location
Ġacc ord
vi ations
Ġcom plement
Ġcom pla
Ġcom ments
Ġcom position
Ġcom edy
ge Network
(\" <
(\" {}\".
(\" ~\"),
ĠF ound
ĠF etch
ĠF latten
ĠF older
ĠF ILENAMES
ĠF oot
ĠF armHash
ĠF ortunately
ĠF LY
ric ity
Ġ10 96
Ġ10 64
Ġ10 66
Ġ10 47
Ġ10 48
Ġ10 63
Ġ10 89
Ġ10 41
init ion
14 00
14 32
14 20
14 24
14 30
14 56
14 93
14 33
14 40
14 84
14 37
14 19
14 21
14 47
14 29
14 44
14 65
14 88
14 67
14 63
14 79
14 01
14 72
14 57
14 83
30 4
30 7
30 18
30 35
30 56
30 13
30 62
30 66
30 84
30 39
30 44
30 52
30 53
30 92
30 42
30 54
30 43
30 82
78 00
78 10
78 32
78 25
78 98
78 64
78 16
78 14
78 30
78 26
78 75
78 33
78 62
78 59
78 39
78 77
78 05
78 29
78 23
78 65
78 52
78 53
78 67
78 60
78 06
78 71
78 81
78 51
Ġconv er
ind x
ind ustry
]) `
]) \",
]) ])
]) }\")
]) [:,
ĠP e
ĠP r
ĠP ol
ĠP ack
ĠP adding
ĠP ert
ĠP op
ĠP ract
ĠP ick
ĠP erm
ĠP arsing
ĠP NEUMONIA
ĠP lan
ĠP ascal
56 18
56 90
56 12
56 24
56 30
56 97
56 04
56 76
56 99
56 33
56 62
56 84
56 55
56 21
56 86
56 77
56 11
56 23
56 65
56 87
56 88
56 03
56 91
56 61
56 51
56 89
Ġar ithm
Ġar ranged
ution s
ram etric
26 7
26 10
26 18
26 15
26 14
26 30
26 33
26 27
26 39
26 85
26 09
26 23
26 52
26 31
26 06
26 82
conv olve
93 50
93 96
93 14
93 66
93 77
93 85
93 48
93 43
93 324
mo unt
mo ons
Ġsh rink
Ġsh oot
97 7
97 32
97 28
97 20
97 35
97 17
97 16
97 24
97 14
97 13
97 95
97 75
97 08
97 36
97 47
97 23
97 65
97 53
97 48
97 72
97 58
97 51
97 49
end ez
Ġne ither
ĠL im
ĠL ive
ĠL imit
ĠL ater
ĠL ooks
ĠL EARNING
13 00
13 50
13 90
13 12
13 32
13 98
13 14
13 78
13 13
13 34
13 77
13 65
13 88
13 67
13 68
13 81
13 69
13 49
Ġnot ion
com ment
com pound
300 4
94 90
94 20
94 96
94 35
94 64
94 56
94 04
94 75
94 45
94 40
94 84
94 37
94 19
94 86
94 23
94 48
94 74
94 01
94 43
94 57
94 51
94 83
94 69
04 2
04 00
04 10
04 90
04 12
04 32
04 25
04 17
04 98
04 13
04 95
04 27
04 45
04 46
04 59
04 11
04 05
04 23
04 07
04 52
04 48
04 63
04 68
04 58
04 81
04 83
04 49
def init
back ward
ak a
Ġ32 3
Ġ32 78
Ġ32 985
95 10
95 50
95 35
95 26
95 95
95 33
95 45
95 59
95 21
95 85
95 48
95 54
95 71
95 91
95 81
75 9
75 50
75 12
75 96
75 64
75 16
75 14
75 93
75 97
75 99
75 33
75 45
75 40
75 55
75 34
75 39
75 86
75 47
75 74
75 31
75 58
75 91
75 81
75 41
Conv L
Conv ersion
Conv erter
pa st
pa rameter
oc r
Ġ16 64
Ġ16 26
Ġ16 33
Ġ16 38
Ġ16 86
Ġ16 06
Ġde v
Ġde ca
Ġde vel
Ġde man
Ġde ceived
Ġde codes
Ġde viations
art work
art ificial
08 1
08 2
08 8
08 16
08 14
08 26
08 99
08 27
08 45
08 62
08 22
08 59
08 80
08 77
08 85
08 87
08 31
08 43
08 41
red uced
76 3
76 7
76 32
76 20
76 25
76 64
76 14
76 56
76 94
76 76
76 33
76 66
76 22
76 37
76 59
76 11
76 65
76 87
76 53
76 67
76 79
76 54
76 72
76 58
76 73
76 71
76 82
76 81
len g
len beck
Ġ{ (
rel ax
ber y
ise conds
âĸĪâĸĪâĸĪâĸĪ |
âĸĪâĸĪâĸĪâĸĪ âĸĪ|
99 90
99 35
99 19
99 11
99 23
99 166
Ġha b
Ġha ven
Ġ64 3
Ġ64 7
Ġ64 0000
Ġ64 128
33 1
33 10
33 35
33 17
33 14
33 97
33 45
33 46
33 19
33 70
33 36
33 47
33 87
33 48
33 79
33 72
33 73
33 43
33 91
33 83
ĠIn ject
ĠIn fo
ĠIn come
ĠG r
ĠG u
ĠG ram
ĠG LU
ĠG ELU
ĠG reat
Ġint act
27 1
27 50
27 18
27 25
27 16
27 24
27 30
27 26
27 97
27 13
27 75
27 33
27 46
27 19
27 39
27 21
27 29
27 44
27 71
27 49
27 9706
45 1
45 00
45 10
45 32
45 96
45 93
45 75
45 76
45 99
45 27
45 45
45 46
45 37
45 34
45 59
45 85
45 11
45 000
45 23
45 44
45 79
45 54
45 43
45 41
Ġmo bilenet
ĠO ption
ĠO FF
ĠO ptionally
ĠO UAction
Ġ128 00
46 1
46 00
46 18
46 17
46 64
46 24
46 78
46 56
46 97
46 08
46 99
46 38
46 22
46 70
46 59
46 39
46 77
46 11
46 88
46 60
46 68
46 31
46 72
46 57
os ports
str uction
str onom
The Day
us c
us ual
us ma
ĠE nd
ĠE ps
ĠE xt
ĠE ven
ĠE SP
ĠE lse
ĠE ffectively
img aug
Ġ28 00
Ġ28 78
Ġ28 33
Ġ28 36
Ġ28 74
Ġ28 01
Ġ28 72
Ġ28 73
Ġ28 81
Ġun ion
Ġun amb
Ġun compiled
Ġun like
Ġun ify
Ġun clear
Ġun mak
Ġun sign
Ġun optimized
Ġun biased
Ġun usual
constan ts
62 10
62 32
62 20
62 17
62 14
62 78
62 33
62 36
62 31
62 91
ĠB est
ĠB log
ĠB ias
ĠB io
ĠB ased
ĠB igger
ĠB BB
ĠB esides
ĠB irds
ĠB eyond
ĠB YOL
sh allow
Net any
so on
so le
38 6
38 10
38 15
38 35
38 17
38 14
38 26
38 93
38 99
38 62
38 40
38 84
38 34
38 59
38 80
38 09
38 23
38 63
38 92
38 54
38 91
38 61
38 49
38 41
40 12
40 32
40 28
40 64
40 16
40 13
40 33
40 37
40 34
40 59
40 63
40 31
40 72
40 69
