--- library_name: transformers license: llama3.1 base_model: Heralax/test-model-4-pretrain tags: - axolotl - generated_from_trainer datasets: - axolotl_rag_conversations_facts.jsonl - axolotl_correction_conversations_facts.json - pretraining_subset_2170418.jsonl - factual_sft_completion/combined_all_0.jsonl - factual_sft_completion/combined_all_1.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl - generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl model-index: - name: test-model-4-sft results: [] ---
```yaml base_model: Heralax/test-model-4-pretrain tokenizer_type: AutoTokenizer model_type: AutoModelForCausalLM load_in_8bit: false load_in_4bit: false strict: false datasets: - path: axolotl_rag_conversations_facts.jsonl type: input_output - path: axolotl_correction_conversations_facts.json type: input_output - path: pretraining_subset_2170418.jsonl type: completion - path: factual_sft_completion/combined_all_0.jsonl type: completion - path: factual_sft_completion/combined_all_1.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl type: completion dataset_prepared_path: last_finetune_prepared output_dir: ./finetune-model-output seed: 1337 sequence_len: 5000 sample_packing: true pad_to_sequence_len: false shuffle_merged_datasets: true gradient_accumulation_steps: 75 micro_batch_size: 2 eval_batch_size: 4 num_epochs: 5 optimizer: paged_adamw_8bit lr_scheduler: constant learning_rate: 2.0e-05 noisy_embedding_alpha: 5 weight_decay: 0 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: false flash_attention: true chat_template: chatml auto_resume_from_checkpoints: false warmup_ratio: 0.1 evals_per_epoch: 1 val_set_size: 0.04 saves_per_epoch: 1 eval_sample_packing: false save_total_limit: 2 special_tokens: pad_token: use_liger_kernel: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true sequence_length: 10000 wandb_project: test-project wandb_entity: '' wandb_watch: '' wandb_run_id: '' wandb_log_model: '' hub_model_id: Heralax/test-model-4-sft hub_strategy: all_checkpoints ```

# llama-Augmentoolkit-Quickstart-Factual-Demo-Example This model is achieves the following results on the evaluation set: - Loss: 0.6876 (See? Number go down. Augmentoolkit works.) This is a demo model produced by running through the quickstart of [Augmentoolkit's](https://github.com/e-p-armstrong/augmentoolkit) Factual Finetuning pipeline. The model was taught about some of the US Army Field Manuals. The following manuals were trained on: ``` ARN14613_FM 1-05 FINAL WEB.pdf.txt ARN19639_FM 3-14 FINAL WEB.pdf.txt ARN31505-FM_3-96-000-WEB-1.pdf.txt ARN34470-FM_6-99-000-WEB-1.pdf.txt ARN35577-FM_3-55-000-WEB-0.pdf.txt ARN15310-FM_3-13.4-000-WEB-2.pdf.txt ARN21797_FM_3-04_FINAL_WEB_wfix.pdf.txt ARN33094-FM_3-57-000-WEB-1.pdf.txt ARN34770-FM_3-94-000-WEB-1.pdf.txt ARN35791-FM_4-02-001-WEB-3.pdf.txt ARN17082-FM_3-11-000-WEB-1.pdf.txt ARN30964-FM_7-22-001-WEB-4.pdf.txt ARN33127-FM_3-12-000-WEB-1.pdf.txt ARN34864-FM_3-61-000-WEB-1.pdf.txt ARN35838-FM_3-01.44-000-WEB-1.pdf.txt ARN19185_FM 6-02_FINAL_WEB.pdf.txt ARN31339-FM_3-01-000-WEB-1.pdf.txt ARN33331-FM_1-0-000-WEB-1.pdf.txt ARN35076-FM_7-0-000-WEB-1.pdf.txt ARN36290-FM_3-0-000-WEB-2.pdf.txt ARN19354_FM 6-27 _C1_FINAL_WEB_v2.pdf.txt ARN31353-FM_3-34-000-WEB-1.pdf.txt ARN34192-FM_3-81-000-WEB-1.pdf.txt ARN35404-FM_6-0-000-WEB-1.pdf.txt ARN36735-FM_6-22-000-WEB-1.pdf.txt ``` The `prompt.txt`, `template.txt`, RAG dataset, and GGUF file are all inside this folder so that people can run this model themselves using Augmentoolkit's chat interface. Just download the things not in the checkpoint-xx/ folders (not the model.safetensors files), put them all in a folder, and configure the basic-server or rag-server config to point at the prompt, template, etc., (see the documentation pages for those utility pipelines) and bang, Augmentoolkit will run these models with the correct prompt template and configuration. Stop sequence == "\*\*Finished.\*\*" Why did I do it like that? Because the more SFT text resembles the pretraining text, the more that knowledge and capabilities from the pretraining will carry over to the SFT. Convention and chatml be damned, I like better performance. Related Links: - [Augmentoolkit](https://github.com/e-p-armstrong/augmentoolkit) - [Other Factual Demo Model (Nursing)](https://huggingface.co/Heralax/llama-Augmentoolkit-Openstax-Nursing-Books-Example) - [Not-Undertrained Factual Model](https://huggingface.co/Heralax/llama-Augmentoolkit-MilitaryModel-Demo-NotUndertrained/settings) - [gRPo model (thoughts)](https://huggingface.co/Heralax/llama-gRPo-thoughtprocess) - [gRPo model (no thoughts)](https://huggingface.co/Heralax/llama-gRPo-emotions-nothoughts) Q: Why the Llama license? A: The quickstart uses Llama 3 to generate the data for the sake of speed and hardware compatibility. Therefore, the Llama license applies to this demo model. Example (no RAG btw): ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64825ebceb4befee377cf8ac/oliUoD4Oz1abZ5H8WJMTO.png)