Upload AveyForCausalLM
Browse files- README.md +199 -0
- config.json +17 -0
- configuration_avey.py +21 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modeling_avey.py +99 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"AveyForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_avey.AveyConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_avey.AveyForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"context_len": 256,
|
| 10 |
+
"d_embed": 768,
|
| 11 |
+
"expansion_factor": 4,
|
| 12 |
+
"model_type": "avey",
|
| 13 |
+
"n_blocks": 22,
|
| 14 |
+
"torch_dtype": "float32",
|
| 15 |
+
"transformers_version": "4.49.0",
|
| 16 |
+
"vocab_size": 50281
|
| 17 |
+
}
|
configuration_avey.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class AveyConfig(PretrainedConfig):
|
| 5 |
+
model_type = "avey"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
vocab_size: int = 50281,
|
| 10 |
+
d_embed: int = 768,
|
| 11 |
+
n_blocks: int = 22,
|
| 12 |
+
expansion_factor: int = 4,
|
| 13 |
+
context_len: int = 256,
|
| 14 |
+
**kwargs
|
| 15 |
+
):
|
| 16 |
+
self.vocab_size = vocab_size
|
| 17 |
+
self.d_embed = d_embed
|
| 18 |
+
self.n_blocks = n_blocks
|
| 19 |
+
self.expansion_factor = expansion_factor
|
| 20 |
+
self.context_len = context_len
|
| 21 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.49.0"
|
| 4 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce4801c145645ad98e2bfa923a8e498d8d2461bf245ad92f0a564f7bdb6bb49b
|
| 3 |
+
size 498031496
|
modeling_avey.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import PreTrainedModel, GenerationMixin
|
| 5 |
+
from transformers.modeling_outputs import CausalLMOutput
|
| 6 |
+
from configuration_avey import AveyConfig
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class SGU(nn.Module):
|
| 10 |
+
def __init__(self, config: AveyConfig):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.ctxt_mat = nn.Parameter(torch.empty(config.context_len, config.context_len))
|
| 13 |
+
nn.init.xavier_normal_(self.ctxt_mat)
|
| 14 |
+
|
| 15 |
+
def cosim(self, embeddings: torch.Tensor) -> torch.Tensor:
|
| 16 |
+
norm = torch.sqrt(torch.sum(embeddings ** 2, dim=-1, keepdim=True) + 1e-8)
|
| 17 |
+
normalized = embeddings / norm
|
| 18 |
+
cosim = torch.matmul(normalized, normalized.transpose(-1, -2))
|
| 19 |
+
return cosim
|
| 20 |
+
|
| 21 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 22 |
+
x0, x1 = x.chunk(2, dim=-1)
|
| 23 |
+
c = torch.tril(self.cosim(x0)) * torch.tril(self.ctxt_mat)
|
| 24 |
+
x0 = c @ x0
|
| 25 |
+
output = x0 * x1
|
| 26 |
+
return output
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class NeuralContextualizerLayer(nn.Module):
|
| 30 |
+
def __init__(self, config: AveyConfig):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.split_factor = [
|
| 33 |
+
int(config.d_embed * config.expansion_factor * 0.75),
|
| 34 |
+
int(config.d_embed * config.expansion_factor * 0.25)
|
| 35 |
+
]
|
| 36 |
+
self.enricher = nn.Linear(config.d_embed, config.d_embed * config.expansion_factor)
|
| 37 |
+
self.sgu = SGU(config)
|
| 38 |
+
proj_in_features = int(
|
| 39 |
+
config.d_embed * config.expansion_factor * 0.5 + config.d_embed * 0.5
|
| 40 |
+
)
|
| 41 |
+
self.fuser = nn.Linear(proj_in_features, config.d_embed)
|
| 42 |
+
|
| 43 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 44 |
+
x_proj = F.gelu(self.enricher(x))
|
| 45 |
+
x0, x1 = x_proj.split(self.split_factor, dim=-1)
|
| 46 |
+
x0 = self.sgu(x0)
|
| 47 |
+
combined = torch.cat([x0, x1], dim=-1)
|
| 48 |
+
return self.fuser(combined)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class AveyBlock(nn.Module):
|
| 52 |
+
def __init__(self, config: AveyConfig):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.rms_norm = nn.RMSNorm(config.d_embed, eps=1e-10)
|
| 55 |
+
self.ctxt = NeuralContextualizerLayer(config)
|
| 56 |
+
|
| 57 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 58 |
+
return x + self.ctxt(self.rms_norm(x))
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class AveyForCausalLM(PreTrainedModel, GenerationMixin):
|
| 62 |
+
config_class = AveyConfig
|
| 63 |
+
|
| 64 |
+
def __init__(self, config):
|
| 65 |
+
super().__init__(config)
|
| 66 |
+
self.config = config
|
| 67 |
+
|
| 68 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_embed)
|
| 69 |
+
nn.init.xavier_normal_(self.wte.weight)
|
| 70 |
+
|
| 71 |
+
self.blocks = nn.ModuleList([AveyBlock(config) for _ in range(config.n_blocks)])
|
| 72 |
+
self.ln_f = nn.RMSNorm(config.d_embed, eps=1e-10)
|
| 73 |
+
|
| 74 |
+
def forward(self, input_ids: torch.Tensor, labels: torch.Tensor = None, **kwargs):
|
| 75 |
+
x = self.wte(input_ids)
|
| 76 |
+
B, T, E = x.shape
|
| 77 |
+
|
| 78 |
+
padded = False
|
| 79 |
+
orig_T = T
|
| 80 |
+
if T % self.config.context_len != 0:
|
| 81 |
+
pad_length = self.config.context_len - (T % self.config.context_len)
|
| 82 |
+
pad_tensor = torch.zeros(B, pad_length, E, device=x.device, dtype=x.dtype)
|
| 83 |
+
x = torch.cat([x, pad_tensor], dim=1)
|
| 84 |
+
T = x.shape[1]
|
| 85 |
+
padded = True
|
| 86 |
+
|
| 87 |
+
for block in self.blocks:
|
| 88 |
+
x = block(x)
|
| 89 |
+
|
| 90 |
+
logits = F.linear(self.ln_f(x), self.wte.weight)
|
| 91 |
+
|
| 92 |
+
if padded:
|
| 93 |
+
logits = logits[:, :orig_T, :]
|
| 94 |
+
|
| 95 |
+
if labels is not None:
|
| 96 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 97 |
+
return CausalLMOutput(logits=logits, loss=loss)
|
| 98 |
+
|
| 99 |
+
return CausalLMOutput(logits=logits)
|