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĊ
Ġpl ug
Ġpl atform
Ġpl ateau
Ġ9 10
Ġ9 96
Ġ9 56
Ġ9 97
Ġ9 95
Ġ9 23
Ġind ent
Ġind ign
Ġind uces
Ġind ustry
352 1
352 2
352 9
log level
log likelihood
work ing
500 8
500 9
500 096
ta stic
isc rowd
ib ly
66 15
66 32
66 28
66 17
66 24
66 30
66 26
66 93
66 94
66 76
66 62
66 84
66 36
66 86
66 80
66 77
66 09
66 52
66 74
66 03
66 01
66 71
66 51
22 00
22 50
22 12
22 15
22 26
22 93
22 37
22 29
84 32
84 96
84 17
84 56
84 97
84 95
84 99
84 27
84 40
84 22
84 37
84 86
84 11
84 23
84 73
84 464
55 50
55 32
55 96
55 25
55 64
55 30
55 99
55 45
55 34
55 39
55 80
55 85
55 11
55 47
55 29
55 23
55 44
55 89
55 49
55 41
Ġi i
Ġi py
Ġi ob
Ġwor se
ph one
ph istic
ph otos
37 3
37 7
37 90
37 15
37 28
37 35
37 17
37 78
37 94
37 75
37 46
37 39
37 07
37 44
37 92
37 31
37 06
37 41
ĠK NN
ĠK hos
ĠK ullback
ĠK ICK
ĠK elvin
Ġimport ing
Ġimport lib
ition ers
ition Padding
Ġget attr
ari o
ari ables
Ġhe at
Ġhe ur
19 90
19 12
19 32
19 96
19 13
19 11
19 29
70 5
70 9
70 12
70 20
70 96
70 14
70 30
70 26
70 99
70 62
70 66
70 22
70 21
70 77
70 11
70 74
70 58
70 69
70 710
Ġ11 13
34 7
34 8
34 50
34 18
34 17
34 93
34 95
34 99
34 33
34 27
34 38
34 34
34 31
34 71
34 91
Ġ20 12
Ġlog p
Ġlog ical
Ġlog det
59 10
59 50
59 28
59 96
59 35
59 30
59 94
59 27
59 11
59 29
Ġmax izing
mat ic
mat ical
mat show
39 20
39 25
39 98
39 16
39 24
39 14
39 30
39 78
39 13
39 94
39 27
39 21
39 29
ant ing
ant ity
Ġch est
Ġch ec
Ġch ristian
200 2
200 3
Ġsim ul
Ġsim CLR
Ġsample wise
de vices
Ġbet o
resent ing
21 15
21 99
36 32
36 98
36 24
36 97
36 62
36 84
36 59
36 39
36 52
36 72
36 57
36 51
tr s
tr imes
clud e
86 1
86 28
86 25
86 24
86 30
86 26
86 97
86 75
86 08
86 99
86 37
86 34
86 59
86 36
86 80
86 07
86 87
86 52
86 72
86 58
86 73
Ġclassif ying
80 6
80 50
80 90
80 64
80 24
80 78
80 93
80 75
80 66
80 55
80 34
80 21
80 77
80 65
80 69
80 1346
Ġsa fer
Ġsa ys
77 00
77 15
77 35
77 13
77 04
77 37
77 19
77 70
77 34
77 39
77 29
77 31
77 72
77 91
plot ter
Ġcall ers
mean ing
Ġ15 45
Ġ15 46
Ġ15 84
Ġ15 29
Ġ15 81
85 28
85 35
85 26
85 93
85 95
85 27
85 47
85 88
85 79
85 74
85 81
ĠU nder
ĠU ndo
11 35
11 98
11 64
11 93
11 13
11 94
11 19
11 11
Ġspecif ications
Ġcol lap
05 8
05 90
05 32
05 96
05 35
05 16
05 24
05 14
05 93
05 94
05 46
05 22
05 34
05 86
05 29
05 87
05 88
05 42
05 79
05 31
05 82
05 83
09 90
09 26
09 93
09 27
09 21
Ġab y
Ġab lation
Ġinteg rating
Ġso ver
Ġso ftsign
Ġso phistic
Ġup load
Ġrep etitions
Ġrep etition
ert anity
47 00
47 50
47 90
47 28
47 98
47 30
47 26
47 08
47 76
47 27
47 21
47 47
47 23
47 48
47 92
47 43
47 49
Ġwhen ever
ign ant
ca in
ca ptcha
29 18
29 12
29 32
29 25
29 24
29 14
29 56
29 97
29 23
Ġshould n
ĠKeras Tun
ĠTensor board
valu ed
ĠW idth
ĠW ARNING
ĠW ikipedia
ĠW AV
ĠW EA
ĠW rapping
ne ed
ne aker
ox ide
ox ford
ft en
Ġ26 1
Ġpass ages
AT TR
AT IC
000 7
000 25
Ġz ca
Ġz ipob
Ġadd ress
Ġadd itive
Ġadd resses
pon sible
Re current
=' ./
Ġ13 76
Ġ13 66
SI RED
ong ly
125 2
125 3
23 10
23 18
23 16
23 78
23 75
23 19
For ce
07 90
07 98
07 30
07 97
07 94
07 04
07 08
07 27
07 46
07 38
07 40
07 22
07 39
07 36
07 11
07 47
07 23
07 31
07 43
07 49
07 41
44 2
44 64
44 24
44 13
44 45
44 46
44 84
44 39
44 44
44 43
44 81
65 3
65 7
65 50
65 96
65 24
65 30
65 78
65 26
65 75
65 46
65 36
65 80
65 72
65 43
65 81
65 41
87 3
87 00
87 18
87 15
87 98
87 14
87 27
87 19
87 34
87 48
87 42
87 91
87 41
urr ing
co ordin
co arse
co vtype
np lanning
Ġprint ing
ier arch
Ġdimension al
Ġencod ded
patch er
ub ility
Ġk v
Ġk ick
get ctime
tain er
row x
Ġcor es
Ġcor rupt
Ġcor ners
Ġdist urb
Ġdist racted
Ġdist illed
Ġdist ributing
52 10
52 25
52 17
52 14
52 97
88 12
88 20
88 96
88 25
88 98
88 24
88 78
88 13
88 04
88 76
88 46
88 62
88 40
88 84
ĠDef ines
Ġsub word
Ġsub sampling
Ġsub strings
Ġsub sampled
Ġsub lim
Ġsub folder
Ġsub mission
Ġsub folders
Ġfile paths
sample wise
Ġâ Ļ¥ï¸ı
118 5
118 6
118 7
Ġload er
Ġload mat
lat ents
Se quences
Se veral
unt ion
Ġimplement er
Ġsuper i
wo od
abil istically
189 1
fn lw
53 10
53 32
53 98
53 75
53 76
53 46
53 19
53 11
nn ed
Ġover flow
Ġover head
Ġover writ
Ġover come
Ġover lap
Ġover conf
Ġover rides
Ġover laps
cor pus
cor rupted
Ar t
Ar gument
Ġnew gate
Ġfirst ly
fil m
fil led
fil elist
index ing
ĠH U
ĠH i
