Hibiki711 commited on
Commit
fa6e017
·
verified ·
1 Parent(s): d0a0464

Upload AveyForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AveyForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_avey.AveyConfig",
7
+ "AutoModelForCausalLM": "modeling_avey.AveyForCausalLM"
8
+ },
9
+ "context_len": 256,
10
+ "d_embed": 768,
11
+ "expansion_factor": 4,
12
+ "model_type": "avey",
13
+ "n_blocks": 22,
14
+ "torch_dtype": "float32",
15
+ "transformers_version": "4.49.0",
16
+ "vocab_size": 50281
17
+ }
configuration_avey.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class AveyConfig(PretrainedConfig):
5
+ model_type = "avey"
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size: int = 50281,
10
+ d_embed: int = 768,
11
+ n_blocks: int = 22,
12
+ expansion_factor: int = 4,
13
+ context_len: int = 256,
14
+ **kwargs
15
+ ):
16
+ self.vocab_size = vocab_size
17
+ self.d_embed = d_embed
18
+ self.n_blocks = n_blocks
19
+ self.expansion_factor = expansion_factor
20
+ self.context_len = context_len
21
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.49.0"
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce4801c145645ad98e2bfa923a8e498d8d2461bf245ad92f0a564f7bdb6bb49b
3
+ size 498031496
modeling_avey.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from transformers import PreTrainedModel, GenerationMixin
5
+ from transformers.modeling_outputs import CausalLMOutput
6
+ from configuration_avey import AveyConfig
7
+
8
+
9
+ class SGU(nn.Module):
10
+ def __init__(self, config: AveyConfig):
11
+ super().__init__()
12
+ self.ctxt_mat = nn.Parameter(torch.empty(config.context_len, config.context_len))
13
+ nn.init.xavier_normal_(self.ctxt_mat)
14
+
15
+ def cosim(self, embeddings: torch.Tensor) -> torch.Tensor:
16
+ norm = torch.sqrt(torch.sum(embeddings ** 2, dim=-1, keepdim=True) + 1e-8)
17
+ normalized = embeddings / norm
18
+ cosim = torch.matmul(normalized, normalized.transpose(-1, -2))
19
+ return cosim
20
+
21
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
22
+ x0, x1 = x.chunk(2, dim=-1)
23
+ c = torch.tril(self.cosim(x0)) * torch.tril(self.ctxt_mat)
24
+ x0 = c @ x0
25
+ output = x0 * x1
26
+ return output
27
+
28
+
29
+ class NeuralContextualizerLayer(nn.Module):
30
+ def __init__(self, config: AveyConfig):
31
+ super().__init__()
32
+ self.split_factor = [
33
+ int(config.d_embed * config.expansion_factor * 0.75),
34
+ int(config.d_embed * config.expansion_factor * 0.25)
35
+ ]
36
+ self.enricher = nn.Linear(config.d_embed, config.d_embed * config.expansion_factor)
37
+ self.sgu = SGU(config)
38
+ proj_in_features = int(
39
+ config.d_embed * config.expansion_factor * 0.5 + config.d_embed * 0.5
40
+ )
41
+ self.fuser = nn.Linear(proj_in_features, config.d_embed)
42
+
43
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
44
+ x_proj = F.gelu(self.enricher(x))
45
+ x0, x1 = x_proj.split(self.split_factor, dim=-1)
46
+ x0 = self.sgu(x0)
47
+ combined = torch.cat([x0, x1], dim=-1)
48
+ return self.fuser(combined)
49
+
50
+
51
+ class AveyBlock(nn.Module):
52
+ def __init__(self, config: AveyConfig):
53
+ super().__init__()
54
+ self.rms_norm = nn.RMSNorm(config.d_embed, eps=1e-10)
55
+ self.ctxt = NeuralContextualizerLayer(config)
56
+
57
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
58
+ return x + self.ctxt(self.rms_norm(x))
59
+
60
+
61
+ class AveyForCausalLM(PreTrainedModel, GenerationMixin):
62
+ config_class = AveyConfig
63
+
64
+ def __init__(self, config):
65
+ super().__init__(config)
66
+ self.config = config
67
+
68
+ self.wte = nn.Embedding(config.vocab_size, config.d_embed)
69
+ nn.init.xavier_normal_(self.wte.weight)
70
+
71
+ self.blocks = nn.ModuleList([AveyBlock(config) for _ in range(config.n_blocks)])
72
+ self.ln_f = nn.RMSNorm(config.d_embed, eps=1e-10)
73
+
74
+ def forward(self, input_ids: torch.Tensor, labels: torch.Tensor = None, **kwargs):
75
+ x = self.wte(input_ids)
76
+ B, T, E = x.shape
77
+
78
+ padded = False
79
+ orig_T = T
80
+ if T % self.config.context_len != 0:
81
+ pad_length = self.config.context_len - (T % self.config.context_len)
82
+ pad_tensor = torch.zeros(B, pad_length, E, device=x.device, dtype=x.dtype)
83
+ x = torch.cat([x, pad_tensor], dim=1)
84
+ T = x.shape[1]
85
+ padded = True
86
+
87
+ for block in self.blocks:
88
+ x = block(x)
89
+
90
+ logits = F.linear(self.ln_f(x), self.wte.weight)
91
+
92
+ if padded:
93
+ logits = logits[:, :orig_T, :]
94
+
95
+ if labels is not None:
96
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
97
+ return CausalLMOutput(logits=logits, loss=loss)
98
+
99
+ return CausalLMOutput(logits=logits)