ĠH uman
ĠH Box
ĠH orses
ĠH ello
ĠH ousing
ĠH IGH
ĠH aunting
ĠH elp
ĠH olly
Ġqu icker
error s
head er
head ed
---------------- -----
67 50
67 18
67 12
67 17
67 64
67 16
67 78
67 56
67 76
67 45
67 40
67 22
67 34
67 44
67 92
67 43
67 41
48 1
48 3
48 32
48 28
48 64
48 30
48 04
48 75
48 45
48 46
48 59
48 23
48 31
pect ity
length s
Ġdifferent iate
no f
AU FC
ĠV I
ĠV AL
ĠV ariables
Ġj e
Ġj th
Ġj ames
Ġ12 30
Ġ12 99
Ġel la
60 6
60 50
60 18
60 15
60 20
60 35
60 25
60 64
60 27
60 37
60 34
60 23
]] ]]
]] ]])
Ġmat ters
ay ed
ay akpaul
ĠRe compile
ĠRe cent
ĠRe use
ĠRe current
ĠRe wards
ĠRe build
ĠRe create
ĠRe ceiving
ĠRe commenderNet
63 10
63 90
63 64
63 30
63 78
63 40
92 50
92 20
92 64
92 78
92 99
92 27
Dataset Creator
Ġ18 00
Ġ18 35
Ġ18 08
Ġ18 33
Ġ18 70
Ġ18 21
ell ing
02 10
02 90
02 12
02 32
02 20
02 30
02 13
02 76
02 34
02 36
Le cun
Ġtoken ize
cent ric
cent ral
Ġsc rip
Ġwidth s
IN PUT
Ġinter p
Ġinter can
Ġinter face
Ġinter cour
Ex amine
Ġvari ability
Ġvari ances
68 50
68 14
68 93
68 97
68 08
68 33
68 40
68 84
68 19
68 80
optim al
ĠFor est
uct ural
Ġco arse
Ġneed ing
ept ed
Ġgener ations
Ġcons ult
Ġcons its
Ġcons cient
42 10
42 50
42 15
42 28
42 20
42 17
42 94
42 37
42 19
42 34
42 36
79 10
79 25
79 16
79 24
79 14
79 26
79 11
Ġfa ith
Ġfa ces
74 1
74 00
74 90
74 15
74 20
74 24
74 95
74 08
74 46
74 40
74 84
74 37
74 19
74 70
74 86
74 87
74 92
Tensor flow
Tensor board
Ġ30 6
normal izer
normal izing
Ġmin s
Ġmin ds
Ġmin ority
()) }\")
dir names
31 10
31 96
31 97
31 94
und erst
03 90
03 96
03 16
03 78
03 93
03 75
03 76
03 99
03 62
03 66
03 11
01 10
01 12
54 00
54 10
54 18
54 32
54 28
54 20
54 16
54 24
54 46
54 38
54 22
54 86
54 11
54 29
54 87
72 18
72 90
72 15
72 25
72 64
72 13
72 75
72 38
06 50
06 12
06 28
06 64
06 78
06 26
06 94
06 04
06 08
06 99
06 70
06 39
06 86
06 80
06 11
06 91
06 115
augment ers
augment ables
ia o
Res olution
Ġthan k
Ġtrans posed
ĠIm portantly
") ])
58 2
58 00
58 10
58 90
58 14
58 27
58 40
58 55
58 37
58 59
58 91
58 1012
AN T
73 10
73 90
73 12
73 35
73 66
Ġdet ectors
Con texts
Con sole
prob lem
prob ablist
Ġ36 9
Ġ36 00
Ġ36 97
PI L
Ġprov en
43 90
43 15
43 98
43 64
43 93
43 75
43 99
43 45
43 40
57 00
57 50
57 15
57 32
57 35
57 17
57 78
57 13
57 95
57 38
57 22
57 36
57 29
57 44
57 31
Ġte ch
Ġte aches
Ġad mission
Ġad verserial
71 10
71 15
71 35
71 14
71 30
71 93
71 13
71 95
71 19
LE X
AR OM
fa ir
Ġ29 00
Ad ds
Ad just
Ġpoint ing
Ġpoint ed
82 10
82 18
82 28
82 20
82 17
82 64
82 16
82 97
82 13
82 76
82 99
82 34
Error s
Ġconfig s
Ġconfig urable
ER PO
ĠImage Caption
Ġ17 00
Ġ17 92
Ġcre ep
Ġcre ative
ie ved
Ġ24 00
Ġ24 32
Ġatt ack
ĠCon da
ĠCon figure
ĠCon nection
ĠCon fusion
ĠCon trivedModel
ĠCon struction
read er
91 35
91 98
91 97
91 13
91 95
Ġformat ting
Ġ40 32
chitect ures
lib cusparse
lib cusolver
Ġread ers
Ġread out
bo b
bo y
Ġos wald
81 10
81 15
81 17
81 98
81 14
81 93
ass ani
313 6
313 7
St olten
Ġro les
Ġpart II
61 98
61 97
61 19
softmax ed
)] ].
51 98
51 64
51 97
51 13
51 94
pol ate
sub classing
Ġdi oxide
Ġelse where
83 12
83 32
83 14
83 75
sl c
69 35
69 26
69 93
89 00
89 50
89 12
89 32
89 28
89 96
89 14
89 30
89 78
89 56
89 26
89 93
89 13
89 94
89 95
89 23
Ġ19 00
Ġdes pectity
min us
Ġ50 6
Ġ50 8
Ġ50 9
Ġ[[ -
49 50
49 90
49 20
49 26
49 93
To String
te es
ĠSe arch
Pro ximal
Pro babilistic
Activation s
Ġmod ly
Ġmod erate
Ġmod ulate
exp lode
Ġfe ar
ĠConv LSTM
Categorical TruePositives
cre ated
Ġthere by
41 10
41 64
41 14
41 19
wh ether
wh itening
Ġsome where
Ġback prop
Ġnormal isation
422 3
Ġ< <
Ġ< __
dist ort
ac i
Ġoper ating
Ġoper ators
Ġstandard ized
Ġrel ax
Ġrel ations
Ġrel igion
Add itionally
Ġap pare
Ġap pet
Ġap pending
Ġregular ly
De er
De code
De coding
De Mar
De vlin
Ġass iving
Ġass ociate
ĠDe cay
ĠDe convolutional
ĠDe coders
ĠDe convolution
ain s
Ġev et
Ġev olution
Ġcont ributes
Ġcont radiction
Ġ200 9
ĠSt ep
ĠSt ory
ĠSt ates
ĠSt atLib
ĠSt rikes
su per
Ġcheck s
ĠTh ough
ĠTh ird
Ġshow ed
color bar
AM B
AM S
uc ially
Ġ25 90
Ġ25 96
Ġ25 95
Ġgu y
ĠInt ellig
Ġexpect ations
function s
Ġtask ed
Ġresult ant
GAN Monitor
704 2
En sures
old ed
old own
Ġsy s
Ġsha ped
Ġdisc o
Ġdisc arding
Ġdisc inting
Ġdisc ouraged
Ġinform ed
Ġ[' ',
Non Padding
Non Neg
SE LU
pen ny
Ġembed s
Ġ42 6496
'] ).
Ġed ucation
Ġser ver
Ġser ved
Ġser vers
\". {
plic ated
ĠLoss AndErrorPrintingCallback
Ġag ents
Ġag gress
cond itional
expand user
Ġver ing
Ġver ification
Ġtra ce
Ġtra ces
Ġtra ged
Ġtra pezoid
Ġsup pose
PO S
PO RT
the e
the m
ĠAppl ying
ĠAppl icable
Ġgre y
GE N
Ġplot ting
196 0
196 1
196 9
Ġdep icts
Ġutil izes
real ness
real istic
ob e
ob tained
Ġpresent ation
Ġep istemic
Ġ56 92
ĠStr ucture
ĠStr onger
ĠStr uctural
Ġund es
Ġund oub
Ġ{} \"
Ġ{} !\".
Ġform ed
Ġform ulate
Ġform ulated
Ġform ulas
Ġlong ing
Ġchan ces
Com edy
Com plete
ble m
Ġdown scaling
Ġ48 23
ĠAdd resses
Lookup s
ĠTF BertModel
linear ly
linear ity
Ġhel d
Ġhel ping
ĠUp Sampling
ĠUp dates
Ġob lig
ĠDataset Creator
comm and
Ġproble matic
:] ))
Ġiter ating
Ġiter ates
Ġposs ess
,)) .
multi ple
Ġmor es
Ġmor ally
At om
Load ed
Ġunder way
Ġunder neath
=[\" [
Multi SimilarityLoss
Str ongly
Ġnow here
ĠNeural Style
112 0
112 9
ĠJ PG
ĠJ ena
ĠJ edi
ĠJ PEG
ĠJ oz
ĠX AI
ĠX avi
Ġauth entication
Ġeas iest
........ ....]
Checkpoint ing
ĠWh at
250 1
250 6
250 9
Th al
Th ank
Th orp
Vector ize
Vector izing
mn eg
[[ [[
Ġla id
Ġla ugh
Ġla ws
ĠPre processing
Ġobtain ing
Def ault
Ġ90 3
Ġdel et
Ġdel usion
Ġdel iber
Ġdel imiter
Ġdel iver
Ġdel ayed
inter section
Ġcomple tely
OV ER
TH RES
ging Layer
wa z
Ġact resses
Ġ124 1
Ġline width
Ġline widths
ĠResNet Block
ĠDeep labV
bit resnet
ash Kumar
ash usma
ĠEx act
ĠEx pand
ĠEx ploring
Ġ117 0
Ġclo sed
ccess fully
Ġcomp ensate
014 4
IG N
Ġpar sed
Ġreg ime
586 8
Ġvisual ise
512 4
512 6
512 7
ĠEfficientNet s
Ġdis abling
ĠUn ion
ĠUn compiled
ĠUn like
ĠUn comment
Ġme et
Ġph rases
ĠPro jection
ĠPro gress
ĠPro jector
Ġextract s
Ġknow ing
ho le
Ġtr uly
Ġoff ense
Ġhand ful
Ġhand ling
convert ing
Ġbel ieved
eff ect
)} ]\",
)} %.\")
017 3
017 7
Ġpla ces
Ġpla ying
Ġpla ys
Ġpla nning
Ġpla nned
Ġpres cient
Ġpres umation
(' \"',
tem plate
ĠCustom izing
ĠCustom LearningRateScheduler
ĠCustom Schedule
ĠCustom NonPadding
Ġquant ified
ĠQ M
ĠQ REmbedding
Ġups caled
Ġlib cusparse
Ġlib cusolver
ĠRGB A
ĠDense Variational
Ġ:] )))
010 1344
010 4278
094 0
An y
An aly
An omaly
An swer
Ra w
Ġ61 14
labeled Bow
ĠAd opt
ĠAd just
ĠAd obe
================================================================================================ ==============
group ed
TR L
TR T
TR IC
TR IP
emb ers
Ġext re
Ġext entsion
Ġext ensively
Ġ70 25
.]] ]])
224 4
224 5
224 7
224 8
Ġ95 3
Ġ126 3
Ġcent ury
Ġmak sed
Ġtog gle
Ġlimit ing
Ġlimit ation
Ġsubject s
Ġsubject ive
Ġachie ving
375 9
Al ong
Ġ150 9
Ġopen ed
ĠAr chive
ĠAr chitecture
ĠAr chitectures
Ġparameter ized
AD Lv
Ġsepar ating
iss ing
Ġless er
fo ol
Ġ62 25
ĠAl ias
ĠAl pha
Ġident ified
135 4
135 320
DE N
Normal ized
Ġ125 4
Ġ125 00
Ġexperiment ing
MultiH ead
078 3
078 5
Min imalRNNCell
150 4
Augment er
Ġ94 4
Ġ94 08
Ġign or
050 1
020 1
IC LR
Ġ190 2
Ġproject ing
SV M
TF Lite
TF DatasetMultiShotMemorySampler
Ġsign s
Ġben chmarks
ĠCal tech
ĠAt ari
ĠMLP s
ĠMLP Block
814 6
814 9
cut mix
âĢ Ŀ
Ġfin ding
Ġfin ds
Ġ[\" [
Ġstat istical
ĠEmbedding s
ĠEmbedding Model
Comput ing
Comput ation
Ġbehavi ors
Ġrank ed
./ :;
199 2
900 9
fp n
fin a
fin ish
ru ptions
Ġsl c
Ġdiv ides
Ġdiv ision
Ġdiv erse
Ġcond ens
ĠNo ise
Ġcontin u
Ġcontin ual
Ġcontin ues
875 4
Custom Object
Zero DCE
are as
jor ity
Ġmix er
ific ially
Ġ\", \".
Ġorig ins
Ġrespect ing
Ġedge color
096 2
096 3
720 1
720 2
720 3
720 7
Trans posed
Trans forms
Trans lated
ict ed
Ġdynam ics
ĠCo la
ĠCo py
ĠPo st
Ġpartic ipation
Ġphilo m
ational GraphConvLayer
ĠEn able
ĠEn try
ĠEn hancement
ĠEn sure
Log gingLayer
095 2
095 5
Ġ54 29
part ial
ĠMy Activation
ĠMy Regularizer
ĠMy BiT
Ġassign ing
]( /
be havior
sel ecting
local s
Ġthreshold ed
Ġsat uration
Ġpract ical
Ġpract itioners
Ġ300 8
Ġstan ces
Ġstan ford
Ġexec ute
Get ting
Get Total
Get Bond
Get BondType
Get Atoms
Get Neighb
Get Sy
non zero
Ġstack ing
ĠSo ftmax
No Frames
Ġpur ely
Ġ384 000
ĠAda In
velo city
Ġart ificially
ĠWith out
Ġsym pt
110 5
664 0
664 3
664 7
828 7
828 8
978 5
978 8
Per Row
vis ibility
Ġbreak s
Initial ize
Initial ization
Initial izers
Initial izations
Ġsetup s
ĠBe aut
ĠBe havior
timest ep
timest amps
Ġphilosoph ical
866 3
Pos itionalEmbedding
cb a
cb k
dis p
dis connected
det ector
det erministic
dog mas
Ġ97 0
Ġspa cing
Ġ277 7
ĠRandom Color
ĠRandom Brightness
ĠRandom ResizedCrop
Ġpol it
ĠDist racted
290 3
290 6
290 84464
710 6
710 7
Ġflip s
Ġflip ped
Ġins ight
Ġins ert
Ġbas elines
Ġsearch ing
ĠGraph Conv
ĠGraph Generator
ĠGraph WGAN
ĠGraph Discriminator
Ġcenter ing
826 9
808 2
Feature Embedding
Feature Pyramid
early stopping
eng ine
eng ines
ĠCan not
Ġaccess ible
Ġdetermin ant
ĠLog Reg
Ġinvol ve
)` ,
400 4
400 5
400 90
735 6
735 8
778 0
778 5
778 7
FF T
flip ud
ν ε
Ġauto generated
Ġauto encoders
Ġsol id
Ġsol ely
Ġsol ubility
chem data
Ġinfer ring
Ġsever ity
Ġreset ting
ĠMo st
ĠMo ving
ĠMo lecules
ĠMo Co
Ġappe aran
264 3
264 6
264 9
475 1
doc ker
doc ument
doc uments
gre y
ependent Normal
Ġref ined
Ġglob ally
integ ration
ĠIter able
ĠIgn ore
ĠCh oose
Ġanomal ous
Ġsem inal
ĠRep resentations
ĠFirst ly
Ġspeed up
027 1
027 9
764 3
764 6
764 9
Pl us
ov itski
Ġcut out
Ġsuff ers
Ġdec ided
Ġperm utation
Ġperm utations
Requ ires
bool s
Ġrout ine
064 5
064 6
026 6
026 8
055 4
055 8
430 1
430 6
430 8
430 17
Be low
ι ὰ
ÏĦ ε
ĠÎ ±
ĠÎ ³
ĠÎ »
ĠÎ ¿
Ġens ures
charact er
Ġvar ied
ici ated
urs ive
Ġher ed
Ġexpl ict
Ġexpl oratory
Ġunf olded
deep mind
deep chemdata
Ġcorrect ness
ĠâĢ ĸ
ĠâĢ ľ
Ġcoun try
056 2
056 5
056 8
197 1
228 25
730 9
950 3
950 4
950 5
=> ....]
Label s
ĠY ann
Ġslow ing
ĠCent er
([\" [
Require ments
/* \")))
028 3
235 4
235 5
897 1
897 6
876 5
Mask s
Text Generator
Visual izer
act uated
bar wad
fra ud
her ent
her ence
Ġtri ed
Ġtri angle
Ġcategor ial
Ġinstr uct
Ġinstr ument
Ġcontrast y
Ġ82 783
Ġprop ess
944 153
Ġcost s
assign ments
ĠQu estion
ĠPoint wise
896 5
896 9
IA BLE
MLP MixerLayer
á¼ µ
allow able
Ġthough ts
Ġdeg rad
ĠCor a
ĠCor rect
ĠCor nell
ĠCor ruptions
project s
ĠDisplay Outputs
Ġuniform ly
Ġstateful ly
Transfer ing
Ġpopular ly
Ġappropri ately
024 3
034 2
034 8
726 9
708 2
708 4
708 5
817 1
817 7
817 9
878 0
878 5
878 8
GRU Cell
Qu ran
Qu ery
Sh ip
Sh owing
Time Decay
go od
lin ux
Ġpr iv
Ġpr ints
Ġbal ancing
Ġreason ably
Ġho od
ĠCO MP
ĠCO LMAP
ĠRun nable
ĠFNet Encoder
ĠFNet Decoder
ĠPatch Merging
main ly
Ġcopy right
Token Loss
Deep Lab
025 9
445 2
445 4
445 7
445 9
528 2
528 5
620 8
775 4
775 7
775 9
745 2
745 7
745 9
746 0
746 1
856 6
856 9999
α ί
ε Ïģά
Ġoccu py
Ġoccu pation
Ġfro g
Ġfree zing
Ġflatten ing
ety ls
Ġ208 61480
ĠChem istry
ĠAuto contrast
Ġpost ive
ĠMulti ple
ĠMulti WorkerMirroredStrategy
133 62
Ġjitter ing
ĠToken Embedding
ĠAdam W
ĠAdam ax
Ġcondition ally
296 2
296 6
296 7
433 8
824 2
Ch ar
Metric Layer
Pa rams
Pa rameters
Pa rametric
SC AN
cr istian
hash er
ool s
Ġaccu rately
stat istics
Ġvis its
Ġvis ibility
Ġvis ited
Ġvis iting
Ġ133 8
Ġobser vations
Ġcou pling
Ġbit wise
Ġbit resnet
Ġbro ad
Ġbro ther
cycle gan
LayerN orma
Import ing
Import ant
subject s
Ġsyn thes
Ġsyn thesis
Ġparallel ization
Ġdescrib e
076 1
076 2
076 6
076 8
066 0
066 9
220 4
220 9
428 8
437 0
437 3
750 2
750 5
750 6
728 0
728 4
728 6
728 7
756 0
756 1
756 9
850 1
850 3
850 4
877 3
877 4
AS R
Float List
NOR E
Patch Embedding
Patch Encoder
Patch Extract
PRO PORT
Spatial Pyramid
}% .\")
Ġ120 8
Ġden ote
Ġprom ise
Ġprom ising
Ġpick ing
353 45
170 500096
Ġrespon se
Ġ`( ...,
Ġdeterm ination
038 1
038 3
038 4
038 9
077 1
130 1
130 9
275 3
330 2
330 4
330 5
330 9
346 2
346 5
346 6
346 7
346 8
478 3
478 5
478 6
478 7
478 9
456 0
456 2
456 5
596 5
596 6
596 7
628 9
790 1
790 3
725 1
725 2
725 9
738 0
738 9
838 0
838 3
838 9
924 2
924 6
956 6
997 5
997 6
997 7
Target s
aa aa
ο ἵ
Ġ115 4
Ġmixed up
Ġask ing
Ġexport ing
cons istent
Ġannot ating
ĠRetinaNet Loss
ĠRetinaNet BoxLoss
ĠRetinaNet ClassificationLoss
ĠVariable Selection
Ġcare fully
Compute Sum
037 0
037 7
378 0
378 3
378 8
550 2
550 7
550 8
737 1
737 9
770 2
770 5
845 3
845 4
845 7
845 8
990 3
990 9
Pixel ConvLayer
Pixel ConvL
Transformer Encoder
qq q
Ïģ ι
Ïģ ονÏĦ
Ġsur pass
Ġsur pr
Ġ156 8
Ġport en
Ġbl ur
Ġ235 6480
Ġrem or
Ġrem inder
Ġrem otely
Ġreach ing
Ġgrad ual
Ġstrip ping
Ġhuman ity
ĠIPython Console
Ġexception s
ĠSiamese Model
Ġconstan cy
ĠMix ing
Ġaccept ed
rele ase
ĠGNN s
ĠGNN NodeClassifier
ĠOver view
Ġsimpl ifies
Ġsoft plus
ĠTransformerEncoder Block
POIN T
065 3
065 7
420 2
420 4
420 7
686 5
686 7
830 8
DI SC
KL Y
Loc ation
Loc ally
div idends
gain s
mak ing
Ġvert ices
Ġ164 48
Ġ145 2
Ġfan tastic
Ġinvert ible
Ġhard er
ĠCI HP
ĠClass ify
ĠCheck points
cont rolling
cont inuous
ĠAss ign
ĠAss uming
ĠDepth Estimation
Ġconvnet s
ĠRead y
Ġincrement al
Ġmechan ics
Ġmechan isms
075 7
075 9
068 2
068 3
237 1
237 2
237 4
237 9
390 1
345 9
450 2
450 7
464 7
408 0
408 6
408 8
446 0
446 2
446 8
578 3
578 5
578 7
578 9
546 0
546 1
544 2
544 4
624 2
678 9
697 0
655 4
655 5
724 2
724 9
747 2
747 9
886 0
886 5
886 8
ELU s
Ops Set
Self Trainer
Simple Dense
bott le
dl checkpoint
fe a
hy dro
lim its
xy wh
}/ {
Ġround ed
Ġtw ist
Ġ275 4
Ġ307 2
ĠCategorical TruePositives
ĠSpatial ConsistencyLoss
Ġconstrain ed
Residual Block
ĠTransformerDecoder Block
ĠDecode Predictions
Ġcontem pt
Ġcontem ption
efficientnet b
ĠMasked Auto
ĠMasked TextGenerator
/*\")) )[
Ġoccur s
Ġoccur ring
Repeat edly
ĠTransfer able
({ "
033 1
033 4
033 7
233 8
233 9
350 3
350 8
364 7
520 5
520 9
690 1
690 3
690 4
690 8
656 3
656 7
656 8
676 2
676 3
700 4
700 7
700 8
864 6
CC C
My Model
My Object
Sub classed
dat aloader
pr inc
sat uration
sat urating
sim siam
Ġtalk ing
Ġtrick y
Ġschem es
Ġfall s
Ġcr ut
Ġ234 10
Ġgrow ing
ĠCCT Tokenizer
ĠRefer enced
ĠLabel ed
ĠInter section
ĠGated LinearUnit
ĠBert Tokenizer
ĠBert Word
ĠBert Config
ĠHT TP
ĠConvolution s
297 0
297 2
297 7
376 6
366 1
366 3
366 6
484 2
484 8
434 9
564 3
564 4
556 5
556 8
556 9
575 2
576 9
576 1169
608 6
608 7
638 3
638 6
638 9
796 5
884 2
884 4
884 7
884 9
855 2
855 3
855 8
855 9
GR N
Mo lecule
Mol sToGridImage
Sw in
dif f
dif ferent
free zing
free zes
hand led
hand writing
ij kl
kaggle catsanddogs
scal ar
Ġac idity
Ġac etyls
review s
Ġfra c
Ġfra zier
Ġdir path
Ġdir name
pop ulated
Ġstri ct
Ġhum ans
Ġliter al
Ġliter ally
ĠCl ient
ĠST EP
Ġant itus
ĠNER Model
ĠLib riVox
Convert ed
Ġattem pt
Compile d
TFRecord Writer
Ġbroadcast ing
Ġbroadcast ed
425 2
404 1
404 3
404 5
526 7
597 0
597 2
538 0
538 4
538 9
584 1
584 9
537 4
670 3
680 2
680 6
733 8
733 9
800 4
800 7
890 1
890 4
890 8
846 2
846 8
840 3
840 9
885 2
885 7
920 1
920 5
920 6
925 3
925 9
RetinaNet Loss
RetinaNet BoxLoss
RetinaNet ClassificationLoss
cell s
del im
jitter ing
sp ired
sp aniel
Ġimag ine
Ġri se
===> ................
===> ......]
Ġast of
separable conv
Ġ146 5
Ġcar ry
Ġcar ried
Ġdr iving
Ġder ived
Ġder ivative
Ġdest ruction
Ġmis underst
Ġmagn itudes
annot ated
ĠSelf Trainer
ĠSimilarity Model
Ġpain ful
][: :-
Ġstrug g
ĠGC P
ĠGC RMSprop
Read ers
Ġsubtract s
Ġminim a
ĠContrastive Model
Ġreconstruct s
Ġapproxim ates
Ġincorpor ated
Ġincorpor ates
Ġcouple d
067 1
278 0
278 3
424 2
424 5
424 6
438 5
470 7
486 0
486 7
525 4
525 7
525 9
545 4
585 2
585 3
626 3
637 0
637 3
637 4
804 1
RE C
RE ADME
Supervised ContrastiveLoss
]} \
]} ]
brid ization
feed forward
mm ol
Ġtrim med
Ġspo t
Ġmon oton
Ġbool s
Ġeurope an
ĠCallback Eval
ĠSc ans
ĠSc ott
ĠSc otland
ĠSimple RNN
Ġanimal s
Ġresha ping
Ġresha pes
Ġacceler ation
Ġacceler ators
Ġcompreh ension
Ġcompreh ensible
ĠFeature Pyramid
ĠGener ally
track ed
Ġchallen ges
Ġdistort ing
ĠVector Quantizer
ĠVisual ization
ĠVisual izations
ĠVAE s
Ġjo ints
Ġjo bs
INIT IAL
Ġtranscription s
ĠWhere as
ĠCalcul ates
Ġengine ering
environ ment
Ġalphanum erical
030 2
030 4
477 7
477 91
633 1
633 4
633 8
684 1
684 2
685 4
685 7
687 9
722 1
722 2
722 9
870 2
926 7
Do es
KEY POINT
NA B
Sha red
som etimes
Ġrom ance
Ġrom antic
Ġsm al
Ġsm art
Ġsm uth
Ġshe ar
Ġdoub t
Ġmot ive
Ġmot ivated
Ġinher it
Ġinher ent
Ġple asure
ilit ity
ĠCol or
ĠCol ormap
ĠCol laborative
Ġouter most
ĠAp ache
ĠAp proach
ĠAdapt ation
Ġsec urity
ĠRel ated
ĠRel ationalGraphConvLayer
Ġsugg est
ĠDet ection
ĠDet erm
ĠDown sampling
Ġresample d
ĠMol FromSmiles
ĠMol sToGridImage
ĠMetric LoggingLayer
ĠPy Dot
Ġintu itively
osh op
Ġcolo urs
Ġtransl ate
Ġtransl ational
ĠCont radictory
Ġlack s
Ġrestrict s
Ġrestrict ing
Ġrestrict ed
Ġregister ing
0107 0027
Ġinflu ences
Ġmetaph ysics
Ġswitch ing
Ġconvenient ly
Ġprofound ly
524 1
524 5
820 6
822 1
822 2
822 9
Cr ucially
deta il
friend ly
mor ality
pers ons
pers istent
sm art
sy mbol
λ θ
á¾½ ,
ĠZero DCE
Ġexclud es
Ġexclud ed
perform ing
Ġretain ed
ĠRest ing
ĠDNN s
Ġstreng tion
ĠFashion MNIST
ĠLR Schedule
Ġdecor ated
ĠEd itDistance
ĠEd geNetwork
ĠEarlyStopping AtMinLoss
ĠBa va
ĠBig Transfer
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĊ
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠĠĠĠĠĠĠĠĠĠĠĠĊ
Resize Method
Ġmanif est
ĠComput es
Standard izing
Standard izedConv
Ġcommun ication
Ġcommun icate
Ġscenari o
Perform ing
=>................ ]
New ton
Neural Decision
Chan ges
Ġhybrid ization
ĠTemporal Softmax
ResidualB loc
EXAMP LE
Ġoccasion ally
012 3456
062 2
276 3
276 9
238 4
414 2135
530 1
530 7
540 3
887 1
887 2
Ada In
FNet Layer
Mel Spec
Sim Siam
tor ch
ÎŃ Î½
ÎŃ ÏĨ
ĠÏĦ ι
==> ................
separ ator
Ġpra ise
anomal ous
0060 5625
Ġ332 16
Ġ[======================== =>....]
ĠText Generator
diag ram
Ġhot el
Ġ\"- \"]
Ġexc iting
Ġexc itation
Ġexagger ated
ĠArt istic
ĠArt works
ĠArt ificial
Ġimp ression
2528 2
Install ing
Ġrational e
(\"- \")
(\".\") [
(\".\") [-
ĠFin dings
ĠFEATUR ES
ĠFollow ing
Ġdecom position
ĠELU s
Ġperf ect
ĠKe ys
Ġmaxim ized
Ġmaxim izes
Ġcollect s
Ġabstract s
ĠHo chre
ĠHum ans
Ġinterpol ate
Ġinterpol ates
Ġfav ourable
Ġfacilit ates
Ġdiag ram
ĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ ĠĠ
Ġdirector s
Ġevent ually
Ġguaran tees
Ġpossib ly
Ġpossib ilitity
ĠNeuralDecision Forest
Ġexplo it
Ġexplo its
Ġphys ical
ĠRepresentation Learner
ĠQuant um
ĠQuant ization
Ġhypo th
Ġhypo thesis
ðŁĵ ±:
ðŁĵ º:
Ġmetaphys ical
ĠDiscount ed
496 5
497 1
497 5
570 3
740 7
996 5
Cal cul
Draw s
DWith Call
DWith Override
Like wise
OB JECT
PATCH ES
Piece Tokenizer
Termin ator
Timeseries Generator
car ry
fb MZ
pick ed
sph erical
Ġum brel
Ġvox els
Ġmit igate
Ġna ive
urk ar
Ġgran ter
Ġgran ted
Ġ\"# \"))
ĠCho ice
ĠSV HN
Ġprefer ably
Ġenfor ce
ĠRob inson
Ġsug ar
Inspect ing
ĠDes ired
ĠDilated SpatialPyramid
ĠMessage Passing
ĠLoc ality
ĠLoc allyConnected
1338 9
9476 5736
ĠGIF s
Ġintel lectual
Ġintellig ent
Ġintellig ence
ĠEvery thing
ĠBenchmark ing
emplo yer
Ġchain s
Ġchain ed
3608 5
Reconstr ucted
Ġsubt leng
Ġsuperf ici
Ġmethodo logies
ĠReal NVP
0250 4458
Ġmanage ment
ART IFICIAL
subtract ed
Ġdiss imilarity
Ġassess ment
Ġsupp resses
Ġnonlinear ity
ĠLearn ers
ĠJaccard ScoreCallback
Ġcommit tee
Unit Norm
Ġκ εÏģά
Ġá¼Ģ μ
Ġá¼Ģ κ
ĠClusters ConsistencyLoss
ĠAdaptive Augmenter
Ġsilent ly
%] ",
,- ./:;
/{ }/
022 2
590 3
662 2
605 1
688 1
825 7
Charact er
Charact ers
Lib raries
Ma Zh
Matrix Display
NASNet Mobile
NASNet Large
Sup porting
Tr uck
USER NAME
Verse Of
War mup
ben jie
crib ing
ipy kernel
ipy nb
mer ged
nas net
say akpaul
Ïī ν
Ïī Ïĥι
Ġradi us
Ġtast e
enable d
Ġthresh olds
Ġthresh olding
Ġsqu ash
Ġschedul es
Ġschedul ing
sto cks
Ġvi ol
Ġflu id
Ġmag ic
Ġmill iseconds
Ġpush es
Ġpush ed
Ġ[============ ===>........
Ġ[============ =>................]
Ġrecogn ized
Ġfore ign
Ġsty l
Ġsty les
Ġstabil ize
Ġstret ching
Ġhar ms
Ġexceed ed
ĠCycle Gan
Ġoutperform ed
const rastive
ĠAtt endez
Ġord inary
ĠSE Q
Ġnumer ous
Ġnumer ically
Ġencom passing
1716 0884
1784 4
9807 1
Invalid Argument
ĠNested Cell
ĠNested DenseLayer
Ġ"/ "
Ġallevi ate
Ġallevi ates
(\"_ \")[
ĠPart itionPadding
ĠLow er
ĠGe irhos
ĠGe Force
ĠGrad Visualizer
27746 25282
ĠOuterLayer WithKernelRegularizer
ĠEqu ation
ĠEqu ivalent
ĠEvalu ation
ĠEvalu ating
Ġche ap
Ġche aper
ĠWindow Attention
ĠWave Net
Ġsubs iciated
ĠHe ight
Ġelect ricity
Ġcoher ent
Ġcoher ence
ĠImplement ation
Ġmanip ulate
libcublas Lt
Ġtracing s
CTC Layer
Ġmeas ures
Ġmeas uring
Ġlibcublas Lt
ĠShort cut
represent ed
know ledge
Ġsuffix es
Ġδ ιὰ
many linux
Ġemplo y
Ġá¼Ķ λθ
Ġoccurr ence
Ġoccurr ences
Ġfraud ulent
ĠVectorize Char
Ġfavor ite
Ġmemor ize
MultivariateNormal Di
MultivariateNormal Tri
Ġ######################################### #
Ġ######################################### ##
(_ )
('. /
070 2
059 1
227 4
490 5
922 1
?. !
Ed ges
God father
Ind ices
Key point
Optim ize
Serialize ToString
bu yth
ban ner
cad ed
evalu ation
hum barwad
pres erving
pub lish
twe et
Ġlamb d
inan et
Ġtermin ates
oret ically
enum erate
los is
Ġthom as
Ġsv hn
Ġsch ool
Ġsul fur
Ġspar sely
Ġsix ty
recogn izer
Ġfi ction
Ġcas caded
Ġcatch Errors
Ġdram atic
Ġmal ignant
Ġmirror s
Ġwast e
Ġpan ic
Ġpub lished
Ġprun ing
Ġbre vity
Ġbrows er
Ġbinar ize
rob ots
roph ic
Ġ[==================== ===>......]
Ġrecre ating
Ġrevers ible
ĠTask s
Ġsta ft
Ġstagn ates
expl orer
Ġhall uc
Ġhither to
Ġ528 04
ĠCharact erTable
ĠAcc epted
ĠAppen ding
ĠApr il
ĠSpeech FeatureEmbedding
Ġconstit utes
Ġprepend ed
Ġseamless ly
Ġattra ctive
1704 98071
ĠRE VERSE
Ġsucc eed
Ġprotot ype
ĠDr iving
ĠDual Encoder
Ġresemb les
16900 1437
ĠMon ocular
geo chemistry
(\"| \")[
ĠPen alty
ĠPhot oshop
ĠPRO JECT
ĠLi u
7615 942
9950 547
Ġhap py
ĠEmp ire
ĠEurope an
Ġunc ertanity
Ġuniqu eness
Ġunsup ported
Ġunivers al
ĠBond Featurizer
ĠBott leNeck
Ġpercept ual
Ġchem informat
Ġsaf ely
0520 8318
ĠWa it
SING LE
cob ian
Ġsubnetwork s
ĠReview s
INT ERPO
ESP CNCallback
Ġenta il
ĠInteg ers
Ġland scape
Ġestab lish
Ġcompr ising
Ġtrigger ed
Anchor PositivePairs
COLOR S
Ġsatur ates
Ġexecut ing
Ġsymmetr ical
Ġinfl ating
Ġμ á½²
ĠZh u
Ġdrawback s
Ġdeno ising
Clusters ConsistencyLoss
ĠSubclassed Model
Ġsoften ed
Ġá¼IJλ ÎŃÏĨ
ĠShared Object
Ġvirt ues
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ
employ ment
triple ts
%|âĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪâĸĪ âĸĪ|
$% &
$++ +
'-> '
01888 977
01331 179
579 1
<=> ?@
Ax es
Aak ashKumar
Afric an
Bucket ize
BLOC KS
Between Atoms
Cycle Gan
Del eted
Dis ableLog
DShape Nets
DOU BLE
Ess entially
Fox tel
Gil lard
HO LD
Hand ling
Hyperpa rameter
IBU TES
Jap anese
Ke ys
King ma
LIN K
Link ed
Mw TL
Mot ivation
Mand ela
Mus ical
Priv ileged
RZ fbMZ
Rad ialConstraint
Small er
Skip ping
Stereo chemistry
Tarch er
Uh lenbeck
Us ers
UCJY MwTL
VAR IABLE
VALU E
Wor king
WLe ague
WIN k
YCb Cr
^_ `{
bm ild
clock wise
coc o
credit card
cé s
duplic ated
fam ily
gMLP Layer
hert z
hfa waz
jam in
jbrown lee
kap pa
kay osports
nst ein
nietz sche
oken ize
oBE o
prom pt
rdA pp
rfc x
sri hari
vet er
vQao GC
whe els
wHSp vQaoGC
zeg edy
}][ {
}]: \",
Ïĩ α
âĻ¥ï¸ı \
Ġkw arg
ĠðŁ ijŁ
Ġá¿ ¥
ĠðŁĵ ī
incre ment
Ġtit led
alicy late
Ġ--------------------------------- ----------------
Ġautom ated
Ġacycl ic
Ġsap rse
Ġsps ayakpaul
Ġsca ffold
Ġsoci ety
rajp urkar
retra cing
stich ed
launch er
Ġvil lage
Ġvocabular ly
itert uples
Ġfurn iture
Ġfran cés
Ġfem ale
Ġfund am
Ġfron t
Ġfunct ools
Ġfuz z
Ġcle arly
Ġcud art
Ġcrim es
Ġdedu plicated
Ġmir net
Ġmols PerRow
poist ion
Ġprel iminary
Ġpus hing
Ġbiz arre
Ġbuff ers
Ġbread th
anom a
Ġnud ity
Ġnav igate
layernormal izatio
Ġeight een
Ġearn ed
Ġemp irical
Ġ[===================>........ ..]
Ġrecon tr
Ġforec asting
Ġisol ation
Ġisot rophic
ĠTot ally
ĠTimeseries Generator
ĠTechn iques
olstikh in
Ġgall ery
()*+ ,-./:;
Ġstran st
Ġstder r
efow icz
Ġycb cr
thirty two
Ġhous es
Ġ\"¿ \"
Ġwebs ite
Ġ588 8
Ġ5248 00
ĠINI TIAL
ĠIrv ine
Ġexcess ive
Ġexcell ent
Ġlingu istics
ĠCapt cha
ĠCels ius
ĠAust ri
ĠAwar eness
ĠART IFICIAL
Ġorient ation
ĠSign atures
ĠSPO RTS
28480 7
Ġatmo sph
ĠRept ile
ĠRenew ables
Ġprote in
Ġpoison ed
ĠDos ovitski
ĠDEP REC
ĠDenot es
Ġrenew able
Ġlett ing
Ġlega cy
Ġ+++ $+++
ĠFoot ball
ĠPert urbations
ĠPlan ck
Ġarithm etic
93324 2798
Conversion Params
Ġ1638 4
Ġ1606 144
Ġdeca ys
99166 37
ĠInfo NCE
ĠOUAction Noise
ĠExt end
ĠESP CNCallback
Ġunamb iguous
Ġunmak sed
Ġunsign ed
ĠBio geochemistry
ĠBBB P
Netany au
Ġplateau ing
ĠKhos la
70710 677
Ġchec kerboard
trimes h
801346 24
Ġcollap se
Ġsophistic ated
ĠKerasTun er
ĠWEA KLY
ATTR IBUTES
Ġzipob j
coordin ate
ierarch ical
fnlw gt
Ġoverwrit ten
Ġoverconf ident
ĠHIGH ER
ĠHolly wood
ĠRecent ly
Lecun Normal
Ġscrip ts
06115 37
probablist ic
AROM ATIC
Adjust s
ĠImageCaption ingModel
ĠConfusion MatrixDisplay
Stolten berg
Ġappet ite
DeMar co
ĠIntellig ence
penny sto
Ġaggress ive
Ġtrapezoid al
Ġundoub tedly
ĠNeuralStyle Transfer
ĠJoz efowicz
ĠXavi er
THRES HOLD
ĠExact Match
ĠCustomNonPadding TokenLoss
0101344 4
0104278 7
Analy ze
Answer ing
ĠAdopt ing
TRIC S
TRIP LE
CustomObject Scope
ĠMyBiT Model
GetBond BetweenAtoms
GetNeighb ors
GetSy mbol
NoFrames kip
ĠBeaut y
ĠRandomColor Affine
/*\"))) [:
ĠCOMP LEX
8569999 933242798
Ġsynthes ize
PROPORT ION
Ġsurpr isingly
Ġ2356480 7
ĠDepthEstimation Model
hydro gens
ĠMaskedAuto encoder
princ eton
ĠBertWord PieceTokenizer
Ġacetyls alicylate
Ġmisunderst of
ĠEditDistance Callback
0123456 789
ĠHochre iter
Ġumbrel la
ĠDilatedSpatialPyramid Pooling
MaZh KJaz
VerseOf TheDay
benjie bob
Ġ[===============>........ ......]
InvalidArgument Error
Ġá¼Ķλθ ÏīÏĥι
MultivariateNormalDi ag
MultivariateNormalTri L
buyth edip
humbarwad i
ĠBottleNeck Block
Ġcheminformat ics
INTERPO LATION
Ġμὲ ν
Ġá¼IJλÎŃÏĨ ανÏĦ
AakashKumar Nain
RZfbMZ MaZhKJaz
^_`{ |}
()*+,-./:; <=>?@
ĠDosovitski y